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Supplementary Material

In this supplementary material, we provide additional de-
tails and results not included in the main paper due to space
constraints. The content is organized in the following order:

• Sec. S1. summarizes the rationale of our methods, Feature
Binding and Beam-wise Feature Distillation.

• Sec. S2. provides results across various weather condi-
tions.

• Sec. S3. offers qualitative results on the SemanticPOSS-
to-SemanticSTF benchmark.

• Sec. S4. provides experimental results of the SynLiDAR-
to-SemanticSTF benchmark.

• Sec. S5. provides discussions about the effectiveness and
limitations of our methods.

• Sec. S6 analyzes the mIoU drop for the bicyclist and
fence class.

• Sec. S7. provides discussions about the performance
degradation of car class on SemanticPOSS-to-
SemanticSTF benchmark.

• Sec. S8. provides related works on subclass- or prototype-
based methods.

• Sec. S9. provides additional experiments on different
weather simulations.

• Sec. S10. provides additional experiments on various
datasets.

• Sec. S11. provides additional experiments for different
superclass criterions.

• Sec. S12. provides additional examples illustrating the
comparison between clean and corrupted data.

• Sec. S13. provides failure cases of our methods.

S1. Rationale
In this section, we provide a detailed explanation of the ra-
tionale behind the two proposed methods, as introduced in
the main paper.

Feature Binding. As outlined in the main paper, Feature
Binding (FB) aims to prevent things objects from be-
ing mispredicted as stuff classes. Things objects are of-
ten misclassified as stuff due to semantic-level corrup-
tion caused by weather perturbations. In such conditions,
accurately predicting fine-grained classes (e.g. person,
motorcyclist) with LiDAR Semantic Segmentation
models becomes highly challenging. FB mitigates this issue
by constraining features to visually similar superclasses, re-
ducing things-to-stuff mispredictions.

Beam-wise Feature Distillation. As discussed in the main

paper, the goal of Beam-wise Feature Distillation (BFD)
is to recover information lost due to missing points. BFD
specifically addresses severe information loss in things ob-
jects by ensuring features from the augmented branch ef-
fectively capture things information from the clean branch.
This approach aligns intact point patterns before the drop
with collapsed point patterns after the drop, enabling effi-
cient utilization of point pattern information.
Why Divide Corruptions into Semantic and Local Lev-
els? This study categorizes corruptions based on the extent
of point loss induced by weather corruption, which indicates
potential degradation in data quality. A significant point loss
can severely degrade semantic information. Thus, compen-
sation strategies, such as Feature Binding, must be devised
to mitigate this degradation at the semantic level. Even min-
imal point corruption can cause information loss. It dispro-
portionately affects small-scale things objects. Beam-wise
Feature Distillation is introduced to mitigate these corrup-
tions.
Why FB Benefits things Classes More? Before apply-
ing our methodology, many misclassifications occurred be-
tween things and stuff classes. Thus, providing an addi-
tional discriminative signal via Feature Binding (FB) re-
duces misclassification between things and stuff. Second,
we train the model to exploit the common point pattern in
things classes through FB. This approach helps distinguish
things from stuff because things share similar visual pat-
terns, while stuff varies widely. Furthermore, as shown in
Table 4, classwise prototypes do not improve performance.
Therefore, our method’s effectiveness does not arise from
alleviating class imbalance between things and stuff.

S2. Results on Specific Weather Conditions

SemanticSTF consists of four adverse weather conditions:
dense fog, light fog, rain, and snow. We examine the perfor-
mance under each weather condition. As shown in Table S1,
on the SemanticKITTI-to-SemanticSTF benchmark, we ob-
serve that our model produces robust results regardless of
the weather condition. Additionally, Table S2 shows the
results on the SemanticPOSS-to-SemanticSTF benchmark.
Our proposed model achieves the highest mIoU in most
weather conditions, including significant improvements in
rain and snow scenarios. Therefore, our model demonstrates
consistent performance in most adverse weather scenarios
across both benchmarks.
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Figure S1. Qualitative results of our method on validation set of SemanticSTF. All models are trained on the train set of SemanticPOSS.
Gray points indicate correct predictions, red points highlight errors, and ground-truth is shown with color-coded labels. Dashed circles
highlight the predictions of things classes. Best viewed in color.

