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Appendix
In this document, we provide more concrete details of the
AE2 benchmark [15] in Appendix A, additional experimen-
tal results in Appendix B, including the results using differ-
ent backbones (CLIP pretrained ViT-L/14 [5] and ResNet-
50 [8]), few-shot classification and frame retrieval perfor-
mance, ablation studies for each hyper-parameter, and anal-
ysis for the failure case. Finally, we present the broader
impact of our BYOV in Appendix C.

A. Benchmark Details
In this section, we provide a detailed explanation of AE2
benchmark [15] and the evaluation details of four down-
stream tasks, including action phase classification, frame
retrieval, phase progression, and Kendall’s τ .

A.1. Datasets
The AE2 benchmark [15] contains four datasets: (1) Break
Eggs; (2) Pour Mild; (3) Pour Liquid; and (4) Tennis Fore-
hand. The summary of each dataset is shown in Tab. 1.
• Break Eggs sampled from the CMU-MMAC dataset [11]

contains 5 different cooking recipes (brownies, pizza,
sandwiches, salad, and scrambled eggs) captured by 43
users. While the ego and exo videos are strictly synchro-
nized (i.e., capturing the same scene), we do not use the
correspondence between videos for training.

• Pour Milk sampled from the H2O dataset [10] contains
the scene of 10 users interacting with a milk carton using
their hands. The dataset provides one egocentric video
and four exocentric static videos for each scene. Some
ego and exo video pairs are synchronized and the rest are
asynchronous.

• Pour Liquid assumes a more challenging scenario as the
ego and exo videos are sampled from different datasets.
Therefore, those videos are fully asynchronous and cap-
tured from different environments. The ego videos con-
sist of the “pour water” class in EPIC-Kitchens [3] and

the exo videos are the “pour” category in HMDB51 [9].
• Tennis Forehand includes outdoor activity videos. The

exocentric videos of the tennis forehand action are sam-
pled from the Penn Action [16] dataset and the egocentric
videos are collected from 12 players using the Go Pro
HERO8 camera. The videos are asynchronous, covering
real-world scenarios.

A.2. Downstream tasks
• Action phase classification aims to predict an atomic

action phase label corresponding to a given frame. The
Break Eggs dataset contains four action phases between
‘start’, ‘hit egg’, ‘visible crack on the eggshell’, ‘egg con-
tents released’, and ‘end.’ The Pour Milk and Pour Liq-
uid datasets contain three phases between ‘start’, ‘liquid
exits container’, ‘pouring complete’, and ‘end.’ The Ten-
nis Forehand dataset has only two phases between ‘start’,
‘racket touches ball’, and ‘end.’ In this document, we ad-
ditionally provide a few-shot classification performance
to validate the robustness of BYOV.

• Frame retrieval selects frames corresponding to a given
frame using the NN search. We evaluate this task with
mean average precision (mAP)@K (K=5,10,15) in the
regular and cross-view settings.

• Phase progression quantifies how effectively the learned
representations imply the progression of an action. The
progression value within each phase is defined as the nor-
malized temporal difference between the timestamp of a
given frame and those of key events, scaled by the total
number of frames in the video. A linear regressor is then
employed to predict the phase progression values from
the embeddings, where our encoders are frozen. The per-
formance is evaluated using the average R-squared value
as follows:

R2 = 1−
∑T
t=1(yt − ŷt)

2∑T
t=1(yt − ȳ)2

,

where yt is the ground truth phase progress value, ȳ is the
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Table 1. Performance with respect to variants of the components in BYOV. We report the performance evaluated on the Break Eggs dataset.

Dataset
# Train # Val # Test Fixed

exo-view
Sync.

ego-exoEgo Exo Ego Exo Ego Exo

(A) Break Eggs 61 57 5 5 10 10 ✓ ✓

(B) Pour Milk 29 48 4 8 7 16 ✓ ✗

(C) Pour Liquid 70 67 10 9 19 18 ✗ ✗

(D) Tennis Forehand 94 79 25 24 50 50 ✗ ✗

average value of all yt, and ŷt is the prediction from the
linear regressor. The maximum value of R2 is 1.

• Kendall’s τ assesses the temporal alignment between
two sequences by comparing the order of frames. Specif-
ically, we first sample a pair of frames from one video,
(ui, uj), and retrieve their nearest corresponding frames
in the other video, (vp, vq). A set of frame indices
(i, j, p, q) is treated as ‘matched’ if the temporal order of
ui and uj and that of vp and vq are the same. Kendall’s τ
is then computed by,

τ =
#matched pairs −#not matched pairs

#all possible pairs
.

