
Resilient Sensor Fusion under Adverse Sensor Failures via Multi-Modal Expert
Fusion

Supplementary Material

We present detailed pseudo-code to describe the MoME
framework and AQR mechanism in MoME. In the follow-
ing sections, we detail the implementation specifications of
MoME. The performance of MoME is thoroughly evalu-
ated across various sensor failure scenarios. Our compre-
hensive qualitative analysis further validates MoME’s ro-
bustness and performance advantages.

A. Algorithms
We provide detailed pseudo-code with PyTorch includ-

ing AQR and RAM in Algorithm 1 and Algorithm 2.

B. Implementation Details
B.1. Training Details

The training strategy of MoME consists of two stages to
handle sensor failures. In the first stage, all object queries
in Q are processed in parallel by each expert decoder
and matched with ground truth through bipartite matching,
without any sensor drop augmentation. The second stage
focuses on handling sensor failures by applying sensor drop
augmentation, where we randomly mask either the camera
or LiDAR inputs, with each sensor having a 1/3 probabil-
ity of being dropped, while retaining both sensors for the
remaining 1/3 of cases.

B.2. Adverse Sensor Scenarios
Our experimental validation encompasses both sensor

failure scenarios and adverse weather conditions. Our
sensor failure experiments incorporate BEVFusion’s [16]
Beam Reduction settings and nuScenes-R’s [34] protocols
for LiDAR Drop, Limited FOV, Object Failure, View Drop,
and Occlusion. For adverse weather conditions, we utilize
scene descriptions in the nuScenes [2] validation set to iden-
tify Rainy and Night scenarios, while adopting Fog, Snow,
and Sunlight conditions from nuScenes-C [6].

C. Extensive Performance Comparisons
We present additional experimental results by extend-

ing our analysis across different parameter settings for each
sensor failure scenario. While Table 1 shows the results
with fixed configurations, Tables 6-9 provide comprehen-
sive evaluations with various parameter ranges for each fail-
ure case.
• Limited FOV (Table 6): We observe that MoME demon-

strates better performance gains over CMT [29] as the

field of view becomes more restricted. While both meth-
ods achieve comparable mAP scores of 71.2% and 70.3%
respectively in the full FOV range of [-180, 180], the per-
formance gap widens significantly under severe FOV lim-
itations, where MoME achieves 44.0% mAP compared to
CMT’s 35.0% mAP at [-30, 30], demonstrating MoME’s
superior robustness to limited FOV.

• Object Failure (Table 7): We evaluate MoME and CMT
with different object failure ratios. Specifically, our
method achieves 72.8% NDS, outperforming CMT which
achieves 71.6% NDS at ratio=0.1.

• Beam Reduction (Table 8): We analyze performance
from 1 to 32 beams, showing significant improvements
especially with reduced beams, as our method achieves
30.5% mAP while CMT reaches 25.9% mAP using 1
beam.

• View Drop (Table 9): MoME and CMT show gradual
performance degradation as the number of dropped views
increases. MoME maintains consistently higher perfor-
mance, achieving 68.6% mAP compared to CMT’s 68.1%
mAP with 1 drop, and the performance gap widens with
6 drops, where MoME achieves 63.6% mAP while CMT
reaches 61.7% mAP.

D. Local Feature Extraction Methods.

The AQR module selects one of the expert decoders
based on features extracted from a local region identified by
a query. In Table 10, we compare different feature extrac-
tion methods within our router architecture, including cross-
attention, deformable attention, MLP, and our proposed ap-
proach. These methods exhibit notable performance differ-
ences in Limited FOV scenarios, where partial sensor fail-
ure occurs. This is because selecting an appropriate decoder
depends on the query’s position. Notably, cross-attention
demonstrates limited effectiveness, as it struggles to focus
specifically on locally degraded regions. Deformable atten-
tion performs better due to its dynamic spatial sampling
capability, but it lacks explicit control over attention re-
gions. While the MLP approach, which utilizes max-pooled
multi-modal features, shows reasonable robustness to fail-
ure cases, it underperforms in the Clean scenario. In con-
trast, our proposed AQR module consistently achieves su-
perior performance across all cases, thanks to its use of a
local attention mask.