Method D-fog L-fog Rain Snow mIoU

PolarMix [11] 29.7 25.0 28.6 25.6 27.2
PCL [13] 28.9 27.6 30.1 24.6 27.8
MMD [7] 30.4 28.1 32.8 25.2 29.1
PointDR [12] 31.3 29.7 31.9 26.2 29.8
DGLSS [6] 34.2 34.8 36.2 32.1 34.3
UniMix [14] 34.8 30.2 34.9 30.9 31.4
DGUIL [5] 36.3 34.5 35.5 33.3 34.8
SJ+LPD [9] 33.9 35.5 35.8 32.1 36.3
NTN (Ours) 35.3 35.1 35.7 32.4 38.9

Table S1. Performance comparison of different methods under
varying weather conditions on SemanticKITTI-to-SemanticSTF
benchmark. Bold indicates the best mIoU and underlined indicates
the second-best performance.

Method D-fog L-fog Rain Snow mIoU

PointDR [12] 26.2 30.1 50.1 43.2 34.7
DGLSS [6] 32.8 34.8 54.9 39.8 39.2
SJ+LPD [9] 25.4 30.6 38.2 40.6 38.3
NTN (Ours) 31.8 38.7 58.4 50.4 46.2

Table S2. Performance comparison of different methods under
varying weather conditions on SemanticPOSS-to-SemanticSTF
benchmark. Bold indicates the best mIoU and underlined indicates
the second-best performance.

S3. Qualitative Results on the SemanticPOSS-
to-SemanticSTF benchmark

Fig. S1 shows qualitative results of our method and base-
lines on the SemanticSTF validation set, using Semantic-
POSS as the source domain. Correct predictions are marked
in gray, errors are in red, and ground-truth classes are color-
coded. Our method demonstrates significant improvements
over the original MinkowskiNet and SJ+LPD in segmenting
the things category, particularly for classes such as person
and bicycle. In scenarios (a), (b), and (d), our method
accurately segments the person class, while others fail
to recognize it or generate incomplete segmentation results.
These results align with our quantitative analysis, which re-
veals a 15.5 IoU improvement for the person class. Ad-
ditionally, in the rain scenario (c), while the segmentation
performance of bicycle is not yet optimal, our method
still surpasses existing methods, providing better segmenta-
tion results. Accurate segmentation of these things classes
is highly significant, as they directly impact the safety and
reliability of autonomous driving.

S4. Experiment on SynLiDAR-to-
SemanticSTF

We conduct additional experiments on the SynLiDAR-
to-SemanticSTF benchmark. As shown in Table S3, our
method improves the overall performance by 1.5 mIoU
compared to the SJ+LPD model [9]. Although our pro-
posed methods provide slight performance benefits, the
improvements are not as significant as those observed in
other benchmarks. SynLiDAR-to-SemanticSTF entangles
both (1) the domain gap between synthetic and real data
and (2) weather corruption. This is why our proposed meth-



Method car bi.cle mt.cle truck oth-v. pers. bi.clst mt.clst road parki. sidew. othe.g. build. fence veget. trunk terra. pole traf. mIoU

Oracle 89.4 42.1 0.0 59.9 61.2 69.6 39.0 0.0 82.2 21.5 58.2 45.6 86.1 63.6 80.2 52.0 77.6 50.1 61.7 54.7

Source-only 27.1 3.0 0.6 15.8 0.1 25.2 1.8 5.6 23.9 0.3 14.6 0.6 36.3 19.9 37.9 17.9 41.8 9.5 2.3 15.0

