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1. Concentration of Measure

DS distributions extracted from the sequence of queries

from query-based black-box adversarial attacks exhibit

unique and distinguishable patterns. To explain this obser-

vation, we take an approach that adopts the concentration

of measure phenomena in high-dimensional spaces. The

properties of high-dimensional spaces often defy the rules

based on low-dimensional spaces we are familiar with[2],

and there is a set of less appreciate phenomena, especially

in data analysis, called the concentration of measure. The

concentration of measure phenomena are non-trivial ob-

servations and properties of the large number of random

variables[17].

Two important and useful geometric metrics of random

distributions are the length of a random vector ui ∈ R
d,

and the angle of two random vectors ui, uj ∈ R
d. In

high-dimensional spaces, however, the concentration of

measure states these metrics are almost concentrated to a

single value in the sense of the measure.

1.1. Concentration of Length

Let d-dimensional vector ui ∈ R
d be a random vector that

is sampled from a random distribution N (µ, σ2). The law

of large numbers states that 1
d

∑d

k=1 u
k
i is almost surely µ

as d → ∞ [10], where uk
i is the k’th element of ui. If µ

and σ2 is fixed, the length of any vector ui is expected to

converge toward a common value. Especially when µ = 0,

the length converges to σ2
√
d.

Suppose a random distribution N (µ, σ2) has µ = 0,

and the random fluctuation is limited with the unit variance

σ2 = 1. The expected length of ui is denoted as[1],

E
[

∥ui∥22
]

= E

[

d
∑

k=1

|uk
i |2
]

=

d
∑

k=1

E
[

|uk
i |2
]

= d (1)

where E[uk
i ] is the expected value of the random variable

uk
i . Therefore, the Euclidean length of ui is expected to be

approximately
√
d.
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Figure 1. (a) Euclidean length of random vectors with the unit

variance σ2 = 1 follows
√
d as the dimension d grows; (b) Cosine

Similarity of two random vectors converges toward 0 (90◦) as the

dimension d grows.

1.2. Concentration of Angle

Let two d-dimensional vectors ui, uj ∈ R
d be inde-

pendent random vectors with Rademacher variables as

uk
i ∈ {−1, 1}. The angle between two vectors is de-

noted as ∠uiuj , and the cosine similarity is denoted as

cos∠uiuj =
ui·uj

∥ui∥2∥uj∥2

, where ui ·uj =
∑d

k=1 u
k
i u

k
j is the

sum of independent random variables, hence E[ui · uj ] =
∑d

k=1 E[uk
i u

k
j ] = 0. Therefore, Hoeffding’s inequality[13]

can be applied for any given t > 0 as

P (|ui · uj | ≥ t) = P

( |ui · uj |
d

≥ t

d

)

≤ 2e

(

− t2

2d

)

(2)

where P is the probability. Now replace t with
√
2d log d,

then the inequality in Equation (2) is rewritten as

P

(

|ui · uj |
d

≥
√

2 log d

d

)

≤ 2e(− log d) (3)

From Equation (1), ∥ui∥2∥uj∥2 is surely d. Therefore,

Equation (3) becomes as follows [1],

P

(

| cos∠uiuj | ≥
√

2 log d

d

)

≤ 2

d
(4)

As stated in Equation (4), the angles of two independent

vectors, sampled from N (0, σ2), highly likely become nar-

rowly distributed around the mean ∠uiuj = π/2, with a
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Figure 2. Delta Similarity (DS ) of Query-based Black-box At-

tacks. (a) DS of HSJA zeroth order optimisation; (b) DS of NES

zeroth order optimistaion.

variance that converges towards zero[19] as the dimension

grows.

The concentration of measure phenomena are empiri-

cally proven as illustrated in Figure 1.

2. Delta Similarity of Attack methods

We provide DS analysis of HSJA[6] and NES[15] attack

methods. These two attack methods represent hard-label

and soft-label based attack strategies respectively.

HSJA : HSJA[6] estimates the direction of gradient via the

Monte Carlo algorithm as:

∇H(x̃t) ≈
1

n

n
∑

j=1

H(x̃t + ϵuj
t )u

j
t (5)

where uj
t ∈ R

d is i.i.d. random vector. The sequence of

queries in Equation (5) is {x̃t + ϵuj
t , x̃t + ϵuj+1

t , ...}.