A value of 1 means the frame representations are perfectly
aligned while −1 indicates the representations are aligned
in the reverse order.

B. Additional Experiments
B.1. Results with different frame encoders
We mainly used the CLIP pretrained ViT-B/16 [5] to en-
code each frame in the main paper. To demonstrate the ro-
bustness of BYOV according to the frame encoders, we train
BYOV with the CLIP pretrained ViT-L/14 [5] and ResNet-
50 [8], and evaluate the performance on four tasks for four
datasets. Implementation details for each frame encoder are
as follows.
• CLIP ViT-L/14 [5] pretrained on LAION-400M [12]

projects each frame into 1024-dimensional 256 token em-
beddings different from the ViT-B/16, which has 768-
dimensional 196 token embeddings. We keep the number
of layers of the encoder gϕ(·) and the decoder hψ(·) as 12
and 4 while setting the size of the latent space to 512. The
number of trainable parameters is 51.8M (38.4M for the
encoder and 13.4M for the decoder, respectively). The to-
ken selection ratio in selective token merging (STM), and
the masking ratio in masked self-view modeling (MSM)
and masked cross-view modeling (MCM) are set to 0.3,
0.4, and 0.8 as with the ViT-B/16.

• ResNet-50 [8] employs convolutional neural network,
and is pretrained on ImageNet-1K [4]. We extract the
feature for each frame from a Conv4c layer of ResNet-
50, which has 14 × 14 resolution with 1024 dimensions.

We also perform the selective token merging to keep the
overall framework of BYOV. The receptive field of each
1024-d embedding is 55× 55 pixels, which is wider than
16 × 16 in ViT-B/16. Therefore, we reduce the selection
ratio to 0.1. The masking ratio in MSM and MCM are
set to 0.4 and 0.8, respectively. Similar to the ViT-L/14,
we use 512-dimensional latent space for the encoder gϕ(·)
and the decoder hψ(·).

In Tab. 2, we first provide the zero-shot performance of
the ResNet-50 (ImageNet features), CLIP ViT-B/16, and
CLIP ViT-L/14. While ViT-L/14 (303M) has about three
times more parameters than ViT-B/16 (86M), comparisons
between the two frame encoders show that generalization
capability is not dependent on the model size. Meanwhile,
our BYOV with various frame encoders consistently out-
performs the state-of-the-art [15] across tasks and datasets.
In practice, BYOV with the ResNet-50 surpasses AE2 [15]
without any additional information such as bounding boxes
from the hand-object detector as in [15]. It demonstrates the
robustness of the framework of our BYOV.

B.2. Few-shot classification
Following [15], we compare few-shot classification perfor-
mance with the state-of-the-art methods [1, 6, 7, 13–15] in
Tab. 3. We train the SVM classifier using 10% (or 50%) of
the latents from the training data and evaluate the classifi-
cation performance. Note that we train BYOV ten times on
non-overlapped few-shot training data and report the aver-
age performance. Tab. 3 demonstrates the superior perfor-
mance of BYOV, showing significant performance gaps to
the existing works across all datasets. In particular, BYOV
trained with only 10% training data significantly outper-
forms the prior best performance [15] trained with 100%
training data by a large margin of 12.54 on the Pour Liquid
dataset.

B.3. Frame retrieval
In Tab. 3 and Tab. 4, we report the frame retrieval per-
formance, evaluated in both regular and cross-view set-
tings. Comparisons with the existing methods consistently
demonstrate the effectiveness of BYOV in both regular and
cross-view retrieval across all datasets, showing an average
performance improvement of about 10%.



Table 2. Performance comparison with various frame encoders on the AE2 benchmark [15]. The benchmark consists of four sub-tasks:
(A) Break Eggs, (B) Pour Milk, (C) Pour Liquid, and (D) Tennis Forehand. The top results are highlighted in bold and the second-best
results are underlined.

