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A. Contrastive Loss

The contrastive loss is based on the CLIP loss [31], which
maximizes the cosine similarity between paired image-text
features (positive pairs, i.e., an image and its corresponding
report) while minimizing the similarity between unpaired
image-text features. The contrastive loss Lcon can be ex-
pressed as:
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where τ is a learnable temperature parameter, fI and fT are
image and text features from the input image and its corre-
sponding report, f jI and f jT are the jth image and text fea-
tures stored in the training queue, q is the number of fea-
tures in the queue, and sim represents the cosine similarity
between two features. The cosine similarity between fea-
tures from the input image and its corresponding report is
defined as:

sim(fI , fT ) =
fI · fT

|fI | · |fT |
. (10)

B. Generation Loss

We employ a cross-entropy loss, denoted as Lgen, to train
the text generator for synthesizing accurate and trustworthy
radiology reports. This loss minimizes the discrepancy be-
tween the generated report T̂ and the ground-truth report
T , which consists of l tokens T = {T1, T2, ..., Tl}. At each
time step t, the model predicts the probability of the next to-
ken Tt conditioned on all previous tokens T1, T2, ..., Tt−1.
The generation loss can be defined as:

Lgen = −
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where Tt is the tth token in the ground-truth report T ,
T1, . . . , Tt−1 represent all preceding tokens, fD represents
the disease-relevant features, fT denotes the text features,
f1
T̂
, . . . , fk

T̂
are the retrieved text features, and l is the length

of the ground-truth report.

C. Qualitative Analysis
Fig. 4 presents an additional qualitative analysis of gener-
ated reports of three cases from the MIMIC-CXR dataset,
including generated report from our proposed framework
without self-correction (“w/o Self-Correction”). We refine
the generated report of “w/o Self-Correction” by GPT-4 [1]
(“Correction by GPT-4”), and our proposed framework with
self-correction (“Ours”). We also show the ground-truth re-
port and the Top-3 retrieved reports from image-to-text re-
trieval.
Details for Correction by GPT-4 We evaluate the refine-
ment of generated reports using GPT-4 [1]. The goal is to
assess whether large language models (LLMs) can effec-
tively improve the quality of the generated reports by ad-
dressing omissions and enhancing coherence. We provide
GPT-4 with the generated report, retrieved texts, and the in-
put image, using the following structured prompt:

[the input image] Retrieved Patient’s Text Top-1:
[the retrieved text (top-1)]. ... Retrieved Patient’s
Text Top-k: [the retrieved text (top-k)]. If the gen-
erated report is [the generated report], correct
the generated report.

Here, the prompt includes the input image, the top-k
retrieved texts from image-to-text retrieval, which provide
contextual information relevant to the input image, and
the generated report from our proposed framework without
self-correction (“w/o Self-Correction”).
Case 1 The “w/o Self-Correction” report provides a ba-
sic assessment, accurately identifying key findings such as
“lungs” and “ atelectasis at the left base.” However, it omits
details regarding “pulmonary vasculature,” “pleural effu-
sion” and “pneumothorax,” which are critical for specific
analysis. On the other hand, “Correction by GPT-4” intro-
duces additional observations, such as “hyperinflated, con-
sistent with COPD” and “mild biapical scarring,” which are
not consistent with the ground-truth.

In contrast, “Ours” generates a report that aligns with
the ground-truth and accurately captures key findings. It
not only confirms the absence of “pleural effusion” and
“pneumothorax” but also identifies detail observations such
as “opacities in the left lung base likely reflect atelectasis”
and “pulmonary vasculature is normal,” which are consis-
tent with the ground-truth. Additionally, “Ours” accurately
captures the description of “mediastinal and hilar contours
are normal,” demonstrating its ability to comprehensively



Figure 4. An additional qualitative analysis of reports for three samples from the MIMIC-CXR dataset is presented. The top row of
each sample displays an image set from two different views alongside a generated report from our proposed framework without the self-
correction module (“w/o Self-Correction”). We further attempted to refine the generated report of “w/o Self-Correction” using GPT-4 [1]
(“Correction by GPT-4”) to compare it with the generated report from our proposed framework with self-correction (“Ours”). The bottom
row shows the ground-truth report and the Top-3 retrieved texts from image-to-text retrieval. Key findings are highlighted in different
colors for clarity.



Figure 5. Visualizations of the generated reports and attention maps from the baseline model (BASE) and our proposed framework (Ours)
on two samples from the MIMIC-CXR dataset. The attention maps, visualized using Grad-CAM [33], illustrate the regions that BASE and
Ours focuses on according to keywords such as “heart,” “lung,” “pneumothorax,” and “focal consolidation,” with each keyword highlighted
in different colors.

address key disease-relevant findings, further enhancing its
alignment with the ground-truth.