Dropout [10] 28.0 3.0 1.4 9.6 0.0 17.1 0.8 0.7 34.2 6.8 30.5 1.1 35.5 19.1 42.3 17.6 36.0 14.0 2.8 15.2

Perturbation 27.1 2.3 2.3 16.0 0.1 23.7 1.2 4.0 27.0 3.6 16.2 0.8 29.2 16.7 35.3 18.3 17.9 5.1 2.4 15.2

PolarMix [11] 39.2 1.1 2.2 8.3 1.5 17.8 0.8 0.7 23.3 1.3 17.5 0.4 45.2 24.8 46.2 20.1 38.7 10.9 0.6 15.7

MMD [7] 25.5 2.3 2.1 13.2 0.7 22.1 1.4 7.5 30.8 0.4 17.6 0.4 30.9 19.7 37.6 19.3 43.5 9.9 2.6 15.1

PCL [13] 30.9 0.8 1.4 10.0 0.4 23.3 4.0 7.9 28.5 1.3 17.7 1.2 39.4 18.5 40.0 18.0 38.6 12.1 2.3 15.5

PointDR [12] 37.8 2.5 2.4 23.6 0.1 26.3 2.2 7.7 27.9 7.7 17.5 0.5 47.6 25.3 45.7 21.0 37.5 17.9 5.5 18.5

DGLSS [6] 47.9 2.9 3.4 17.4 1.1 28.0 2.4 7.3 28.8 10.2 18.1 0.2 48.9 25.3 46.5 21.4 45.2 17.9 4.9 19.8

UniMix [14] 65.4 0.1 3.9 16.9 5.3 32.3 2.0 19.3 52.1 5.0 27.3 3.0 49.4 20.3 58.5 22.7 23.2 26.1 20.9 23.4

DGUIL [5] 43.3 2.8 2.6 23.2 3.2 31.3 2.5 4.4 34.3 9.2 17.9 0.3 57.1 27.6 50.0 24.2 41.5 19.0 6.1 21.1

SJ+LPD [9] 39.0 2.5 2.5 22.3 0.3 27.0 1.8 4.0 36.1 10.3 19.0 1.0 50.6 24.5 45.1 23.2 34.1 21.9 7.2 19.6

NTN (Ours) 48.4 1.5 2.4 19.4 0.2 29.1 3.2 8.9 43.5 6.7 20.5 0.0 52.2 30.1 49.8 20.0 32.9 24.7 7.5 21.1
↑ to SJ+LPD (+9.4) (-1.0) (-0.1) (-2.9) (-0.1) (+2.1) (+1.4) (+4.9) (+7.4) (-3.6) (+1.5) (-1.0) (+1.6) (+5.6) (+4.7) (-3.2) (-1.2) (+2.8) (+0.3) (+1.5)

Table S3. Comparison of methods on the SynLiDAR-to-SemanticSTF benchmark. Performance improvements of our method over
SJ+LPD [9] are shown in the last row, with red text indicating things classes increments and green text for stuff.
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Figure S2. Examples of the three levels of category classification:
classes, superclasses, and coarse, in increasing order of granular-
ity.

ods provide marginal performance gain. Nevertheless, Ta-
ble S3 shows FB and BFD outperform the previous method,
SJ+LPD [9], implying its effectiveness in representing real
adverse weather. Note that UniMix [14] and DGUIL [5]
have not been reproduced due to the lack of publicly avail-
able code.

S5. Discussions about Methods

In this section, we discuss both the effectiveness and limi-
tations of our proposed modules on the SemanticKITTI-to-
SemanticSTF benchmark.

S5.1. Analysis on Feature Binding
Multi-Level Categories. We divide categories into three
levels, as shown in Fig. S2. Classes are the smallest units,
superclasses group semantically similar classes, and coarse
categories consist of things and stuff. We perform a detailed
analysis of these three levels using confusion matrices and
qualitative results.

