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A. Additional placement results
A.1. Quantitative evaluation
To quantify the performance of placement, we compute the
following three metrics on the training set of KITTI: 1)
Overlap: As road regions can cover most of the plausi-
ble locations for cars, we evaluate the predicted location by
checking whether the center of the base of the 3D bounding
box is on the road. Specifically, we compute the fraction
of boxes that overlap with the road segmentation obtained
using [8]. 2) θKL: We evaluate the KL-divergence between
the distribution of orientation of the predicted 3D bounding
box and the ground truth boxes. We present quantitative re-
sults in Tab. 1, where our method achieves superior overlap
scores, suggesting the superiority of placement.

Table 1. Ablation over SA-PlaceNet components
Method Random w/o var & geo w/o geo w/o var Ours

Overlap ↑ 0.20 0.15 0.17 0.35 0.36
θKL ↓ 1.37 0.66 1.18 0.32 0.30

A.2. Placement on nuScenes [1] dataset
We validate the generalization of our method by train-
ing SA-PlaceNet on a subset of a recent driving dataset -
NuScenes [1] in Fig. 1. We visualize predicted 3D bound-
ing boxes and realistic renderings from our method. Our
approach produces plausible placements and authentic aug-
mentations for the given scene.

Source Image Sampled 3D boxes Augmented Scene

Figure 1. Placement on nuScenes [1] dataset.

A.3. Controlling traffic density in scenes
Our augmentation method enables us to control the traffic
density of vehicles in the input scenes by controlling the
number of bounding boxes to be sampled. We present re-
sults for generating low-density (1−3 cars added) and high-
density (3− 5 cars added) traffic scenes in Fig. 2.

A.4. Placing other categories
Our method enables us to learn placement for other cate-
gories from KITTI datasets. Specifically, we trained a joint
placement model to learn the distribution of 3D bound-
ing boxes for cars, pedestrians, and cyclists. To render
the pedestrians and cyclists, we leverage simple copy-paste
rendering as discussed in Sec. F.1. We present place-
ment results in additional categories in Fig. 3. The pro-



So
ur

ce
 Im

ag
e

   
   

Lo
w

 d
en

si
ty

H
ig

h
 d

en
si

ty

This figure is for different outputs for a single input image. Given a RGB image, we have to generate three variations with 
different density. We will sample different number of cars for density and render using repaint by example for high 
realism.--

Figure 2. Augmented training dataset for 3D object detection:
Given a sparse scene with few cars, we place cars at the predicted
3D bounding box locations using our rendering algorithm. We
present two sets of results, one with low density (1−3 cars added)
and another with high density (4− 5 cars added) for each scene.

posed method predicts plausible locations, orientation, and
shape of the object, enabling rich scene augmentations. Us-
ing these augmentations for training leads to significant
improvement in performance for less frequent cyclist and
pedestrian categories (Tab.3 main paper).
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Figure 3. Placement results for pedestrian and cycle categories on
KITTI dataset. Note that we applied copy-paste in the predicted
3D object box locations to generate the augmentations. Though
copy-pasting causes image artifacts, these augmentations still im-
prove 3D detection performance, as shown in the main paper.

B. Additional object detection results
B.1. Monocular 3D detection in indoor scenes
Our proposed method is generalizable for 3D detection in
indoor environments. To demonstrate this, we performed a
preliminary experiment involving monocular 3D detection
on SunRGBD [21] dataset. We adapt our placement net-
work building on an indoor detection network -

Table 2. Indoor 3D detection

config. mAP@0.25
ImVoxelNet - w/o 3D augm. 0.410

ImVoxelNet - w ours 0.430

ImVoxelNet [15].
We used copy-
paste along with
the predicted
object locations
to generate data
augmentations.

The generated augmentations are highly effective and
improve upon the monocular 3D detection performance, as
shown in Tab. 2. This indicates the superior generalization
of our method for diverse environments. We believe a
detailed exploration of our work for indoor environments is
a promising future direction.