Task Method
Classification (F1 score) Frame Retrieval (mAP@10) Phase

progression
Kendall’s

τRegular Ego2Exo Exo2Ego Regular Ego2Exo Exo2Ego

(A)

Random features 19.18 18.93 19.45 47.13 41.74 37.19 -0.0572 0.0018
ImageNet features 50.24 21.48 32.25 50.49 33.09 37.80 -0.1446 0.0188
CLIP ViT-B/16 51.66 27.97 26.24 44.46 35.85 35.70 0.0402 0.0168
CLIP ViT-L/14 54.24 41.56 38.31 38.14 38.96 34.99 0.1672 0.0483
AE2 [15] 66.23 57.41 71.72 65.85 64.59 62.15 0.5109 0.6316

BYOV (ResNet-50) 72.57 67.91 70.74 68.42 63.27 63.85 0.7751 0.7463
BYOV (ViT-B/16) 74.30 75.01 71.28 67.17 70.65 69.02 0.8533 0.9451
BYOV (ViT-L/14) 72.41 70.11 72.92 75.59 67.73 67.55 0.8272 0.8940

(B)

Random features 36.84 33.96 41.97 52.48 50.56 51.98 -0.0477 0.0050
ImageNet features 41.59 39.93 45.52 54.09 27.31 43.21 -2.6681 0.0115
CLIP ViT-B/16 43.24 49.21 30.94 52.16 46.39 40.34 -4.0754 0.0046
CLIP ViT-L/14 46.65 46.79 17.77 46.20 44.32 53.75 -0.4735 0.0503
AE2 [15] 85.17 84.73 82.77 84.90 78.48 83.41 0.7634 0.9062

BYOV (ResNet-50) 86.84 83.83 87.00 87.17 79.27 79.87 0.8082 0.9152
BYOV (ViT-B/16) 86.46 85.09 86.61 89.42 87.73 85.06 0.8992 0.9466
BYOV (ViT-L/14) 86.76 85.54 86.58 87.35 82.51 82.61 0.8407 0.9448

(C)

Random features 45.26 47.45 44.33 49.83 55.44 55.75 -0.1303 -0.0072
ImageNet features 53.13 22.44 44.61 51.49 52.17 30.44 -1.6329 -0.0053
CLIP ViT-B/16 60.60 36.97 48.43 43.63 47.58 37.02 -0.3139 -0.0048
CLIP ViT-L/14 54.38 6.83 51.69 50.01 31.82 54.61 -0.2066 -0.0052
AE2 [15] 66.56 57.15 65.60 65.54 65.79 57.35 0.1380 0.0934

BYOV (ResNet-50) 78.63 73.67 76.53 71.47 66.74 71.17 0.3982 0.2883
BYOV (ViT-B/16) 79.48 71.83 76.23 71.06 75.03 70.03 0.4483 0.3052
BYOV (ViT-L/14) 79.48 71.49 76.61 70.36 76.48 73.38 0.4534 0.3084

(D)

Random Features 30.31 33.42 28.10 66.47 58.98 59.87 -0.0425 0.0177
ImageNet Features 69.15 42.03 58.61 76.96 66.90 60.31 -0.4143 0.0734
CLIP ViT-B/16 67.81 43.41 44.22 74.54 59.57 52.02 -0.4996 0.0618
CLIP ViT-L/14 64.40 47.53 47.50 74.26 67.19 58.73 -0.4126 0.0302
AE2 [15] 85.87 84.71 85.68 86.83 81.46 82.07 0.5060 0.6171

BYOV (ResNet-50) 89.34 94.83 84.96 89.83 86.71 82.68 0.7588 0.7599
BYOV (ViT-B/16) 89.12 94.47 85.73 90.61 88.34 88.94 0.7881 0.7852
BYOV (ViT-L/14) 89.56 94.48 86.51 91.21 87.04 88.33 0.7653 0.8101

We illustrate examples of cross-view frame retrieval
from the Pour Milk and Tennis Forehand datasets in Fig. 1.
Given the query frame (blue box) from one view, we re-
trieve the frames (red box) from the other view videos us-
ing NN search. The results show that the query and re-
trieved frames are contextually well-aligned through the ac-
tion states. In addition, properly retrieved frames demon-
strate that BYOV captures contexts over time. For example,
the frames with the action phases of ‘pre-pour’ and ‘pouring
complete’ are visually similar, however, BYOV successfully
performs frame retrieval by capturing the context with re-
spect to the action state over time. In this regard, we further
analyze the effectiveness of BYOV by visualizing the frame

embeddings in the following section.