Effect of FB for Relieving Confusion. As mentioned in
Sec. S1, Feature Binding is a module designed to prevent
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Figure S3. Confusion matrices for (a) superclasses and (b) things
and stuff after adding Feature Binding. The numbers in brackets
indicate the increase or decrease compared to SJ+LPD [9]. FB ef-
fectively reduces misclassification between things and stuff.

things from being misclassified as stuff when their semantic
information is partially degraded due to corruption caused
by adverse weather. To examine the effect of FB, we con-
duct an analysis at the superclass level and the coarse level,
as shown in Fig. S3. When we compare the performance
with the previous method [9], we find that misclassification
ratio of things as stuff decreases by 2.34%. At the superclass
level, we observe that the tendency to misclassify things
as natural categories such as vegetation is greatly re-
duced. In particular, for the person category, true positive
prediction ratio increases by 9.22% compared to before, and
misclassification ratio as the natural category decreases by
5.74%. Thus, we confirm that FB helps to learn the semantic
differences between things and stuff by continuously pro-
viding hierarchical semantic information.

S5.2. Analysis on Beam-wise Feature Distillation.

Challenges of BFD with Disrupted Point Patterns. As
in Fig. S4, misprediction ratio from things-to-stuff slightly
increases in bicycle and bicyclist classes. This is



(a)   Class-wise Confusion Matrix of SJ+LPD

(b)   Class-wise Confusion Matrix of NTN (Ours)

Figure S4. Class-wise confusion matrices of (a) SJ+LPD [9] and
(b) Ours on SemanticKITTI-to-SemanticSTF benchmark.
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Figure S5. Qualitative results of NTN (FB + BFD). Gray is true
prediction, and Red is false prediction. Other colors mean true pre-
dictions for specific classes.

Feature Distillation Types Performance
B-all. B-wise. (Ours) Things Stuff mIoU

✓ ✗ 35.3 43.7 38.9

✗ ✓ 36.2 42.5 38.9

Table S4. Comparison for feature distillation settings between av-
erage on all beams and seperate beam. Experiments are done on
SemanticKITTI-to-SemanticSTF benchmark.

OursSJ+LPD

Bicyclist Person Road

PolarMix PointDR

Sidewalk Vegetation Terrain

Ground-Truth

Motorcyclist

Figure S6. Qualitative results on bicyclist class for Po-
larMix [11], PointDR [12], SJ+LPD [9] and Ours.

because BFD tends to effectively utilize the point patterns
before point drop, as mentioned in Sec. S1.

The learning mechanism of BFD enables the LSS model
to perform better on objects where the clean branch’s point
pattern is well preserved during test time. This explains
why our method struggles with classes like bicycle
and bicyclist, which inherently have few points and
are prone to severe point pattern corruptions. In such
cases, BFD struggles to utilize informations of local point
pattern from clean data branch. Conversely, significant
performance improvements are observed for classes like
motorcycle and motorcyclist, which have clearer
shapes. As shown in Fig. S5, the method with BFD demon-
strates superior predictions for bicycles with reasonably
preserved point patterns, as observed in row 1. Also, the
motorcycle in row 2, which maintains its point pattern,
achieves improved performance. In summary, confusion on
classes like bicycle arises as a side effect of improving
performance by preserving things object information with-
out bias toward weather-corrupted data.

Ablation Study on Types of Feature Distillation. As
shown in Table S4, distillation after averaging across all
beams (B-all.) achieves the same mIoU as our method,
which performs beam-wise averaging before distillation (B-
wise.). However, our method outperforms B-all. in things
objects. This demonstrates that defining beam-wise local re-
gions and performing distillation accordingly better com-
pensates for information loss caused by point missing in
things objects.