B.2. Improving 2D object detection
As our approach provides consistent 3D augmentations, it
also enables to improve the performance of 2D object detec-
tors. Specifically, our placement model also predicts the 2D
bounding box along with the 3D bounding box (followed in
most of the 3D detection works). We use these predicted

Table 3. 2D Detection Perfor-
mance on ‘Car’ category with
CenterNet [22]

config. AP2D@IOU=0.5
Easy Mod. Hard

w/o 3D Aug. 86.03 73.74 65.08
Ours 89.56 76.79 72.28

2D bounding box an-
notations to obtain a
labeled 2D detection
dataset. We eval-
uate the gains from
our augmentations on
2D object detection on
off-the-shelf 2D detec-
tor CenterNet [22] in
Tab. 3. Following [16], we use a standardized approach to
report AP40 metric instead of the AP11 for evaluation. No-
tably, our proposed augmentation method, though designed
for 3D detection, can also improve the performance of 2D
object detection, proving the task generalization of the pro-
posed approach.

B.3. 3D object detection on BEV based detector
Our method generalizes to BEV-based detection, as our
placement model predicts 3D bounding boxes in the world

Table 4. Detection on BEV based
3D detector DeTR3D

config. NDS mAP
Detr3D - w/o 3D augm. 0.434 0.349

Detr3D - w ours 0.451 0.381

coordinate space.
We train BEV-based
DeTR3D on multi-
view nuScenes,
augmenting individual
camera views by
placing our 2D car
renderings in non-overlapping image regions. Since over-
lapping regions are mostly confined to the peripheries of
adjacent camera views [11], our augmentations effectively
improve detection performance (Tab. 4). For overlapping
image regions, a possible solution is to use 3D cars and
render consistent multi-views for placement.

B.4. 3D object detection on MonoDETR [19]
To validate the generalizability of our approach, we eval-
uate proposed 3D augmentation on a recent 3D monocu-
lar detection model MonoDETR [19] on the KITTI dataset
in Tab. 5. We report the baseline results without our aug-
mentation from the original paper. Our method consistently
outperforms the baseline in all three settings. The compre-



hensive evaluation across several detectors (also in the main
paper) evidently shows the generalization of our proposed
3D augmentation method.

Table 5. 3D Detection Performance on Car with MonoDETR [19]

MonoDETR 3D@IOU=0.7 3D@IOU=0.5
Easy Mod. Hard Easy Mod. Hard

w/o 3D Augmentation 28.84 20.61 16.38 68.86 48.92 43.57
Geo-CP 23.26 16.41 14.58 60.65 43.93 37.71
Lift3D 22.00 16.61 14.59 63.45 47.34 38.57
RBP 24.92 17.75 15.90 61.99 44.02 38.04
Ours 29.90 21.91 16.85 69.63 49.10 43.63

B.5. Effect of Poisson Blending

We use Poisson blending to enhance the quality of the com-
position of synthetic cars with the background scene. We
observe a slight dip in the detection performance using the
obtained augmentations as reported in Tab. 6. A similar ob-
servation was made in [20], where improved blending does
not positively affect the detection performance.

Table 6. Monocular 3D detection performance of Poisson Blend-
ing on our Rendering on KITTI [4] validation set.

(a) MonoDLE[13] on Car with and without Poisson Blending

Rendering 3D@IOU=0.7 3D@IOU=0.5
Easy Mod. Hard Easy Mod Hard

w/o 3D Aug. 17.45 13.66 11.69 55.41 43.42 37.81
Ours 22.49 15.44 12.89 63.59 45.59 40.35

Ours (+Poisson) 21.34 14.44 12.81 59.60 44.11 38.15
(b) GUPNet[12] on Car with and without Poisson Blending

Rendering 3D@IOU=0.7 3D@IOU=0.5
Easy Mod. Hard Easy Mod Hard

w/o 3D Aug. 22.76 16.46 13.27 57.62 42.33 37.59
Ours 23.94 17.28 14.71 61.01 47.18 41.48