Therefore, δ becomes a scaled subtraction of two random

vectors as δit = ϵ(uj+1
t − uj

t ) and δi+1
t = ϵ(uj+2

t − uj+1
t ).

Three random vectors uj
t , u

j+1
t and uj+2

t are surely orthog-

onal and have the same length. Hence DS = −0.5(120◦)
as illustrated in Figure 2 (a).

NES : Ilyas et al. adopted NES[15] to estimate the gradi-

ent. They use search distribution of random Gaussian noise

around the intermediate adversarial example in every itera-

tion such as:

∇F (x̃t) ≈
1

2ϵn

n
∑

j=1

(

F (x̃t + ϵuj
t )− F (x̃t − ϵuj

t )
)

uj
t (6)

The sequence of queries in Equation (6) is {x̃t + ϵuj
t , x̃t −

ϵuj
t , x̃t + ϵuj+1

t , ...}. In this sequence, δit = −2ϵuj
t ,

and δi+1
t = ϵ(uj+1

t + uj
t ). Therefore DS becomes

−0.7071(135◦). DS of NES zeroth order optimisation is

illustrated in Figure 2 (b).

3. Screener Pre-Processing

GWAD screener pre-process is a cost-effective and light-

weight stateful detection to screen out un-suspicious queries
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Figure 3. Conceptual diagram of GWAD Screener pre-process.

Screener screens out un-suspecious examples deliberately injected

by the irregular batch attacks.
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Figure 4. GWAD Screener pre-process 128-Byte representation of

an example

Attack
Screener FIFO Depth

100 200 600 1K

HSJA 99.50% 99.11% 99.61% 98.86%

NES 99.92% 99.91% 99.92% 99.92%

Sign-Flip 99.76% 99.68% 99.79% 99.78%

Table 1. GWAD+ (Screener + GWAD) detection rates with var-

ious Screener FIFO depths over irregular batch attack at rb =
1000% against ResNet-18 trained on CIFAR-10

which are deliberately injected by the irregular batch at-

tacks. The screener represents an image x with the 128-

Byte vector. Image x first converted to 32 × 32 grayscale

image, then transformed into a binary image by Canny edge

detection algorithm [5]. Each pixel of the binary image is

represented with bit 0 or 1, and finally forms a 128-Byte

vector. The similarity between two images is scored by the

rate of mismatching pixels which is simply calculated with

the bit-wise xor of represented vectors and the number of

bit 1 in the result, as described in Equation 5 of the main

paper. Figure 3 illustrates GWAD screener pre-process and

Figure 4 depicts the 128-Byte representation.

n-Channel Attack : n-Channel attack setting denotes

where an adversary attacks multiple images in parallel. To

cope with the n-Channel attack, screener is extended with a

channel-aware detection mechanism that assigns a channel

ID (CID) to each query, enabling independent tracking of

different query sequences: i) Queries are dynamically as-

signed to distinct channels based on their similarity to prior

inputs. ii) Each query’s DS score is computed within its

respective channel, preventing adversarial alternation. iii)
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Figure 5. Mean models of CIFAR-10 HoDS training dataset

Layer Layer Type Node Activation

0 Input 201 ReLU

1 Linear 512 ReLU

2 Linear 512 ReLU

3 Linear 256 ReLU

4 Linear 128 ReLU

5 Linear 64 ReLU

5 Linear 7 ReLU

6 LogSoftmax 7 -

Table 2. Architecture of GWAD attack classifier

Screener efficiently maintains separate state information for

each attack sequence, ensuring that alternating queries do

not evade detection. Our preliminary results confirm the ef-

fectiveness of this strategy, achieving over 99% accuracy in

detecting a 2-Channel attack.

4. Attack Classifier and Training Feature Set

We train a simple neural network to classify attack queries.

As shown in Table 2, the network consists of six full-

connected hidden layers with ReLU activations. The classi-

fication probabilities are provided by a Log-Softmax output

layer.

