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8. Differentiable Contact Features

In [4], the DSF is adjusted by the pose q inducing rotation
R(q) and translation t(q):

h̄(q, x) = h(R(q)Tx) + t(q)Tx (18)

s̄(q, x) = R(q)s(R(q)Tx) + t(q) (19)

where s(x) = ∂h
∂x is a support point. Then, the objective

function for collision detection is defined as

F (x, σ, q) =

[
σ(s̄i − s̄j) + (1− σ)(ti − tj)

∥x∥2
]

(20)

where s̄i = Risi(R
T
i x)+ti and s̄j = Rjsj(−RT

j x)+tj are
derived from Eq. (19) for each pose qi and qj , and σ ∈ R
is a scaling factor for both DSF to touch each other. The
nonlinear equation F (x, σ, q) = 0 is solved by the contact
feature solver in [4].

On the other hand, to compute the contact features based
on our shape parameters ϕ, Eq. (20) is reformulated as

F (x, σ, ϕi, ϕj) =

[
σ(si − sj) + (ci − cj)

∥x∥2
]
= 0 (21)

where si = s(x, ϕi) and sj = s(−x, ϕj) are the support
points for each DSF, and c is the center of each DSF. Then,
the Jacobian of F is computed as follows:

J =

[
∂F

∂x
,
∂F

∂σ

]
=

[
σ
(

dsi
dx +

dsj
dx

)
si − sj

2xT 0

]
. (22)

Since Eq. (21) and Eq. (22) are special cases of Eq. (20)
and its Jacobian where R = I and t = c, the same contact
feature solver [4] can be applied in our study. Addition-
ally, the derivatives of the contact features with respect to ϕ
are computed using dx∗

dϕ derived from the implicit function
theorem as follows:

∂F ∗

∂ϕ
+ J∗

[
dx∗

dϕ
;
dσ∗

dϕ

]
= 0 (23)

where F ∗ and J∗ are Eq. (21) and Eq. (22) evalu-
ated at the solution (x∗, σ∗) of the nonlinear equation
F (x, σ, ϕi, ϕj) = 0. Similarly, the differentiable contact
features with respect to pose, represented by rotation I and
translation c, can also be computed using the implicit func-
tion theorem.

9. Metrics
In Sec. 5, two metrics are used for evaluation: intersection
over union (IoU) and Chamfer-L1 distance. The IoU is de-
fined in terms of volumes as

IoU =
Vol(A ∩B)

Vol(A ∪B)
(24)

where A and B are the geometries, and Vol(A) is the vol-
ume of A, approximated using 105 points uniformly sam-
pled from the input mesh. The IoU is computed based on
the number of point samples within each geometry. Specif-
ically, Vol(A ∩ B) is the number of samples inside of both
A and B, and Vol(A ∪ B) is the number of samples in-
side either A or B. To compute these volumes, the implicit
function representing the superquadrics, and the minimum
distance solver for DSF [4] are used for each primitive.

The Chamfer-L1 distance is defined as

d(A,B) =
1

|As|
∑
p∈As

min
q∈Bs

∥p− q∥1+

1

|Bs|
∑
q∈Bs

min
p∈As

∥p− q∥1
(25)

where As and Bs are the surface points sampled from ge-
ometries A and B, respectively. The equal-distance sam-
pling for superquadrics [5] is determined by the distance
parameter, leading to variations in sample sizes among dif-
ferent objects. For comparison, the surface points from DSF
are downsampled to match the number of samples from su-
perquadrics, which ranges from 28K to 50K.

10. Implementation Details
For our method, the SDF data P , S, and G are sampled
from voxelized SDF with a resolution of 1003. Each data
contains 100K samples, with 50K data sampled from the
voxels inside of the object and 50K data sampled from the
voxels near the surface of the object. In Alg. 3, the stopping
threshold tend is set to −0.5 times the voxel grid interval,
and the method-conversion threshold ts is set to −2 times
the voxel grid interval. For self-degeneration in Sec. 4.4, a
fitted DSF is removed if it satisfies the following condition:

Nout

Nin
> 0.3 or NDSF < 20 (26)

where NDSF is the number of points inside of DSF, Nin is
the number of points inside of DSF with SDF value s ≤ 0,
and Nout is the number of points inside of DSF with SDF
value s > 0.



Figure 12. DSF fitting results using 20 vertices with α (bottom)
and without α (middle, where ∀αi is fixed at 0 for geometric cen-
ter) for the given convex meshes (top).