Ours (+Poisson) 22.43 17.03 14.55 60.00 45.28 39.60

Table 7. Analysis of Training Time
Model Dataset Training Time #GPU’s GPU Model

SA-PlaceNet KITTI 12h 1 A5000
SA-PlaceNet NuScenes 32h 1 A5000

GUPNet Original KITTI 20h 1 A5000
GUPNet Augmented KITTI 22h 1 A5000
FCOS3D Original NuScenes 5d18h 2 A5000
FCOS3D Augmented NuScenes 6d 2 A5000

C. Computational cost of MonoPlace3D

Training of SA-PlaceNet takes a fraction of the time of the
detection training. The relative training time is significantly
reduced for large datasets such as NuScenes. We present the
computational requirements of our augmentation in com-
parison to the training time in Table 7. We train GUPNet
and MonoDLE for an additional 10 epochs and FCOS3D for
an additional 5 epochs when training with our augmented
data.

Table 8. Data efficiency of SA-PlaceNet on KITTI dataset

MonoDLE 3D@IOU=0.7 3D@IOU=0.5
% Real Data % Aug. Data Easy Mod. Hard Easy Mod. Hard

10 10 4.94 3.90 3.26 27.21 21.03 18.06
25 25 13.38 9.78 8.23 48.28 36.99 30.83
50 50 20.46 13.70 11.71 58.04 43.83 37.87
75 75 21.53 14.95 12.38 60.94 45.19 39.99

100 100 22.49 15.44 12.89 63.59 45.59 40.35
100 0 17.45 13.66 11.69 55.41 43.42 37.81

C.1. Data Efficiency on KITTI
In this section, we demonstrate the data efficiency of our
method. As observed in Tab.8 our method can significantly
reduce the dependence on real data when training monocu-
lar detection networks. Specifically, augmenting just 50 %
of the real data can achieve better performance than training
with 100 % of the original training data.

C.2. Scalability of generated augmentations
To evaluate the effectiveness of the scale of our augmen-
tations, we perform a scalability experiment on a large
nuScenes dataset consisting of ≈ 35K images. We use
different fractions of real and augmented data to train a
monocular 3D detector and achieve consistent gains across
the amount of data.

Table 9. Scaling on NuScenes dataset

% Data mAP (w/o aug) mAP (ours) NDS (w/o aug) NDS (ours)
15 0.131 0.151 0.223 0.239
30 0.231 0.253 0.311 0.339
50 0.310 0.342 0.392 0.411
100 0.343 0.371 0.415 0.440

C.3. Rendering Ablation on NuScenes
We also present an ablation study of various rendering ap-
proaches for augmentation in 3D detection for NuScenes.
All renderings, when used with our learned placement, out-
perform the baseline, demonstrating the compatibility of
our placement with different rendering methods.

Table 10. Ablation on NuScenes

FCOS3D [1] MAP NDS
w/o 3D Augmentation 0.3430 0.415

ShapeNet 0.3441 0.414
Lift3D 0.3460 0.416
Ours 0.3704 0.440

D. Data Augmentation for Corner Cases
We aim to approximate the training data distribution p(x),
with a learned distribution qθ(x), which can be sampled
(x ∼ qθ(x)) to generate augmentations. In principle,
our approach can also model abnormal cases by learn-
ing a distribution to approximate the conditional distri-



bution p(x|state =‘abnormal’). During inference from
SA-PlaceNet we sample the least likely positions from
the learned distribution to simulate corners cases for au-
tonomous driving . We augment the training data with these
corner cases and train MonoDLE [13] . In Fig 4 we show
qualitatively how training with our data can improve the
model performance on corner cases .
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Figure 4. Detection improvement in corner cases.

E. Implementations details
E.1. Placement data Preprocessing
We use the state-of-the-art Image-to-Image Inpainting
method [14] to remove vehicles and objects from the KITTI
dataset [7]. The input prompt ‘inpaint’ is passed to the in-
painting pipeline. A few outputs from this method can be
seen in Fig. 5

Source Image Inpainted Image

Figure 5. Outputs generated from Stable Diffusion Inpainting
pipeline [14]. These inpainted images are used for training our
placement model.