B.4. Ablation study
We analyze the effectiveness of each component in BYOV,
including the size of latent space, token selection ratio in
STM, and masking ratio in MSM and MCM. Note that we
use the CLIP pretrained ViT-B/16 as the frame encoder for
the following experiments.
Hidden dimension of autoencoders. The encoder gϕ(·)
maps the frame token embeddings into the 256-dimensional
latents, such that the encoder and decoder have 9.7M and
2.6M trainable parameters, respectively. To assess the im-
pact of latent space size on performance, we train BYOV



Table 3. Performance comparison for few-shot classification and regular frame retrieval on the AE2 benchmark [15]. The benchmark
consists of four sub-tasks: (A) Break Eggs, (B) Pour Milk, (C) Pour Liquid, and (D) Tennis Forehand. We report the few-shot classification
(F1 score) and regular frame retrieval (mAP@5, mAP@10, and mAP@15) performance. The top results are highlighted in bold and the
second-best results are underlined.

Task Method
Few-shot Classification (F1 score) Regular Frame Retrieval

10% 50% 100% mAP@5 mAP@10 mAP@15

(A)

Random features 19.18 19.18 19.18 48.26 47.13 45.75
ImageNet features 46.15 48.80 50.24 49.98 50.49 50.08
CLIP ViT-B/16 46.46 49.18 51.66 44.89 44.46 43.44
CLIP ViT-L/14 47.36 51.80 54.24 38.47 38.14 37.72
ActorObserverNet [14] 31.40 35.63 36.14 50.92 50.47 49.72
TCN [13] (single-view) 52.30 54.90 56.90 52.82 53.42 53.60
TCN [13] (multi-view) 56.88 59.25 59.91 59.11 58.83 58.44
TCN [13] (unpaired multi-view) 56.13 56.65 56.79 58.18 57.78 57.21
CARL [1] 39.18 41.92 43.43 47.14 46.04 44.99
TCC [6] 57.54 59.18 59.84 59.33 58.75 57.99
GTA [7] 56.89 56.77 56.86 62.79 61.55 60.38
AE2 [15] 63.95 64.86 66.23 66.86 65.85 64.73

BYOV (ViT-B/16) 71.84 73.92 74.30 67.28 67.17 66.40

(B)

Random features 36.84 33.96 41.97 52.48 50.56 51.98
ImageNet features 41.59 39.93 45.52 54.09 27.31 43.21
CLIP ViT-B/16 39.44 38.90 43.24 53.29 52.16 51.55
CLIP ViT-L/14 42.68 39.91 46.65 46.20 46.20 53.75
TCN [13] (single-view) 43.60 46.83 47.39 56.98 57.00 56.46
CARL [1] 48.73 48.78 48.79 55.29 55.01 54.23
TCC [6] 78.69 77.97 77.91 81.22 80.97 80.46
GTA [7] 79.82 80.96 81.11 80.65 80.12 79.68
AE2 [15] 85.17 85.12 85.17 85.25 84.90 84.55

BYOV (ViT-B/16) 86.12 86.44 86.46 90.99 89.42 88.98

(C)

Random features 45.26 47.45 44.33 49.83 55.44 55.75
ImageNet features 53.13 22.44 44.61 51.49 52.17 30.44
CLIP ViT-B/16 57.21 35.46 60.60 42.34 43.63 44.03
CLIP ViT-L/14 51.72 28.30 54.38 48.56 50.01 50.52
TCN [13] (single-view) 54.62 55.08 54.02 48.50 48.83 49.03
CARL [1] 51.68 55.67 56.98 55.03 55.29 54.93
TCC [6] 52.37 51.70 52.53 62.93 62.33 61.44
GTA [7] 55.91 56.87 56.92 62.83 62.79 62.12
AE2 [15] 65.88 66.53 66.56 66.55 65.54 64.66

BYOV (ViT-B/16) 79.10 79.28 79.48 73.89 71.06 67.83

(D)

Random Features 30.31 33.42 28.10 66.47 58.98 59.87
ImageNet Features 69.15 42.03 58.61 76.96 66.90 60.31
CLIP ViT-B/16 70.37 48.01 67.81 76.45 74.54 73.15
CLIP ViT-L/14 68.44 42.95 64.40 75.61 74.26 73.14
TCN [13] (single-view) 65.78 69.19 68.87 74.05 73.76 73.10
CARL [1] 58.89 59.38 59.69 72.94 69.43 67.14
TCC [6] 67.71 77.07 78.41 82.78 80.24 78.59
GTA [7] 80.31 83.04 83.63 86.59 85.20 84.33
AE2 [15] 85.24 85.72 85.87 87.94 86.83 86.05