HoDS Training Feature Set : We first configure all the

adversarial attack methods, listed in Table 2 of the main

paper, to carry out their attacks with the query budget

qϵ = 5K without stopping criteria enabled. To generate

a set of HoDS features to train GWAD-CIFAR10, each at-

tack method performs the attack on the pre-trained ResNet-

18, with 10 randomly selected examples from the training

split. From each attack, 150 HoDS features are extracted

at random points in the sequence of queries. Therefore,

each attack method generates 1500 HoDS features during

its attacks on 10 examples. As a result, 9000 HoDS fea-

tures are extracted for the six attack classes. Another set of

HoDS features to train GWAD-ImageNet is also acquired

through the same procedure with the pre-trained VGG-16.

We present the visualisation of HoDS features in Figure 5.

HoDS feature set to represent the benign class in the train-

ing are acquired from the normal distributions instead of the

real benign queries. We use four normal distributions, and

Attack methods
Query Consumption

Zeroth Opt. Linear Search Other

BA [4] 90.42% 00.50% 9.08%
HSJA [6] 96.06% 03.93% 0.01%
SimBA [12] 100.00% 00.00% 0.00%
Sign-OPT [8] 71.67% 28.14% 0.19%
Sign-Flip [7] 99.80% 00.19% 0.01%
NES [15] 100.00% 00.00% 0.00%

Table 3. Query consumption of SOTA attack processes. Attacks

on MobileNet-V2 trained on CIFAR-10 with 5K query budgets

extract 375 HoDS features from each distribution:

• N (0, 0.25) and N (−0.5, 0.25)
• N (0, 0.14) and N (−0.5, 0.14)

The mean and variance of the normal distributions are cho-

sen based on the empirical measure of the DS distribu-

tions. For example, the DS elements of CIFAR-10 in

Figure 2 of the main paper are randomly distributed with

µ = −0.49447, and σ2 = 0.14828.

5. Dataset and Attack Methods

5.1. Dataset

The experiments of query-based black-box attacks on image

classification tasks are conducted over two standard image

datasets: CIFAR-10 [16] and ImageNet [9]. All the exam-

ples of these datasets are transformed as instructed by Py-

torch torchvision library [14]. We present further details of

image datasets used in the experiments with benign image

queries to simulate the practical use cases as follows.

Tiny-ImageNet [18] is composed of 200 classes of images.

Images in the dataset are downsized to 64 × 64 coloured

image space. The dataset is widely used for training and

testing various machine learning techniques.

Hollywood Heads [20] is a dataset containing human heads

annotated in sequential Hollywood movie frames. As ob-

jects are in a single class and extracted from the sequential

movie frames, examples tend to exhibit high similarity with

neighbouring examples.

FLIR ADAS[11] provides thermal and visible band images

for the development of automated systems using modern



Variance Bound
Detection Rate

HSJA NES Sign-Flip

0.0 ≤ α ≤ 1.5 100.00% 100.00% 99.30%

0.0 ≤ α ≤ 2.0 100.00% 100.00% 99.28%

0.0 ≤ α ≤ 2.5 100.00% 99.98% 99.39%

0.0 ≤ α ≤ 3.0 100.00% 100.00% 99.42%

Table 4. GWAD attack detection performances over the sequence

of queries from varying-variance adaptive attacks with HSJA [6],

NES [15] and Sign-Flip [7]

DNN models. The dataset was acquired via camera sys-

tem mounted on a vehicle, and includes images captured in

streets and highways in California, USA.

BIRDSAI[3] is an infra-red image dataset specifically de-

signed for Surveillance system with Aerial Intelligence.

The dataset was acquired through a long-wave band thermal

camera system, and contains night-time images of animals

and humans in Southern Africa.

5.2. Attack Methods

We note that all the attack methods used in the experi-

ments are commonly configured to the untargeted setting

with l2 constraint. In the following, we provide the hyper-

parameter settings of the methods used in the experiments.

BA[4] : Optimisation steps are initialised with 0.01, and up-

dated every 10 iterations with a learning rate ϵ = 1.5.

HSJA[6] : 100 queries are used to find an initial ad-

versarial example. Binary search threshold θ is set to

0.01/
√
w × h× c, where w × h × c is the area of input

space.

SimBA[12] : Attack step size ϵ is set to 0.03 for CIFAR-10,

and 0.2 for ImageNet.

Sign-Opt[8] : Gradient search learning rates are initialised

to 0.001 for CIFAR-10, and 0.05 for ImageNet. Line search

learning rates are set to 2 and 0.25 for further optimisation.

