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Supplementary Material

The supplementary and its contents are summarized as
follows:

• Key concept: This section provides the additional de-
scription for the proposed four learning status.

• Evaluation Setup: This section provides the implemen-
tation setting for the inference stage in this work.

• Implementation Details: This section provides detailed
descriptions of data augmentation, learning rate, learning
rate schedule, weight decay, and iteration settings for the
training of the proposed model.

• Experimental Results depending on percentile (p):
This section provides the experimental results of the pro-
posed method depending on the percentile value in Sub-
section 3.6, Eq.(12).

• Sampling Rate: This section provides the number of
pseudo-labels derived from confident unlabeled data used
in each pseudo-labeling (PL) method during training at
various steps.

• t-SNE Visualization: This section provides the visual-
ization results on the model’s embedding space from the
benchmark and proposed methods.

A. Key Concept

Figure A provides the data distribution (randomly se-
lected 1K anchor-positive pairs on CIFAR-10) based on the
four-LS. FreeMatch provided a more overconfident status
(36.7%) than the proposed method (31.0%). We focused
on eliminating this overconfidence in DPL training. Fig-
ure B shows how HGP and LGP estimate over- and under-
confident status based on Fig. A. As shown in Fig. B, PL w/
HGP (clipping low-gradients) relies more on high-gradient
samples (A and C) than f . Thus, HGP’s learning status is
closer to A than that of f . Similarly, PL w/ LGP (clipping
high gradients) is closer to D than f . With this, HGP and
LGP can induce a relatively more over- and under-confident
status than f by clipping the low and high gradients, re-
spectively. The different learning status (LS) between f ,
LGP, and HGP are provided in Fig. 5 showing PL loss vari-
ation. Thus, we could estimate over- and under-confident
LS (T HGP and T LGP) and use them to adjust T f for PL
thresholding depending on the degree of the f ’s overcon-
fidence. Figure B shows an example of threshold adjust-
ment. NEMaxNorm encourages an increase in the quantity
of pseudo-labels by reducing T f for class-adaptively.
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Figure A. Visualization of the four-learning status with CIFAR-10
dataset.
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Figure B. (left) The connectivity between GP and learning status,
and (right) flowchart of the adjustment of threshold, T GCD using
T HGP and T LGP.

B. Evaluation Setup

Table A shows the specifications of the inference consisting
of four datasets: Canadian institute for advanced research
(CIFAR-10, 100), street view house numbers (SVHN), and
self-taught learning (STL-10). The mean and standard de-
viation (Mean and Std.) of images in the dataset serve as
normalization factors to transform the image values into a
distribution N (0, δ2), calculated as (xc–µc) · δc for the c-th
channel.

Table A. The specifications of inference depending on the datasets.

Dataset Image size # Data Mean. Std. # Class

CIFAR-10 3×32×32 10K [0.485, 0.456, 0.406] [0.229, 0.224, 0.225] 10
CIFAR-100 3×32×32 10K [0.507, 0.487, 0.441] [0.267, 0.256, 0.276] 100
SVHN 3×32×32 10K [0.438, 0.444, 0.473] [0.175, 0.177, 0.174] 10
STL-10 3×96×96 5K [0.441, 0.428, 0.387] [0.268, 0.261, 0.269] 10



Table B. The specifications of inference depending on the datasets.

Dataset CIFAR-10 CIFAR-100
p 40 250 400 10,000

90 4.51 4.49 31.54 20.97
80 (proposed) 4.52 4.39 31.09 20.13
70 5.75 4.57 32.23 21.58

C. Implementation Details
C.1. Data augmentation

We applied horizontal flipping with a probability of 0.5,
followed by randomly cropping 87.5% of the image and
padding it to the original size. These augmentations were
used to generate the labeled (s) and anchor sets (x) in
Subsection 3.1. RandAug [7] was used for generating
the positive set (x+) in Subsection 3.1 consisting of Con-
trast, Brightness, Color, Posterization, Rotation, Sharpen-
ing, Shearing, Solarization, Translation, and Cutout func-
tions. We randomly chose the three augmentations among
them to generate positive samples during training.

C.2. Optimiaztion

We used the learning rate of 0.03, cosine decay as the learn-
ing rate scheduler, weight decay of 0.0005, and the total
number of training steps of 220 in the proposed method.

D. GradCut depending on Percentile (p)
Figure C shows the simple illustration of GradCut depend-
ing on the p. As shown in this figure, the smaller p makes
the smaller ranges of GradCut. Table B shows the Top 1
classification error rates (%) depending on the p in Sub-
section 3.6, Eq. (12). As shown in this table, experiments
with small p (70, 60) provided a slightly degraded classifi-
cation accuracy compared to the optimal set 80. We gen-
erated the two different views by using weak and strong
augmentations. This showed that experiments with small p
(70, 60) provided a slightly degraded classification accuracy
compared to the optimal set 80. This means that the pro-
posed GradCut significantly affects generalization perfor-
mance by inducing high-entropy predictions from GP clas-
sifiers. When the p was set to 90, the classification accuracy
slightly decreased but still provided the pleasing classifica-
tion accuracy thus representing the stability of the proposed
GradCut.

E. Sampling Rate
Figure D showed the sampling rates depending on the
benchmark methods and proposed method. The “sampling
rate” refers to the proportion or percentage of samples in
the mini-batch that are considered pseudo-labels. For ex-
ample, the sampling rate of 0.5 means that half of the sam-

Figure C. Visualization of GradCut operation depending on per-
centile p and its quantile α.

ples in a mini-batch, those with confidence greater than the
threshold (T ), will be used for model updates. As shown
in this figure, the green line, labeled as “Actual”, showed
the observed sampling rate at each iteration. A red dashed
line helps to compare the slope of the global threshold vari-
ations. FixMatch [32], CRMatch [9], and SimMatch [46]
rapidly reached a high utilization of confident samples com-
pared to the proposed method, which means the rapid con-
vergence of the model’s prediction confidence. Dash [39]
showed an initial sharp drop in the sampling rate, followed
by a gradual and steady increase over subsequent itera-
tions. This behavior can be caused by overconfidence in
the model’s prediction. This is because the pseudo-labeling
loss of PseudoLabel [18] in Section 2 that can accelerate the
overconfidence is adopted as the threshold value for select-
ing confident positive samples (strongly augmented).

F. t-SNE Visualization
Figure E showed the t-SNE [34] visualizations of embed-
dings from the benchmark methods and proposed method
depending on the datasets. We followed the experimen-
tal setting on a unified semi-supervised learning codebase
(USB) [36] for the benchmark experiments. As shown in
this figure, Dash in Section 2 significantly showed the high
error rate (>0.8) for the 5th class which means the con-
firmation bias. FixMatch [32] and CRMatch [9] provided
high error rates for certain classes (e.g. 2, 3, and 5), which
also caused confirmation bias. In conclusion, the proposed
method provided the most similar error rate with fully su-
pervised training in terms of generalization ability.
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Figure D. The sampling rates depending on the benchmark methods and proposed method in CIFAR-10 (40) scenario.
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Figure E. t-SNE visualizations of embeddings from testing data depending on the benchmark methods and proposed method in CIFAR-10
(40) scenario. The differently colored circles indicate each class drawn by ground-truth labels. The bar graph provides the corresponding
color class’s error rate (E-rate).