BYOV (ViT-B/16) 88.78 89.01 89.12 90.89 90.61 90.87



Table 4. Performance comparison for cross-view retrieval on the AE2 benchmark [15]. The benchmark consists of four sub-tasks: (A)
Break Eggs, (B) Pour Milk, (C) Pour Liquid, and (D) Tennis Forehand. We report the cross-view frame retrieval (mAP@5, mAP@10, and
mAP@15) performance. The top results are highlighted in bold and the second-best results are underlined.

Task Method
Ego2Exo Frame Retrieval Exo2Ego Frame Retrieval

mAP@5 mAP@10 mAP@15 mAP@5 mAP@10 mAP@15

(A)

Random features 42.51 41.74 40.51 38.08 38.19 37.10
ImageNet features 33.32 33.09 32.78 38.99 37.80 36.71
CLIP ViT-B/16 35.80 35.85 34.92 34.91 35.70 35.96
CLIP ViT-L/14 39.30 38.94 38.14 35.23 34.99 33.98
ActorObserverNet [14] 43.57 42.70 41.56 42.00 41.29 40.48
TCN [13] (single-view) 31.12 32.63 33.73 34.67 34.91 35.31
TCN [13] (multi-view) 46.38 47.04 46.96 52.50 52.68 52.43
TCN [13] (unpaired multi-view) 55.34 54.64 53.75 58.79 57.87 57.07
CARL [1] 37.89 37.38 36.57 40.37 39.94 39.38
TCC [6] 62.11 61.11 60.33 62.39 62.03 61.25
GTA [7] 57.11 56.25 55.10 54.47 53.93 53.22
AE2 [15] 65.70 64.59 63.76 62.48 62.15 61.80

BYOV (ViT-B/16) 72.76 70.65 70.27 71.79 69.02 68.94

(B)

Random features 51.46 50.56 48.93 52.78 51.98 50.82
ImageNet features 25.72 27.31 28.57 41.50 43.21 43.06
CLIP ViT-B/16 46.37 46.39 46.86 41.28 40.34 39.86
CLIP ViT-L/14 43.71 44.32 44.20 55.55 53.75 53.10
TCN [13] (single-view) 47.00 46.48 45.42 47.94 47.20 46.59
CARL [1] 54.35 52.99 51.99 51.14 51.51 51.00
TCC [6] 75.54 75.30 75.02 80.44 80.27 80.18
GTA [7] 72.55 72.78 72.96 75.16 75.40 75.48
AE2 [15] 78.21 78.48 78.78 83.88 83.41 83.05

BYOV (ViT-B/16) 85.15 87.73 87.80 85.48 85.06 85.00

(C)

Random features 55.78 55.44 54.77 56.31 55.75 54.56
ImageNet features 51.44 52.17 52.38 30.18 30.44 30.40
CLIP ViT-B/16 42.08 47.58 49.78 35.14 37.02 36.71
CLIP ViT-L/14 32.33 31.82 31.59 54.01 54.61 54.64
TCN [13] (single-view) 53.60 55.28 55.46 29.16 31.15 31.95
CARL [1] 59.59 59.37 59.19 34.73 36.80 38.10
TCC [6] 55.98 56.08 56.13 58.11 57.89 57.15
GTA [7] 57.03 58.52 59.00 51.71 53.32 53.54
AE2 [15] 66.23 65.79 65.00 57.42 57.35 57.03

BYOV (ViT-B/16) 79.06 75.03 72.73 76.21 70.03 69.44

(D)

Random Features 61.24 58.98 56.94 63.42 59.87 57.57
ImageNet Features 69.34 66.90 64.95 61.61 60.31 58.55
CLIP ViT-B/16 60.63 59.57 58.46 52.25 52.02 52.12
CLIP ViT-L/14 69.02 67.19 65.44 61.83 58.73 57.05
TCN [13] (single-view) 54.12 55.08 55.05 56.70 56.65 55.84
CARL [1] 52.18 54.83 55.39 65.94 63.19 60.83
TCC [6] 57.87 55.84 53.81 48.62 47.27 46.11
GTA [7] 78.93 78.00 77.01 79.95 79.14 78.52
AE2 [15] 82.58 81.46 80.75 82.82 82.07 81.69

