
DropGaussian: Structural Regularization for Sparse-view Gaussian Splatting

Supplementary Material

1. Introduction

In this supplementary material, we provide more detailed
explanations of the proposed method. First, we explain im-
plementation details including the process of Gaussian ini-
tialization and training. In Section 3, we provide in-depth
analysis of the relationship between the visibility of Gaus-
sians and the magnitude of gradients, highlighting their im-
pact on the optimization process. Finally, the improvements
achieved by our method, particularly focusing on reducing
floater artifacts and mitigating the overfitting problem, are
discussed in Section 4.

2. Implementation Details

2.1. Initialization

Following previous methods [2, 9], we initialize our
pipeline with unstructured multi-view images by calibrating
them via Structure-from-Motion (SfM) [6, 7]. Specifically,
we generate the initial point cloud through dense stereo
matching in COLMAP [6] using “patch-match-stereo” and
obtain the fused stereo point cloud based on “stereo-fusion”.
As a next step, we initialize the SH coefficients with the de-
gree of 0. In addition, we set positions of 3D Gaussians
based on the fused point cloud and the opacity value to 0.1
while other coefficients (e.g., scale, rotation, etc.) are set to
0. For datasets where point cloud generation was not avail-
able (e.g., Blender dataset [5]), we followed the approach
described in DNGaussian [3], which initializes our method
with 10,000 Gaussians randomly distributed.

2.2. Training

During training, we begin with spherical harmonics (SH)
with the degree of 0, representing a basic approximation of
lighting effects. We increase the degree by 1 every 1,000
iterations until ultimately reaching a maximum degree of 3.
This gradual increment improves the details of the lighting
representation as training progresses. The learning rates for
different parameters are set as follows: 0.00016 for posi-
tion, 0.0025 for SH coefficients, 0.05 for opacity, 0.005 for
scaling factor, and 0.001 for rotation, respectively. We reset
the opacity value of all Gaussians to 0.01 every 3,000 iter-
ations. Algorithm 1 provides a detailed description of the
training pipeline of DropGaussian.

Algorithm 1 The training pipeline of DropGaussian

1: Training view images I = {Ii ∈ RH×W×3}Ni=1 and
camera poses P = {ϕi ∈ R3×4}Ni=1.

2: Run SfM step with the input images and camera poses
to obtain an initial point cloud P , used to define 3D
Gaussian functions G = {Gi(µi, σi, ci, oi)}Ki=1.

3: Initialize SH coefficients to degree 0, opacity oi to 0.1,
scaling factors γ to 0.2.

4: while until convergence do
5: Sample an image Ii ∈ I with camera pose ϕi.
6: Calculate dropping rate at iteration t:

rt = γ · t
ttotal

,

7: Generate compensation factors Mi(rt) for each
Gaussian based on rt:

Mi(rt) =

{
0 if dropped

1
1−rt

otherwise
8: Update opacity õi = oi ·Mi(rt) for each Gaussian.

▷ õi is a temporal opacity only used in training.
9: Rasterize the RGB image Îi with opacity õi.

10: L = ∥Ii − Îi∥1 + λD-SSIM(Ii, Îi)
11: if IsRefinementIteration(t) then
12: for Gi(µi, σi, ci, oi) ∈ G do
13: if oi < ϵ then ▷ Pruning
14: RemoveGaussian(Gi)
15: end if
16: if ∇pL > tpos then ▷ Densification
17: GaussianDensify(Gi)
18: end if
19: end for
20: end if
21: Update Gaussian parameters Gi(µi, σi, ci, oi)

with gradient descent.
22: end while

3. Analysis on Visibility of Gaussian

3.1. Relationship between Gaussian Visibility and
Gradient Magnitude

We demonstrate the relationship between α values, rep-
resenting each Gaussian’s contribution to a single pixel,
and their corresponding gradient magnitudes in Fig. 1. In
the case without using DropGaussian, Gaussians nearby the
camera mostly contribute to the pixel value while occluded
Gaussians exhibit lower α values and smaller gradient mag-
nitudes (see right-top part in Fig. 1). In contrast, after Gaus-
sians located in the front are dropped, the remaining Gaus-



Splatting

Without dropping

With dropping

⋯

𝛼 = 0.0672
𝜕𝐿

𝜕𝜇
= 5.893𝑒 − 5

⋯

𝛼 = 0.0114
𝜕𝐿

𝜕𝜇
= 4.887𝑒 − 5

⋯

𝛼 = 0
𝜕𝐿

𝜕𝜇
= 0

⋯

𝛼 = 0.0178
𝜕𝐿

𝜕𝜇
= 2.019𝑒 − 3

Train image

: Gaussians dropped randomly

: 3D Gaussians

: Gradient magnitude for position
𝜕𝐿

𝜕𝜇

Figure 1. Visualization of the relationship between Gaussian visibility and gradient magnitudes. Without dropping, foreground Gaussians
cause occluded Gaussians to have lower α values, leading to smaller gradient magnitude. When occluding Gaussians are dropped, occluded
Gaussians show relatively higher α values and larger gradient magnitude.