Dataset Sem.KITTI; w. Other Sim. Dataset nuScenes; real rain nuScenes-C; snow, fog, wet ground
Method Things Stuff All Method Things Stuff All Heavy Moderate Light Things Stuff All
Source Only 17.7 38.9 26.6 Source Only 34.2 67.0 48.6 47.5 52.5 55.1 39.0 68.0 51.7
[3] + [4] 22.9 42.8 31.3 SJ+LPD 33.2 66.6 47.8 49.0 53.6 55.7 40.7 68.2 52.7
+ NTN (Ours) 23.6 43.9 32.2 + NTN (Ours) 35.4 67.8 49.6 48.6 54.0 56.6 53.1 68.5 53.1
↑ to [3] + [4] (+0.7) (+1.1) (+0.9) ↑ to SJ+LPD (+2.2) (+1.2) (+1.8) (+2.2) (+1.9) (+1.7) (+12.4) (+0.3) (+0.4)

Table S5. Comparison on various benchmarks and scenarios.

Method Superclass mIoU Total

Coarse Things: person, vehicle, traffic element 33.7 (↑2.4) 38.1 (↑1.8)Stuff: pavement, natural, structure 44.0 (↑0.9)

GPT-o1

Person: person, bi.clst, mt.clst 39.1 (↑13.4)

38.3 (↑2.0)

Vehicle: car, bi.cle, mt.cle, truck, oth-v. 33.5 (↑3.4)
Ground: road, parki., sidew., othe.g. 30.0 (↓0.8)
Nature: trunk, veget., terra. 48.6 (↑0.4)
Construction: build., fence 57.3 (↓6.8)
Traffic Object: pole, traf. 31.5 (↓2.0)

DeepSeek-V3

Person: person, bi.clst, mt.clst 30.0 (↑4.4)

39.4 (↑3.1)

Vehicle: car, bi.cle, mt.cle, truck, oth-v. 37.3 (↑7.2)
Road-infra.: road, parki., sidew., othe.g. 32.1 (↑1.3)
Nature: veget., terra. 56.6 (↑2.9)
Man-made: build., fence, pole, traf. 49.1 (↑0.4)
Miscell.: trunk 35.1 (↓2.1)

Table S6. Comparison of different superclasses on SemanticKITTI-to-SemanticSTF (improvements over SJ+LPD in brackets).

S6. Analysis on mIoU Drop Bicyclist &
Fence Classes.

Bicyclist. We found out that both the predictions from
SJ+LPD [9] and our method accurately detected the bicy-
clist within a single scan. As shown in the third and fourth
visualizations of Fig. S6, the performance difference be-
tween SJ+LPD and our method is minimal, amounting to
only a few points. Furthermore, the mispredicted points
were all classified as a person, indicating that the slight per-
formance drop does not significantly impact safety-critical
predictions.

We verified the results for this object using PointDR
and PolarMix, which are reproducible due to publicly
available codes. As illustrated in the first and sec-
ond visualizations of Fig. S6, both PolarMix [11] and
PointDR [12] failed to provide accurate predictions for
most bicycle points. In PolarMix, some points are pre-
dicted as bicyclist, but many are misclassified as
motorcyclist. As motorcyclist generally moves
faster than bicyclist or person, such mispredictions
could lead to significant risks in ensuring safe driving. For
PointDR, none of the points are predicted as person,
bicyclist, or motorcyclist. This demonstrates that
previous methods fail to predict even within the person
superclass, highlighting the effectiveness of our method in
safety-critical driving scenarios.
Fence. Unlike other thin traffic elements, fence varies
from thin to large structures. Due to this structural di-

versity, large fences receive confusing signals from the
distinct-shaped superclass by FB. As a result, fence had
lower IoU and increased confusion with building and
vegetation as in Fig. S4.

S7. Performance Degradation of Car Class on
SemanticPOSS→SemanticSTF.

The performance gap arises from differences in car class
annotation between SemanticKITTI and SemanticPOSS.
SemanticKITTI-trained model benefits from FB by learn-
ing diverse vehicle classes separately, thus effective in Se-
manticSTF. In contrast, SemanticPOSS groups car, bus,
and truck into one class, limiting feature diversity and
lowering performance. For optimal performance of FB, pre-
defined classes should be as fine-grained as possible.