BYOV (ViT-B/16) 88.55 88.34 87.98 90.64 88.94 87.26



Query (ego) Nearest Neighbors (exo)

Pre-pour

Liquid exits container

Pouring complete

Query (exo) Nearest Neighbors (ego)

Pre-hit

Racket touches ball
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(a) Ego2Exo frame retrieval on Pour Milk

Query (ego) Nearest Neighbors (exo)

Pre-pour

Liquid exits container

Pouring complete

Query (exo) Nearest Neighbors (ego)

Pre-hit

Racket touches ball

Post-hit

(b) Exo2Ego frame retrieval on Tennis Forehand

Figure 1. Qualitative examples of frame retrieval from the Pour Milk and Tennis Forehand datasets. We retrieve the nearest neighbor
frames (red box) corresponding to the given query frame (blue box).

Table 5. Performance comparison according to various sizes of latent space in BYOV. We evaluate the performance on the Break Eggs
dataset.

Latent
Size

Trainable
Params

Classification (F1 score) Frame Retrieval (mAP@10) Phase
progression

Kendall’s
τRegular Ego2Exo Exo2Ego Regular Ego2Exo Exo2Ego

64 0.9M 71.55 71.34 69.36 65.87 64.09 68.16 0.8362 0.8943
128 3.4M 70.84 72.74 69.71 67.07 66.70 68.45 0.8407 0.9240
256 12.3M 74.30 75.01 71.28 67.17 70.65 69.02 0.8533 0.9451
512 51.5M 70.89 70.19 68.72 68.70 73.29 74.45 0.8107 0.9240

with various latent sizes and evaluate the performance on
the Break Eggs dataset. Tab. 5 summarizes the results,
including the performance on downstream tasks and the
number of trainable parameters corresponding to each la-
tent size. Naturally, large latent spaces enhance represen-
tation capability but lead to more trainable parameters (e.g.
51.5M parameters with a 512-dimensional latent space for
12 encoder and 4 decoder layers) and require more exten-
sive training data. The results indicate that increasing the
latent size from 64 to 256 consistently improves perfor-
mance. However, a further increase to a 512-dimensional
latent space leads to performance degradation, attributed to
the limited availability of training data.

Token selection ratio. Selective token merging (STM)
allows BYOV to effectively capture action-related regions
while excluding noisy regions without any training as
shown in the main paper. We provide the performance of
BYOV with various token selection ratios in the first panel
of Tab. 6 and depict the selected tokens corresponding to
each selection ratio in Fig. 2. The results show that the to-
ken selection ratio significantly affects the performance due
to the difference in the field of view between ego and exo
videos. In other words, a low selection ratio is insufficient

to cover the action-related regions in ego videos (see Fig. 2a
and Fig. 2b), while a high selection ratio makes noisy tokens
be included in exo videos (see Fig. 2e). To balance the lack
of information in the ego video and the unnecessary noise
in the exo video, we set the token selection ratio to 0.3.

Masking ratio. We validate the effectiveness of the mask-
ing ratio in masked self-view modeling (MSM) and masked
cross-view modeling (MCM) in the second and third pan-
els of Tab. 6. In MSM, we can guess a low masking ra-
tio enables the model to easily solve each masked model-
ing problem, leading to insufficient causality learning. In
practice, the results show significant performance drops in
phase progression and Kendall’s τ . An extremely high
masking ratio in MSM makes learning the causality be-
tween frames hard as the decoder takes only a few clean
tokens (or only masked tokens with a 100% masking ratio).
The low masking ratio in MCM degrades performance for
a similar reason as in MSM. Meanwhile, a high masking
ratio in MCM makes the masked cross-view modeling sig-
nificantly difficult to solve with limited training data, show-
ing performance drops across all downstream tasks. BYOV
trained with the masking ratio of 0.4 and 0.8 in MSM and
MCM achieves to produce the effective fine-grained view-



(a) Selected tokens with ratio 0.1 in ego (left) and exo (right) videos.

(b) Selected tokens with ratio 0.2 in ego (left) and exo (right) videos.

(c) Selected tokens with ratio 0.3 in ego (left) and exo (right) videos.

(d) Selected tokens with ratio 0.4 in ego (left) and exo (right) videos.

(e) Selected tokens with ratio 0.5 in ego (left) and exo (right) videos.

