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A. Supplementary Overview
In this supplementary, we provide additional implementa-
tion details, analysis on forwards vs backwards detection
performance, and more qualitative results. The sections are
organized as follows:
• Section B shows additional results on the Argoverse 2

benchmark.
• Section C.1 provides implementation details regarding

the training of our framework.
• Section D includes evaluation results on forward vs back-

ward detections.
• Section E contains an ablation on the pseudo-labeling

thresholds.
• Section F presents additional comparisons between con-

fidence pseudo-labeling and our framework. We also in-
clude a supplementary video visualizing these pseudo-
labels.

• Section G shows visualizations of RGB reconstruction re-
sults from our model. We also include a supplementary
video.

B. Performance on Argoverse 2
In Table 6, we further evaluate our framework on Argoverse
2 [7], using 16k labeled and 94k unlabeled frames. Argo-
verse 2 contains 26 different classes, and we limit detec-
tion to a 102.4m x 102.4m x 8m range centered on the ego-
vehicle, similar to nuScenes and nuPlan. Our framework
demonstrates consistent improvements.

C. Implementation Details
C.1. Details of Our Framework
We build on the strong, temporal 3D detector StreamPETR
[6] and adopt the ConvNeXt-S [4] backbone pre-trained by
SparK [5]. Our framework is trained jointly with detection
losses and the RGB reconstruction loss. To avoid biasing
the detector to the masked-input distribution, we first run
the backbone and the detection head on uncorrupted RGB
images, then run the backbone on the images masked with

a ratio of 0.3. We supervise the masked patches using a z-
normed reconstruction target. The object query-conditioned
masked reconstruction uses two transformer decoder lay-
ers, allowing each image feature location to extract features
from object queries to aid the reconstruction.

During training, we evenly sample sequences from each
geographic location — Las Vegas, Boston, Pittsburgh, and
Singapore for NuPlan [2], and Boston and Singapore for
NuScenes [1]. We find this approach maintains perfor-
mance in all locations, especially relevant for NuPlan which
has most of its data from Las Vegas. To avoid training insta-
bility from suddenly adjusting the learning rate schedule be-
tween the first stage (labeled) and the second stage (labeled
and unlabeled) training, we maintain a fixed, high learn-
ing rate for the model and maintain the exponential mov-
ing average (EMA) of its weights. Using this approach, the
EMA model is used for pseudo-labeling, and the base model
maintains the same learning rate over training stages, allow-
ing for more stable optimization. Our final loss consists of
StreamPETR’s detection losses (3D detection, auxiliary 2D
detection) and our L2 reconstruction loss. The weight for
the reconstruction loss is set as 1. We use a learning rate of
3.75e-4 for a batch size of 15 in the first stage, and equally
sample 15 frames from both labeled and unlabeled data in
the second stage [3]. Following StreamPETR, we use a re-
sized image size of 256 x 704. We evaluate our model on
the full nuScenes validation set. For NuPlan, we randomly
select a subset of 10k frames from the official validation
split for faster evaluation. We emphasize that such a 10k
subset is already much larger than the nuScenes validation
set.

C.2. Details of Baselines
For the Pseudo-Labeling baseline, we generate labels with a
confidence threshold of 0.4. The training settings are identi-
cal between the baseline and our framework. On nuScenes,
to establish a strong baseline building on UniPAD, we first
pre-train UniPAD on the entire nuScenes dataset and trans-
fer the image backbone to StreamPETR. We then fine-tune
this detector using the limited labels and further refine the
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Method Front of Ego-Vehicle Back of Ego-Vehicle All Objects
mAP ↑ NDS ↑ mATE ↓ mAP ↑ NDS ↑ mATE ↓ mAP ↑ NDS ↑ mATE ↓

Forwards Inference 0.170 0.251 0.881 0.203 0.269 0.866 0.188 0.261 0.870
Backwards Inference 0.185 0.261 0.864 0.176 0.249 0.916 0.183 0.257 0.886
FwBw Ensembling 0.185 0.261 0.864 0.203 0.269 0.866 0.196 0.266 0.863

Table 5. Performance of methods on objects in front vs. behind the ego-vehicle, and across all objects. The detector is trained with
800 labeled samples and with forwards-backwards sampling during training.

Method mAP ↑ CDS ↑ mATE ↓ mASE ↓ mAOE ↓
Labeled Only 0.129 0.088 0.938 0.382 0.722
Pseudo-Labeling 0.150 0.104 0.993 0.397 0.857
Ours 0.158 0.110 0.933 0.394 0.884

Table 6. Comparison on the Argoverse 2 dataset.

Thr. mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓
-0.5 0.216 0.276 0.857 0.162 1.114 1.197
-1.0 0.219 0.278 0.850 0.162 1.102 1.200
-1.5 0.215 0.277 0.847 0.163 1.100 1.190

Table 7. Ablation of Hungarian Matching threshold on nuPlan.

baseline by pseudo-labeling the unlabeled data and continu-
ing training. Consequently, the UniPAD + pseudo-labeling
method replaces the pseudo-labeling baseline as the pri-
mary comparison target on nuScenes.

D. Forward vs Backwards Performance

In Table 5 we evaluate a 3D detector trained on 800 labeled
frames on objects in-front of the ego-vehicle and behind the
ego-vehicle. When the detector is run forwards in time,
we observe it performs substantially better on objects be-
hind the vehicle. On the other hand, when the detector is
run backwards, the model improves performance on objects
ahead of the ego-vehicle while compromising performance
on those behind. By ensembling predictions from both for-
wards and backwards inference of the same detector, we
achieve the best of both worlds and substantially improve
overall pseudo-label quality.

E. Ablation on Pseudo-Labeling Threshold

We ablate the hungarian matching threshold for pseudo-
labeling for our method in Table 7. This experiment uses
with 800 labeled and 60k unlabeled frames on nuPlan, and
we choose -1.0. We find that direct pseudo-labeling is ro-
bust to the threshold – 0.3, 0.4, 0.5 perform similarly, and
we choose 0.4 for its slightly better convergence.

F. Qualitative Analysis of Pseudo-Labels
In Figures 5 and 6, we visualize the pseudo-labels of a
detector trained on 800 labeled samples. Ground truth is
shown in green, the confidence pseudo-labeling method is
shown in orange, and our framework is in blue. Even in this
low-cost setting, our pipeline yields more coherent and con-
sistent pseudo-labels, in turn substantially improving the
performance of the final model trained on these pseudo-
labels.

G. Qualitative Analysis of RGB Reconstruc-
tion

In Figure 7 we show pairs of masked input and re-
constructed output. Even when using a comparatively
lightweight backbone (ConvNeXt-S with 50M parameters
vs SparK’s flagship ConvNeXt-L results with 200M pa-
rameters), our model generates plausible reconstructions of
masked regions. The model leverages object query condi-
tioning to fill in even almost entirely occluded objects.
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Ground Truth
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     Our Framework

Distant objects are 
better maintained by 
our pipeline.

Detections are 
more stable over 
different timesteps

Figure 5. Qualitative results on pseudo-labeling. By fully leveraging temporal cues, our framework yields more consistent pseudo-labels
for both close and far objects.
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Our framework 
consistently has 
higher recall of 
crowded objects.

We better 
capture distant 
objects even 
up to 50 
meters away.

Figure 6. Qualitative results on pseudo-labeling. Even in a difficult and crowded driving scenario, our pipeline better captures highly
occluded objects.



Figure 7. Qualitative results of RGB Reconstruction. We show pairs of masked images and predicted reconstructions. The model learns
the overall shape and appearance of objects, generating plausible reconstructions even when objects are largely occluded.
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