In both “w/o Self-Correction” and “Ours,” the Top-
3 retrieved reports provide additional contextual informa-
tion and contain key findings aligned with the ground-truth
report, such as “Degenerative changes” and “atelectasis.”
This also demonstrates that our proposed framework effec-
tively leverages the retrieved reports similar to the ground-

truth.

Case 2 The “w/o Self-Correction” report identifies essen-
tial findings such as the absence of “pneumothorax and
pleural effusion.” However, it does not comprehensively
address “mediastinal contour” or “bony structures.” Simi-
larly, “Correction by GPT-4” refines the phrasing of find-
ings, such as describing the opacity as “likely representing
consolidation.” However, it produces redundancy and does



not explicitly describe some key findings, such as “medi-
astinal contour and the “bony structures.”

In contrast, “Ours” generates a report that aligns with
the ground-truth and accurately captures the patient’s con-
dition. It not only identifies the absence of “pleural effu-
sion and pneumothorax,” but also describes the “mediasti-
nal contour” as normal and uniquely includes a statement
about the absence of acute “bony abnormalities,” aligning
with the ground-truth, such as “bony structures are unre-
markable.”

In both “w/o Self-Correction” and “Ours,” the Top-3
retrieved reports provide additional contextual information
and contain key findings aligned with the ground-truth re-
port, such as “consolidation,” “pneumothorax,” “pleural ef-
fusion,” and “pneumonia.” This also demonstrates that our
proposed framework effectively leverages the retrieved re-
ports, which are similar to the ground-truth.
Case 3 “w/o Self-Correction” successfully captures key
findings from the ground-truth, such as “pleural effusion,”
“pneumothorax,” and “consolidation.” However, both “Cor-
rection by GPT-4” and “Ours” generate the phrase “cardio-
mediastinal silhouette” instead of “heart.” Similarly, while
the retrieved texts effectively capture key findings from the
ground-truth report, such as “pleural effusion” and “pneu-
mothorax,” they include “cardiomediastinal silhouette” in-
stead of “heart.” The term “cardiomediastinal silhouette”
can be used as an indirect indicator for assessing “heart
size.” Since the retrieved texts do not include the direct key-
word “heart,” self-correction mechanisms, both “Correction
by GPT-4” and “Ours,” generate an indirect term instead.

This case highlights the importance of designing self-
correction mechanisms to prioritize the retrieval of reports
that explicitly include key findings from the ground-truth.
Accurate retrieval is crucial for ensuring that generated re-
ports align closely with disease-relevant findings. While
our proposed framework demonstrates significant improve-
ments in capturing these findings, this example underscores
the need to refine the retrieval to directly align with the
ground-truth report in the self-correction process.

D. Attention Visualization
Fig. 5 presents an additional attention visualization using
Grad-CAM [33] to compare the BASE setting (“BASE”)
and our proposed framework (“Ours”) for radiology report
generation. BASE setting includes only the classification
loss and generation loss. The visualization highlights the
regions of focus for three critical keywords with each key-
word represented in a distinct color for clarity.
Case 4 Both models successfully generate the keywords
“lungs” and “pneumothorax,” aligning with the ground-
truth report. However, the baseline model misses “heart,”
while our proposed model accurately captures it. This dif-
ference is reflected in the attention maps: our proposed

model focuses on the actual heart region, as well as “lungs”
and “pneumothorax,” whereas the baseline model fails to
attend to the heart region. These results demonstrate the
effectiveness of our proposed model in capturing disease-
related findings.
Case 5 Both “BASE” and “Ours” successfully generate
the keywords “lungs” and “focal consolidation,” aligning
with the ground-truth report. However, the attention maps
again highlight notable differences. Similar to Case 4, the
“BASE” model attends predominantly to regions associated
with the “lungs” but fails to focus on key areas related to the
“heart.” Additionally, its attention for “focal consolidation”
is similar with the regions of “lungs.”

For “Ours,” the attention maps exhibit strong focus
on the “heart,” demonstrating the ability of our proposed
framework to identify and prioritize critical regions for this
keyword. However, for “lungs” and “focal consolidation,”
the attention maps show some focus on irrelevant regions.
Despite this limitation, our proposed framework success-
fully generates the keywords “lungs” and “focal consoli-
dation,” which are clinically accurate and align with the
ground-truth report. This highlights the inherent difficulty
of extracting disease-relevant features directly from X-ray
images. It also highlights the effectiveness of our proposed
framework compared to “BASE,” particularly in leveraging
retrieved reports and self-correction mechanisms to supple-
ment and guide the report generation process, thereby com-
pensating for potential inconsistencies with image features.