(f) Complete frames from ego (left) and exo (right) videos.

Figure 2. Visualization of selected tokens at each frame sampled from ego (left) and exo (right) videos. Note that complete frames are
identical with the token selection ratio of 1.0.

invariant video representations.

B.5. Failure cases

While our BYOV significantly improves the performance
across various benchmarks and experimental protocols, we
observed that most failure cases occur in videos with slow
movement transitions, particularly in exocentric videos. In
such cases, frame embeddings tend to attend to each other
uniformly, reducing the model’s ability to capture meaning-
ful temporal dependencies. Fig. 3 illustrates a visualization
of the softmax similarity score between the final frame em-
beddings for a failure case from the Pour Liquid benchmark.
Despite introducing positional embeddings and selective to-
ken merging, the embedding feature for a reference frame
(red box) attends to all other embeddings similarly, result-
ing in less informative final representations. Beyond sim-
ple token selection of BYOV, learning-based token selection
approach [2] may further improve the robustness of learned
representations.

C. Broader Impact

By achieving robust, view-invariant learning from unpaired
ego-exo videos, BYOV can significantly advance the ability
of AI to understand human actions and interactions across
diverse perspectives, contributing to a wide range of real-
world applications such as robotics, augmented and virtual
reality, and assistive technologies. Moreover, this research
can facilitate new related research as follows;
• Cross-view video generation: The video representations

learned by BYOV contain fine-grained action context. In
addition, the decoders used during training show a high
recovery rate. This shows that it is possible to generate
videos across views, which can be used to generate edu-
cational or instructional videos.

• Multi-view activity tracking: The view-consistent repre-
sentations can be used in continuously tracking a person
or object across various camera views (ego and exo) to
maintain consistent identity and action recognition across
perspectives, useful for applications in security and au-
tonomous vehicles.



Table 6. Performance comparison according to variants of the hyperparameters in BYOV. We report the performance evaluated on the Break
Eggs dataset.

Ratio (%) Classification (F1 score) Frame Retrieval (mAP@10) Phase
progression

Kendall’s
τSTM MSM MCM Regular Ego2Exo Exo2Ego Regular Ego2Exo Exo2Ego

Effectiveness of token selection ratio
10 40 80 41.45 21.13 20.03 56.05 46.06 46.85 0.1858 0.0157
20 40 80 70.97 69.60 66.27 65.05 71.13 64.52 0.6597 0.7978
30 40 80 74.30 75.01 71.28 67.17 70.65 69.02 0.8533 0.9451
40 40 80 72.39 72.59 69.19 68.20 73.79 67.44 0.8299 0.8963
50 40 80 71.56 69.05 68.79 68.20 72.79 67.20 0.8299 0.8926
100 40 80 71.34 72.58 65.07 67.44 69.32 67.87 0.7894 0.8957

Effectiveness of masking ratio in MSM
30 10 80 70.71 69.51 66.20 67.67 66.10 63.89 0.5228 0.6724
30 20 80 71.22 70.38 69.81 67.67 68.27 65.83 0.8134 0.9126
30 30 80 72.28 73.21 70.22 67.28 70.21 68.15 0.8330 0.9337
30 40 80 74.30 75.01 71.28 67.17 70.65 69.02 0.8533 0.9451
30 50 80 72.87 73.71 70.87 67.28 71.21 70.15 0.8398 0.9410
30 100 80 66.65 69.97 68.24 65.01 67.48 66.86 0.6916 0.7818

Effectiveness of masking ratio in MCM
30 40 0 67.23 66.65 67.10 60.38 58.44 56.97 0.7019 0.8040
30 40 20 71.40 69.06 70.19 64.98 62.09 61.27 0.8269 0.9112
30 40 40 73.23 73.81 71.17 68.84 65.94 68.22 0.8133 0.9247
30 40 60 73.33 74.54 71.32 67.21 70.65 69.02 0.8480 0.9440
30 40 80 74.30 75.01 71.28 67.17 70.65 69.02 0.8533 0.9451
30 40 100 71.09 70.01 70.47 65.34 66.50 68.63 0.7435 0.8354

0 0.5 1.0
Figure 3. Visualization of the softmax similarity between final frame embeddings for a failure case from the Pour Liquid benchmark. We
depict the similarity score between only one reference token embedding (red box) and other token embeddings (blue boxes) for visibility.
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