Finally, convergence threshold is 255 and 5 for CIFAR-10

and ImageNet respectively.

NES[15] : Number of samples n for the gradient estimate

is 50. Learning rate η is set to 0.55 for CIFAR-10 and 2.55

for ImageNet. Search variance σ is 0.1.

Sign-flip[7] : Project step parameter α is initialised to

0.0004 and updatd with a rate of 1.5. Random sign flip

step parameter p is initialised to 0 and updated with a step

of 0.001.

Query-based attack methods spend the majority of their

attack queries on zeroth-order optimisations. Table 3 shows

the query consumption profile of six SOTA query-based

black-box attack methods based on the settings detailed

above.

{OPEN}
(a) (b)

Figure 6. ASR of varying-mean adaptive attacks and detection

rates of GWAD as the upper bound rµ of µ variation in random

distributions grows: (a) HSJA; (b) NES

6. Additional Experiments

6.1. Moving target attack

In this section, we consider an attacker that implements

a ”moving-target” strategy to evade detection, while still

generating adversarial examples and querying the victim

model. The idea is to manipulate the parameters of the noise

distribution from which the attack samples the noise.

Noise vectors ut used in zeroth-order optimisation need to

be the zero-mean random distributions with a common vari-

ance such as N (0, 1) to guarantee acceptable quality of at-

tacks (QoA). However, one adaptive attack, with full knowl-

edge of the proposed detection scheme, may introduce a

variation in the random distributions by varying µ or σ2,

with no serious consideration of QoA.

Varying-variance attack : We first conduct attacks with

varying variance of random distributions as presented in Ta-

ble 4. In this setting, generated random noises are scaled

by a factor α, where 0 ≤ α ≤ rσ . While the attack per-

formance of NES has gradually degraded, GWAD main-

tains the attack detection performance showing near perfect

detection rates against varying variance adaptive attacks,

based on HSJA, NES and Sign-Flip method, across all the

variations in σ2.

Varying-mean attack: We now consider the scenario

where the adversary varies the mean µ of random vectors.

The attack first finds the range of pixel intensities for an in-

put x as s = max(x) − min(x), and sets the bounds of

variation as a ratio rµ of s. We display the impacts on ASR

caused by this adaptive attack setting in Figure 6. The ASR

of such attacks are gradually decreased as the rate of varia-

tion grows. The adaptive attacks with HSJA and NES show

only 61.54% and 10.2% ASRs respectively at rµ = 0.30.

In contrast, GWAD maintains the robustness in binary clas-

sification performance until rµ = 0.24 achieving 100% de-

tection rates against both attacks.



HSJA NES SimgBA Sign-Opt Sign-Flip BA

SVM 100.0% 100.0% 100.0% 84.1% 99.7% 94.9%

kNN 89.4% 100.0% 100.0% 93.7% 92.6% 85.6%

Table 5. Non-NN models’ classification performance (ImageNet)

Number of HSJA Sign-Flip

Queries Recogn. Detect. Recogn. Detect.

16 91.7% 100.0% 85.1% 99.4%

32 90.8% 100.0% 87.4% 99.6%

64 98.8% 100.0% 95.8% 99.5%

128 99.9% 100.0% 98.3% 99.3%

256 100.0% 100.0% 99.8% 99.8%

Table 6. Effect of number of queries to form HoDS for GWAD

prediction and detection performance over HSJA and Sign-Flip at-

tacks. ”Recogn.” corresponds to the attack recognition, and ”De-

tect.” corresponds to the binary classification (benign/attack).

6.2. Other Classifier architectures

We explore conventional classifier architectures to evaluate

the discriminant power of HoDS features. Among these

architectures, the classification performances of two non-

DNN classifiers, SVM and kNN, are presented in Table 5.

We note that the kNN classifier is directly applied with the

HoDS-Mean of CIFAR-10 depicted in Figure 5 at k = 256.

6.3. Ablation Studies

GWAD requires a set of queries to predict and detect query-

based attack. In Table 6, we report the attack classification

and detection performance of GWAD over various number

of queries to make HoDS feature. GWAD monitors 10K

attack queries from HSJA [6] and Sign-Flip [7]. The clas-

sification success rate of GWAD is gradually improved as

the number of queries to form HoDS grows reaching almost

100% classification accuracy at 256 queries.
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