E.2. Baseline methods
Geometric Copy-paste (Geo-CP). To augment a given
scene, a car is randomly sampled from the database, and its
3D parameters are altered before placement. Specifically,
the depth of the box (z coordinate) is randomly sampled,
and corresponding x and y are transformed using geometric
operations. Other parameters, such as bounding box size
and orientation, are kept unchanged. The sampled car is
then pasted using simple blending on the background scene.
CARLA [6]. To compare the augmentations generated by
simulated road scene environments, we use state-of-the-
art CARLA simulator engine for rendering realistic scenes

with multiple cars. It can generate diverse traffic scenar-
ios that are implemented programmatically. However, it’s
extremely challenging for simulators to capture the true di-
versity from real-world road scenes and they often suffer
from a large sim2real gap.
Rule Based Placement (RBP). We create a strong rule-
based baseline to show the effectiveness of our learning-
based placement. Specifically, we first segment out the road
region with [8] and sample placement locations in this re-
gion. To get a plausible orientation, we copy the orientation
of the closest car in the scene, assuming neighboring cars
follow the same orientations. We used our proposed render-
ing pipeline to generate realistic augmentations.
Lift-3D [10] proposed a generative radiance field network
to synthetize realistic 3D cars. Lift3D trains a conditional
NeRF on multi-view car images generated by StyleGANs.
However, the car shape is changed following the 3D bound-
ing box dimensions. The generated cars are then placed on
the road using a heuristic based on road segmentation. We
used a single generated 3D car provided in the official code
to augment the dataset as the training code is unavailable.
Specifically, road region is segmented using off-the-shelf
drivable area segmentor [8]. Next, the 3D bounding box of
cars is sampled from a predefined distribution of box pa-
rameters as given in Tab.11, and the ones outside the driv-
able area are filtered out. For a sampled 3D bounding box
parameters b=[bx, by, bz, bw, bh, bl, bθ], we render the car at
adjusted orientation angle θ̃ using Eq. 1. We place the cam-
era at the fixed height of 1.6m, with an elevation angle of
0. Also, we used (bw, bh, bl) to render the car of a particu-
lar shape. We render the car image for 512x512 resolution
using volume rendering and the defined camera parameters.
Along with the RGB image, Lift3D also outputs the seg-
mentation mask for the car which is used to blend it with
the background. Fig. 6 shows some sample renderings from
Lift3D.

Figure 6. Sampled views rendered from Lift3D [10].

F. Rendering details
F.1. Copy-Paste
In simple copy-paste rendering, the cars from the training
corpus are added to the predicted 3D bounding boxes. We



Table 11. Preset distribution of bounding boxes. Lift3D [10] sam-
ples bounding boxes from the predefined parameter distribution.

Pose Distribution Parameters
x Uniform {[−20m, 20m]}
y Gaussian µ = height, σ = 0.2
z Uniform {[5m, 45m]}
l Gaussian µ = lmean , σ = 0.5
w Gaussian µ = wmean , σ = 0.5
h Gaussian µ = hmean , σ = 0.5
θ Gaussian µ = ±π/2, σ = π/2

Copy-Paste Car Binary Mask

Figure 7. Sample cars from the Copy-Paste Database

extract cars of various orientations from the training set im-
ages through instance segmentation using Detectron2 [17].
These cars are archived in a database with their correspond-
ing 3D orientation and binary segmentation mask data. Dur-
ing inference, given a 3D bounding box, we query and
search for cars whose orientation closely aligns with the
given 3D box orientation. A certain degree of randomness is
introduced in selecting the nearest-matching car, contribut-
ing to increased diversity and seamless integration with the
input scene. Next, we compose the retrieved car image onto
the background scene using the 2D-coordinated obtained
from the 3D bounding box and the binary mask. This sim-
ple rendering essentially captures the diverse cars present in
the training dataset and helps in generating scenes that are
close to training distribution. However, such rendering has a
problem with shadows as the composition is not 3D-aware,
given the placed cars are stored as images.