Method
Limited FOV Limited FOV Limited FOV Limited FOV Limited FOV Limited FOV
[-180, 180] [-150, 150] [-120, 120] [-90, 90] [-60, 60] [-30, 30]

mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS
CMT [29] 70.3 72.9 65.4 69.8 53.8 62.2 49.0 58.4 43.9 54.0 35.0 46.1

MoME (ours) 71.2 73.6 67.8 71.2 56.2 63.4 54.2 61.2 50.6 58.3 44.0 53.0

Table 6. Performance comparison between CMT [29] and MoME (ours) on Limited FOV

Method
Object Failure Object Failure Object Failure Object Failure Object Failure Object Failure

ratio=0.0 ratio=0.1 ratio=0.3 ratio=0.5 ratio=0.7 ratio=0.9
mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS

CMT [29] 70.3 72.9 68.8 71.6 67.6 70.8 66.7 70.4 64.5 68.2 62.7 67.2
MoME (ours) 71.2 73.6 70.0 72.8 68.5 71.8 67.0 71.0 64.8 68.8 63.0 67.8

Table 7. Performance comparison between CMT [29] and MoME (ours) on Object Failure

Method
Beam Reduction Beam Reduction Beam Reduction Beam Reduction Beam Reduction

1 beams 4 beams 8 beams 16 beams 32 beams
mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS

CMT [29] 25.9 42.6 54.9 62.2 59.5 65.4 62.3 67.5 70.3 72.9
MoME (ours) 30.5 43.4 55.0 63.0 60 66.5 62.7 68.3 71.2 73.6

Table 8. Performance comparison between CMT [29] and MoME (ours) on Beam Reduction

Method
View Drop View Drop View Drop View Drop View Drop View Drop

1 drop 2 drops 3 drops 4 drops 5 drops 6 drops
mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS

CMT [29] 68.1 71.7 67.1 71.1 65.6 70.4 64.0 69.5 62.6 68.6 61.7 68.1
MoME (ours) 68.6 72.4 67.7 71.9 66.6 71.2 64.6 70.4 63.8 69.9 63.6 69.5

Table 9. Performance comparison between CMT [29] and MoME (ours) on View Drop

LiDAR failure Camera failure

Method Clean Beam Reduction LiDAR Drop Limited FOV Object Failure View Drop Occlusion
4 beams all [-60, 60] rate = 0.5 6 drops w obstacle

mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS mAP NDS
cross attention 71.0 73.6 54.6 62.8 42.3 48.1 25.7 48.0 66.0 69.8 63.0 69.4 64.1 69.3

deformable attention 71.0 73.6 54.8 62.9 42.3 48.1 32.1 50.1 66.0 70.1 63.1 69.4 64.0 69.6
MLP 70.7 73.5 54.8 62.9 42.3 48.1 44.2 54.4 66.4 70.3 63.1 69.5 64.6 69.8

AQR (ours) 71.2 73.6 55.0 63.0 42.5 48.2 50.6 58.3 67.0 71.0 63.6 69.5 65.6 70.5

Table 10. Ablation Studies on feature extraction methods for AQR query routing. AQR with LAM shows the superior robustness,
particularly under local-aware sensor failure scenarios, such as Limited FOV, Object Failure, and Occlusion.

E. Additional Qualitative Results

Fig. 5 compares the detection results of MoME and
CMT [29] under six sensor failure scenarios in real-world
scenes. The visualizations demonstrate our model’s consis-
tent performance across different failure conditions.

• Beam Reduction: Even with reduced LiDAR input,
MoME accurately detects objects in the first three rows
and successfully captures vehicles behind pedestrians in
the last three rows.

• LiDAR Drop: MoME effectively leverages camera infor-
mation to detect small and partially occluded objects that
CMT fails to identify.

• Limited FOV: MoME successfully detects small objects
in LiDAR-absent regions compared to CMT.

• Object Failure: MoME achieves lower false positive
rates than CMT and maintains accurate detection of
nearby objects under object failure conditions.

• View Drop: MoME successfully detects occluded small
objects that CMT misses and reduces false positive detec-

tions in complex scenes with dropped camera views.
• Occlusion:When parts of the scene are masked to sim-

ulate occlusions, MoME successfully detects objects in
the affected regions while CMT shows degraded perfor-
mance.

Figure 5. Qualitative results under various sensor failure scenarios. Comparison of detection results between MoME and CMT [29]
under six sensor failure scenarios: Beam Reduction, LiDAR Drop, Limited FOV, Object Failure, View Drop, and Occlusion. The results
demonstrate MoME’s detection capabilities across these challenging conditions.