E. Ablation Study on IU X-ray
We extend our ablation study to the IU X-ray dataset to
evaluate the incremental impact of each component in our
proposed framework: contrastive loss (CL), image-to-text
retrieval (I2T), disease-matching constraint (DM), and self-
correction (SC). The results are summarized in Table 3,
showing performance improvements as these components
are progressively added to the BASE setting, which includes
only the classification loss and generation loss.

Starting from the BASE setting, which achieves BLEU-4
of 0.124 and ROUGE-L of 0.326, the addition of contrastive
learning (CL) in setting (a) leads to modest improvements in
BLEU-4 (0.137) and ROUGE-L (0.355). This indicates that
aligning image and text embeddings through contrastive
learning enhances feature representation, which aids the
downstream generation task.

Adding image-to-text retrieval (I2T) in setting (b) signif-
icantly boosts performance across all metrics, with BLEU-
4 increasing to 0.174 and ROUGE-L to 0.358. This
demonstrates the value of retrieving disease-relevant re-
ports, which provide additional contextual information for
accurate report generation.

In setting (c), the inclusion of the disease-matching con-
straint (DM) further improves performance, with BLEU-4



Dataset Setting CL I2T DM SC BLEU-1 BLEU-2 BLEU-3 BLEU-4 RG-L METEOR

IU X-ray

BASE - - - - 0.421 0.271 0.183 0.124 0.326 0.169
(a) ✓ - - - 0.427 0.282 0.195 0.137 0.355 0.169
(b) ✓ ✓ - - 0.464 0.320 0.230 0.174 0.358 0.185
(c) ✓ ✓ ✓ - 0.472 0.328 0.240 0.182 0.386 0.201
(d) ✓ ✓ ✓ ✓ 0.486 0.348 0.265 0.208 0.411 0.205

Table 4. An ablation study of our proposed framework on the IU X-ray dataset, assessing the impact of key components: contrastive
loss (CL), image-to-text retrieval (I2T), disease-matching constraint (DM), and self-correction (SC). A “✓” indicates the presence of each
component, while “-” denotes its absence. The BASE setting involves training only with the classification loss and the generation loss.

reaching 0.182 and ROUGE-L increasing to 0.386. The
disease-matching constraint ensures that the retrieved re-
ports align more closely with the disease-relevant findings
of the input images, resulting in more accurate and clini-
cally coherent generated reports.

Finally, adding self-correction (SC) in setting (d)
achieves the best results, with BLEU-4 improving to 0.208
and ROUGE-L reaching 0.411. This substantial improve-
ment highlights the effectiveness of the self-correction mod-
ule in refining the generated reports. By re-aligning the gen-
erated reports with the input image features in the embed-
ding space, the self-correction module reduces discrepan-
cies and enhances the accuracy and coherence of the gener-
ated reports.

This ablation study on the IU X-ray dataset demon-
strates the consistent effectiveness of each component in our
proposed framework. In other words, this study validates
the importance of integrating contrastive learning, disease-
aware retrieval, disease-matching, and self-correction to
achieve state-of-the-art performance in radiology report
generation.

F. Effect of Retrieved Texts

Our proposed framework retrieves similar texts based on in-
put images to generate accurate reports. Fig. 6 evaluates
the effect of retrieved texts, ranging from k = 0 (with-
out retrieval) to k = 5, on the BLEU-4 performance. It
demonstrates that retrieving texts (k = 1, 2, .., 5) enhances
the BLEU-4 score compared to the performance without re-
trieval (k = 0).

In detail, the BLEU-4 score for k = 0 (without retrieval)
is 0.113, which is significantly lower than the BLEU-4
scores achieved when retrieval is employed. This under-
scores the importance of retrieval in our proposed frame-
work. The retrieved texts provide critical disease-relevant
findings that enhance the alignment between the generated
reports and the ground-truth findings, thereby improving
performance for report generation.

The BLEU-4 score gradually increases as k increases
from 1 to 3, suggesting that retrieving more texts provides
additional useful context for generating accurate radiology

Figure 6. We evaluate the effect of the number of retrieved texts
(k) on BLEU-4 performance for the MIMIC-CXR dataset in our
proposed framework.

reports. However, when k exceeds 3, a decline in perfor-
mance is observed. Our possible explanation is that the ad-
ditional retrieved texts beyond k = 3 may include less rel-
evant information, which could dilute the effectiveness of
disease-relevant findings.

In summary, this analysis highlights the importance of
the retrieval process in providing relevant textual informa-
tion and demonstrates its crucial role in generating accurate
and comprehensive radiology reports.