(a) (b)

Figure 2. (a) Novel view rendering using the standard 3DGS. (b)
Novel view rendering generated by the standard 3DGS implemen-
tation combined with DropGaussian.

sians gain relatively higher α values and larger gradient
magnitudes, thereby increasing their influence during op-
timization (see right-bottom part in Fig. 1). This highlights
the importance of managing the visibility of Gaussians to
effectively consider the gradient of Gaussians even far from
the camera, which is helpful to alleviate the overfitting prob-
lem in sparse-view conditions.

Furthermore, the gradient associated with the Gaussian
attribute µ, which determines its position, also plays a cru-
cial role in the densification process. In the sparse-view
setting, the densification process often concentrates only on
specific regions, such as those closer to the camera, lead-

Iterations

: Train view : Novel view

(a)

(b)

Figure 3. Comparison of novel view renderings across training
iterations. (a) Results of standard 3DGS, where floaters are ob-
served to grow. (b) Results of 3DGS with DropGaussian, which
effectively suppresses floaters.

ing to the overfitting problem as well as the generation of
floaters. By modulating gradients with DropGaussian as
shown above, this imbalance can be mitigated, enabling a
more adaptive allocation of Gaussians during the densifi-
cation process. An example of the corresponding effect is
shown in Fig. 2.

3.2. Alleviation of Floater Artifacts

During the training process, the growth of floaters poses
a significant challenge in accurately rendering a given



(a) (b) (c) (d) (e)

H
o
rn
s

Le
av
es

G
ar
d
en

C
o
u
n
te
r

Fi
cu
s

M
at
er
ia
ls

Figure 4. Novel view rendering results for LLFF [4] (first–second rows), Mip-NeRF360 [1] (third–fourth rows), and Blender [5] (fifth–sixth
rows). From left to right: (a) 3DGS, (b) FSGS [9], (c) CoR-GS [8], (d) Ours, and (e) GT image.

scene. Floaters are unintended density artifacts that appear
in front of the camera, degrading the visual quality. As
shown in Fig. 3 (a), floaters become more prominent over
time with higher α value (i.e., large gradients). This leads
to repeated densification near the camera, further exacerbat-
ing the generation of floaters. By applying DropGaussian,
the dominant effect of such Gaussians in the process of the
gradient update is reduced, leading to the update of all the
Gaussians in a more balanced way. Consequently, floaters
are significantly suppressed, resulting in cleaner and more
precise renderings (see (b) of Fig. 3).

4. Discussion on Improvements

4.1. Qualitative Results

As shown in Fig. 4, our method demonstrates notable
improvements compared to existing approaches. Specif-
ically, complex textures are reliably rendered by the pro-
posed method whereas other approaches often yield distor-
tions of the underlying structure in a given scene (see the
second and third rows of Fig. 4). Moreover, while other ap-
proaches often render details at inaccurate positions in novel
views, the proposed method accurately places them (see the



Figure 5. Novel view renderings on the LLFF dataset [4] using
DropGaussian. While DropGaussian effectively mitigates overfit-
ting, some renderings may exhibit slight blurry results due to the
random dropping of Gaussians.

fifth row of Fig. 4). In addition, the proposed method accu-
rately renders small-scale details whereas other approaches
often yield somewhat blurry outputs in novel views (see the
sixth row of Fig. 4).

4.2. Limitations
Although DropGaussian effectively mitigates the over-

fitting problem, its stochastic process may occasionally re-
move Gaussians that are crucial for reconstructing fine de-
tails of the scene. Consequently, some novel view render-
ings on the LLFF dataset [4] generate slightly blurry results,
as shown in Fig. 5. This occurs because the random removal
of foreground Gaussians can sometimes eliminate Gaus-
sians that are critical for capturing fine details, which are
essential for high-quality texture reconstruction.

References
[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proc. IEEE Conf. Com-
put. Vis. Pattern Recog., pages 5470–5479, 2022. 3

[2] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Trans. Graph., 42(4):139–1, 2023. 1

[3] Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun
Zhou, and Lin Gu. Dngaussian: Optimizing sparse-view 3d
gaussian radiance fields with global-local depth normaliza-
tion. In Proc. IEEE Conf. Comput. Vis. Pattern Recog., pages
20775–20785, 2024. 1

[4] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines. ACM Trans. Graph.,
38(4):1–14, 2019. 3, 4

[5] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In Proc. Eur. Conf. Comput. Vis., pages 405–421, 2020.
1, 3

[6] Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proc. IEEE Conf. Comput. Vis. Pat-
tern Recog., pages 4104–4113, 2016. 1

[7] Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm,
and Marc Pollefeys. Pixelwise view selection for unstructured
multi-view stereo. In Proc. Eur. Conf. Comput. Vis., pages
501–518, 2016. 1

[8] Jiawei Zhang, Jiahe Li, Xiaohan Yu, Lei Huang, Lin Gu, Jin
Zheng, and Xiao Bai. Cor-gs: sparse-view 3d gaussian splat-
ting via co-regularization. In Proc. Eur. Conf. Comput. Vis.,
pages 335–352, 2024. 3

[9] Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang.
Fsgs: Real-time few-shot view synthesis using gaussian splat-
ting. In Proc. Eur. Conf. Comput. Vis., pages 145–163, 2024.
1, 3


	Introduction
	Implementation Details
	Initialization
	Training

	Analysis on Visibility of Gaussian
	Relationship between Gaussian Visibility and Gradient Magnitude
	Alleviation of Floater Artifacts

	Discussion on Improvements
	Qualitative Results
	Limitations