F.2. ShapeNet
ShapeNet [3] is a large-scale synthetic dataset that pro-
vides 3D models for various object categories, including
cars. The ShapeNet Cars dataset focuses specifically on
providing 3D models of different car models from vari-
ous viewpoints. We leverage the high diversity of cars
(nearly 7500 models) in the dataset and render the cars at
the predicted box locations with 3D bounding box parame-
ters using Blender [5] software. We employ a random sam-
pling technique to select a 3D car model from this exten-
sive dataset, which is then loaded in the Blender [5] envi-

Figure 8. Sample of ShapeNet [3] cars rendered at different views.

ronment. To ensure consistency in the car shapes, we ini-
tially calculated the average dimensions of the cars within
the dataset. We exclude any car model with dimensions ex-
ceeding 50% of the computed average, and we repeat this
random sampling procedure until the specified conditions
are satisfied. Following that, we align and render the car
by a 3D rotation angle. Specifically, as the orientation an-
gle θ is defined in 3D, using it directly to render the image
does not take care of perspective projection. Eg. all the cars
following a lane will have similar orientation angles (close
to zero) but look visually different when projected on the
image as shown in Fig. 9. Both the rendered cars have 0
orientation angle in 3D but when projected onto the image
planes, the rendered orientation changes with the location.
To this end, we adjust the car orientation by a correction
factor to incorporate the perspective view, as described in
equation (1),

θ̃ = θ + tan−1(
x

z
) (1)

where x and z are the respective 3D coordinates of the
bounding box. We use the final corrected θ̃ value for ren-
dering the ShapeNet car. We render car images at 512x512,
with a white background, which can be later used as a seg-
mentation mask to blend the rendered image. A few exam-
ples of the ShapeNet cars rendered with different orienta-
tions are visualized in Fig. 8.

Figure 9. Perspective and Absolute projection of cars with the
same 3D orientation.

F.3. Reaslistic rendering with Text-to-image models.
We leverage a state-of-the-art image-to-image translation
method based on the powerful StableDiffusion model [18]
to convert the synthetic ShapeNet renderings into realis-
tic cars. We use edge-conditioned ControlNet [18], which
takes an edge image and a text prompt to generate images
following the edge map and the prompt. Specifically, we



utilize a canny edge detector to create edge maps for syn-
thetic car images rendered using ShapeNet [3], preserv-
ing the car’s structure while maintaining its original ori-
entation and scale. These edge maps, generated through
the Canny Edge Detection algorithm [2], serve as input for
the edge-conditioned ControlNet [18], enabling the render-
ing of realistic cars using the prompt ‘A realistic car on
the street’. Furthermore, given an edge map and hence a
ShapeNet-rendered car, we can obtain various realistic ren-
derings at each iteration, facilitating diverse scene genera-
tions (Fig. 10). We further enhance ControlNet’s backbone
diffusion model using LoRA [9] on a subset of ‘car’ images
from the KITTI dataset. This process enables the generation
of natural-looking car versions that seamlessly blend with
the background scene. Finally, we integrate the ControlNet-
rendered car and its shadow base into the predicted location
within the scene to achieve a realistic rendering.

ControlNet

Edge image Diverse realistic cars

‘A realistic car on 
street’

Shadow

Rendering Shadows for 3D assets in Blender

a)

b)

Figure 10. a) Diverse renderings generated with edge-conditioned
ControlNet. B) Shadows are generated by rendering 3D assets
with a point light source in the blender [5] environment

F.4. Rendering shadows in Blender [5]
To generate a realistic composition of the augmented
cars, we generate realistic shadows for cars using the
ShapeNet [3] dataset and rendered with Blender. We mod-
ify the rendering method to generate shadows by introduc-
ing a 2D mesh plane beneath the car base and adding a
uniform ‘Sun’ Light source along the z-axis of the blender
environment, placed at the top on the z-axis of the car
(Fig. 10). Additionally, we introduce slight variations
across all axes for the light source position. Once the cars
are positioned within the Blender [5] environment with suit-

able orientation, we render the entire scene while setting
both the car and the 2D plane as transparent. This method
enables us to create a collection of shadow renderings with
a transparent background for each car in the placement set-
ting.
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