Algorithm 1 Adaptive Query Router (AQR)

import torch
import torch.nn as nn
from mmcv.cnn.bricks.transformer import build_transformer_layer_sequence

class AQR(nn.Module):
def __init__(self, encoder, hidden_dim, **kwargs):

super().__init__()
self.encoder = build_transformer_layer_sequence(encoder)
self.linear = nn.Linear(hidden_dim, 3)

def forward(self, c_dict, ref_pts, pc_range, img_feats, metas):
3D -> 2D projection.
rp = torch.stack([ref_pts[..., i:i+1] * (pc_range[i+3] - pc_range[i]) + pc_range[i]

for i in range(3)], -1)
b, n = rp.shape[:2]
p2d = torch.einsum(’bni,bvij->bvnj’,

torch.cat([rp, torch.ones((b, n, 1)).cuda()], -1),
torch.tensor(np.stack([np.stack(i[’lidar2img’]) for i in metas]))
.float().cuda().transpose(2,3))

p2d[..., :2] /= torch.clip(p2d[..., 2:3], min=1e-5)

Get valid points & prepare inputs.
h, w = metas[0][’img_shape’][0][:2]
v = ((p2d[..., 0] < w) & (p2d[..., 0] >= 0) & (p2d[..., 1] < h) & (p2d[..., 1] >= 0))
v = (torch.cat([torch.zeros_like(v[:,:1,:], dtype=torch.bool), v], 1)

.float().argmax(1) - 1) * (v != 0)

m = v != -1
p_cam = torch.zeros((b, n, 3), device=p2d.device)
p_cam[m] = torch.cat([v[m].unsqueeze(-1),

p2d[torch.where(m)[0], v[m], torch.where(m)[1]][...,[1,0]] *
(img_feats.shape[2] / h)], -1)

p_lidar = torch.floor((rp[..., :2] + 54.0) * (180 / 108))[..., [1,0]]
attention_mask = [RAM(p_lidar, p_cam, b, n).unsqueeze(1)

.repeat(1, self.e_num_heads, 1, 1).flatten(0, 1)]
Forward.
out = self.encoder(

torch.zeros_like(c_dict[’query_embed_l’][0]),
c_dict[’memory_l’][0],
c_dict[’memory_v_l’][0],
c_dict[’query_embed_l’][0],
c_dict[’pos_embed_l’][0],
attention_mask)

out = self.linear((out[-1] if out.shape[0] != 0 else out.squeeze(0))
.transpose(1, 0))

celoss = nn.CrossEntropyLoss()
loss = celoss(out.reshape(-1, 3), torch.tensor([i[’modalmask’] for i in metas]).cuda()
.unsqueeze(1).repeat(1, n, 1).reshape(-1, 3).float()) if self.training else None
return out, loss

Algorithm 2 Local Attention Mask

import torch

def LAM(c_dict, p_lidar, p_cam, b, n):
LiDAR mask.
rs, wl = 180, 5 # row stride, window size for lidar.
l_idx = p_lidar[..., 0] * rs + p_lidar[..., 1]
off = torch.arange(-(wl // 2), wl // 2 + 1, device=p_lidar.device)
y, x = torch.meshgrid(off, off)
l_win = (y * rs + x).reshape(-1)
l_indices = l_idx.unsqueeze(-1) + l_win

l_valid = (l_indices >= 0) & (l_indices < rs * rs) & \
((l_indices % rs - l_idx.unsqueeze(-1) % rs).abs() <= wl // 2)

l_mask = torch.ones(b, n, rs * rs, dtype=torch.bool, device=p_lidar.device)

Camera mask.
h, w, wc = 40, 100, 15 # height, width, window size for camera.
c_idx = p_cam[..., 0] * h * w + p_cam[..., 1] * w + p_cam[..., 2]
off = torch.arange(-(wc // 2), wc // 2 + 1, device=p_cam.device)
c_win = (off.unsqueeze(1) * w + off.unsqueeze(0)).reshape(-1)
c_indices = c_idx.unsqueeze(-1) + c_win

qp = c_idx % (h * w)
c_valid = ((c_indices % (h * w) // w - qp.unsqueeze(-1) // w).abs() <= wc // 2) & \

((c_indices % w - qp.unsqueeze(-1) % w).abs() <= wc // 2)
c_mask = torch.ones(b, n, 6 * h * w, dtype=torch.bool, device=p_cam.device)
c_indices = torch.clamp(c_indices, 0, 6 * h * w - 1)

Update masks with valid indices.
bid = torch.arange(b, device=p_lidar.device).view(-1,1,1)
qid = torch.arange(n, device=p_lidar.device).view(1,-1,1)
l_mask[bid.expand_as(l_indices)[l_valid], qid.expand_as(l_indices)[l_valid], l_indices[l_valid]] = False
c_mask[bid.expand_as(c_indices)[c_valid], qid.expand_as(c_indices)[c_valid], c_indices[c_valid]] = False

return torch.cat([l_mask, c_mask], -1)

