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A. Other applications
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Figure 8. Feature space visualization. We visualize a feature
space of our trained classifier using 10% of our training data and
the evaluation set. For better visibility, only a subset of our real
datasets are visualized and the labels for real datasets are italicized.
We observe a good separation between fake vs. real data, and
between different generator types and real datasets.

Other applications, beyond the “real-or-fake” image foren-
sics task, could potentially be supported by our dataset. In
particular, a diverse array of generators and their correspond-
ing images in our dataset may be valuable for addressing
the generator attribution problem, where the goal is to iden-
tify the characteristics of the underlying generator that is
responsible for synthesizing a given image.

Figure 8 presents a UMAP [11] visualization of the fea-
ture space of our trained classifier. We use the activation
of the penultimate layer for visualization following Ojha
et al. [13]. The feature space reveals interesting structure:
GANs form a clearly separated cluster; most commercial
models are distributed closely to latent diffusion models;
real datasets such as LAION [15], ImageNet [5], COCO [8],
and RAISE [4] are closely distributed, whereas CelebA [9],
FFHQ [7], and Landscapes HQ [16] appear to be more iso-
lated. It is important to note that these separations emerge
naturally without explicit training. A targeted learning ob-
jective may further enhance these separations.

Building on the feature space observations, we use a k-
nearest-neighbor classifier with k=5 using 10% of our train-
ing data to identify the generator types in our evaluation set.
We separate generators as “known” (i.e., GANs, latent and
pixel diffusions, and real data) and “unknown” (commercial
models and Stable Cascade [14]) generator types and com-
pute the confusion matrices as shown in Figure 9. Note that
none of these generators are seen during training. Figure 9a
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Figure 9. Generator type classification. We classify the generator
type of a given image using k-nearest-neighbor. (a) Confusion
matrix of “known” generator types. We observe high accuracy in
GANs, latent diffusions, and real data. (b) Classification results on
“unknown” architectures. Commercial models are predominantly
classified as latent diffusion and GANs (disregarding ‘real’). Stable
Cascade [14], which we categorized as Other generator type, shows
similarity to latent diffusion models.

demonstrates strong performance in identifying GANs, la-
tent diffusion models, and real data. However, pixel-based
diffusion models show lower performance, possibly due to
their limited representation (only 3 models) in our training
set. The classification result for the “unknown” set is shown
in Figure 9b. Interestingly, commercial models are predomi-
nantly classified as latent diffusion or GANs, while Stable
Cascade [14] displays similarity to latent diffusion models
despite their unique three-stage sampling process.

B. Dataset composition
Generator licenses. In Figure 10, we report the gener-
ator licenses in our dataset. Most of the models use the
CreativeML OpenRAIL-M license [1].

Model metadata. We show an example model metadata in
Tab. 3. It contains the name of the models, their categorized
architectures, licenses, source real datasets, and the Hugging
Face tags if available.

Model composition. The composition of the training set
of Community Forensics is detailed in Table 4 and Fig. 11.
A vast majority of the models and generated images are
latent diffusion. Figure 12 illustrates the composition of
the evaluation set, which includes two variants of HDiT [3]:
one trained on FFHQ [7] and another on ImageNet [5]. For
computing metrics such as mAP and accuracy, these HDiT
variants are treated as separate entities due to their distinct
training data and model weights. However, when reporting
the number of models in our dataset, we count them as a
single model.



Model Architecture License RealSource HF_pipeline_tag HF_diffusers_tag
danbochman/
ccxl LatentDiff None coco,forchheim,imagenet,imd2020,laion,

landscapesHQ,vision
StableDiffusionXL-
Pipeline

StableDiffusionXL-
Pipeline

livingbox/
modern-
style-v3

LatentDiff creativeml-
openrail-m

coco,forchheim,imagenet,imd2020,laion,
landscapesHQ,vision

StableDiffusion-
Pipeline stable-diffusion

...
DeepFloyd PixelDiff DeepFloyd-IF coco N/A N/A
BigGAN GAN MIT imagenet N/A N/A

...

Table 3. Example model metadata. We log both the author and model names for the Hugging Face [6] models and only the model names
for others. We also log the generator type (i.e., architecture), model license, source real dataset, and Hugging Face tags if available.
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Figure 10. Histogram of model licenses in our dataset. A vast ma-
jority of the models use the CreativeML OpenRAIL-M license [1].

Latent Diff. GAN Pixel Diff. Other

Models 4766 12 3 1
Percentage 99.67% 0.25% 0.06% 0.02%

Table 4. Model counts per architecture in the training set. The
generators are predominantly latent diffusion models.

73%22%

3%
2%

Latent Diff.
GAN
Pixel Diff.
Other

Figure 11. Number of images per generator type in the training set.

C. Training settings
For training our classifiers, we use AdamW optimizer [10]
with a learning rate of 2e-5, a weight decay of 1e-2, a
batch size of 512, and mixed precision [12]. We use a cosine
weight decay with a warmup of 20% of the total iterations.

Commercial Latent Diff. GAN Pixel Diff. Other

Models 11 6 2 1 1
Images 14918 6000 2000 2000 1000

Figure 12. Evaluation set composition.

0.8K 3.2K 13K 36K 104K
Training Iterations

0.950

0.975

1.000

m
AP

Figure 13. Impact of training iterations. The performance of the
classifier plateaus beyond 3K iterations.

We train our models for 52K iterations using this setting. For
the models in Figures 1 and 4, we employ shorter training
iterations (3K) due to the computational overhead associated
with training a substantial number of models for statistical
analysis. We chose this number of iterations since we found
that classifier performance begins to plateau with approxi-
mately this amount of training (Figure 13).

D. Example model project page

Figure 14. Example model project page from Hugging Face [2, 6].

Figure 14 shows a project page from Hugging Face [2, 6].
We can see the tags associated with the model (e.g., Text-
to-image, pipeline type, license), number of downloads, and
sample images.
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