S8. Related Works on Subclass- or Prototype-
based Methods

Subclass- or Prototype-based regularization has frequently
been employed to tackle label-efficiency problems, where
limited or imbalanced annotations lead to suboptimal
segmentation. Pixel-to-Prototype Contrast [1] addresses
weakly supervised semantic segmentation by aligning pixel
embeddings with class prototypes, refining noisy pseudo
masks generated from image-level labels. Similarly, Proto-
typical Contrastive Network [8] focuses on highly imbal-
anced aerial segmentation by learning a single foreground



prototype and pushing away hard-negative background fea-
tures, thus emphasizing minority classes. Unbiased Sub-
class Regularization [2] aims to mitigate semi-supervised
class imbalance by splitting overrepresented classes into
smaller clusters, forming class-balanced subclasses. De-
spite sharing the general goal of improving segmentation
via prototype or class-based groupings, our work diverges
in both methodology and application. Instead of subdivid-
ing a single class or maintaining per-class prototypes, we
merge multiple classes into higher-level superclasses (e.g.,
things vs. stuff ), which better addresses the broad semantic
gap under adverse weather in LiDAR data. Moreover, prior
methods largely concentrate on 2D image tasks or semi-
/weakly supervised settings, whereas we focus on single-
domain generalization for 3D LiDAR segmentation, em-
phasizing robustness against severe weather-induced cor-
ruptions.

S9. Additional Experiments on Different
Weather Simulations.

We used simulation methods [3, 4] to generate occlusion-
induced points, improving performance (Table S5) and con-
firming robustness to other weather simulations. Similar to
Table 2, the performance gain was higher in things (+0.7
mIoU), highlighting our method’s safety benefits.

S10. Additional Experiments on Various
Datasets

We tested our method on two settings: (1) nuScenes clean
train set-to-rainy splits, and (2) nuScenes train set-to-
nuScenes-C. As shown in Table S5, our method consistently
surpasses SJ+LPD [9] across diverse datasets, particularly
for things.

S11. Additional Experiments for Different Su-
perclass.

We evaluated the impact of superclass selection on gener-
alizability by: (1) separating superclasses into things and
stuff, (2) using GPT-o1, and (3) Deepseek-V3 recommen-
dations. For (2) and (3), we provide COCO and ImageNet
supercategory examples. Table S6 shows that even (1) helps
FB reduce things→stuff mispredictions and improves per-
formance, while finer superclasses in (2) and (3) achieve
higher gains. This demonstrates well-chosen superclasses
can boost performance and highlight the scalability of our
method. While our method consistently improves things, fu-
ture work is needed for automatic superclass selection.

S12. Additional Visual Comparisons Between
Clean and Corrupted Data

We provide additional comparisons between clean and cor-
rupted data, as shown in Fig. S7. It illustrates point patterns
of things objects in clean and weather-induced corrupted
data. As mentioned in Sec. 1 and Sec. 3 in the main paper,
things objects in clean weather have well-defined shapes
and smooth boundaries, whereas in adverse weather, they
have blurred shapes and irregular boundaries. This proves
that things classes are more vulnerable to such noise or
point loss, making accurate predictions more difficult.

S13. Failure Cases
Fig. S8 illustrates cases where our method fails in predic-
tion. Errors remain, particularly at very close distances to
vehicles, as shown in (a) and (e). As demonstrated in (a),
performance improvements were limited for the car class
due to extreme sparsity from occlusion by droplets. For the
person class, (c) shows yet many incorrect predictions re-
main in extremely noisy conditions. Thin objects like pole
and traffic-sign are often misclassified as vegetation,
as seen in cases (b), (d), (e), (f) and (h). Errors also occur
in classes with varying object sizes, such as fences in exam-
ples (g) and (h). As discussed in Sec. S6, this issue arises
from defining FB superclasses manually.
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Figure S7. Examples of clean and corrupted data for various things classes. In clean weather, objects have well-constructed shapes with
dense point clouds. In contrast, objects in adverse weather have blurred shapes with significant point loss.
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