DSF Fitting Cost (a) (b) (c)
Without α 0.0114 0.0061 0.0233

With α 0.0054 0.0023 0.0055

Table 3. The resulting costs for the DSF fitting computed by the
objective function Eq. (5). The convex meshes (a-c) are visualized
in Fig. 12.

11. The Center Parameters of DSF

The effect of the center parameters α on fitting results is dis-
cussed in Sec. 3.1. In this section, we provide additional vi-
sualizations of fitting results for 3D shapes with and without
α. In Fig. 12, DSFs are fitted to convex meshes with both
curved and flat surfaces. The resulting costs computed us-
ing Eq. (5) are summarized in Tab. 3 for the three meshes in
Fig. 12. Involving α in the shape parameters ϕ enhances the
representation performance of sharp edges between curved
and flat surfaces. While the fitting cost depends on object
geometry and scale, involving α consistently yields lower
costs compared to fixed α. This improvement becomes
more significant when the DSF has fewer vertices.

Figure 13. DSF abstraction results. The object is the armadillo and
the Stanford rabbit from the Stanford 3D scanning repository [2].
For each input object (left), the hyperplane samples for the DSF
fitting are obtained from each convex region R generated within
the object (middle, converted into the polygons). Then, the DSFs
are fitted to each hyperplane set (right).

Figure 14. DSF abstraction results using the region reduction
method (Alg. 1) with overlap parameter od = 0 (left), od = 0.012
(middle), and od = 0.6 (right) for the normalized 3D space. The
number of DSFs (Nc) is presented below each result.

12. Visualizations of Hyperplane Samples in
Abstraction Process

In this section, the visualizations of the DSF fitting results
in Alg. 3 are presented. Each set of hyperplanes used for
the DSF fitting Eq. (5) can be converted into a polygon.
In Fig. 13, these polygons are visualized with the resulting
abstracted DSFs. Despite the sharp surfaces of the poly-
gons, the DSF fitting process successfully reconstructs the
smoothness of the geometries.



Figure 15. Abstraction results for the robot links [8] and the YCB dataset [1]. From left to right: Input mesh, the region reduction method
(Alg. 1, Red), the region expansion method (Alg. 2, Exp), the hybrid method with a small od (Alg. 3, Small-od), and the hybrid method
with a large od (Hyb). The results of Hyb is the same as MDSF in Sec. 5.

IoU ↑ Chamfer-L1 ↓ Nc ↓
Category Red Exp Small-od Hyb Red Exp Small-od Hyb Red Exp Small-od Hyb

Franka-fr3 0.9537 0.9425 0.9615 0.9517 0.0823 0.0961 0.0799 0.0847 16.875 9 20.375 13
Lite6 0.9518 0.9386 0.9593 0.9533 0.0935 0.1079 0.0869 0.0919 7.8571 7.5714 14.2857 7.2857

Xarm7 0.9533 0.9468 0.9578 0.9535 0.0857 0.0960 0.0852 0.0863 18.875 9.375 21.75 14.25
A1 0.9399 0.9259 0.9459 0.9424 0.0651 0.0753 0.0627 0.0650 10.8 7.4 11.8 9.8
G1 0.9331 0.9096 0.9349 0.9276 0.0781 0.0952 0.0786 0.0809 18.5652 15.1304 20 15.2174

YCB 0.9296 0.8834 0.9137 0.9076 0.0677 0.0883 0.0741 0.0764 22 14.4286 21.9286 16.5714
mean 0.9399 0.9170 0.9399 0.9333 0.0780 0.0938 0.0783 0.0810 17.3846 12.1077 19.4308 13.8462

Table 4. Results of the ablation studies. Red: the region reduction method (Alg. 1). Exp: the region expansion method (Alg. 2). Small-od:
the hybrid method with a small od (Alg. 3). Hyb: the hybrid method with a large od. Chamfer-L1 is multiplied by 10. The number of
objects for each category is 8, 7, 8, 5, 23, and 14, from top to bottom. The results of Hyb is the same as MDSF in Sec. 5.

13. Overlap Parameters

The abstraction results for different overlap parameters od
using the region reduction method (Alg. 1) are visualized
in Fig. 14. When od = 0, discontinuous gaps appear be-
tween the DSFs. For a small positive value of od (0.012 for
the normalized 3D space), continuous surfaces are produced
with fewer DSFs than od = 0. For a large od (0.6 for the
normalized 3D space), the number of DSFs is smaller than
od = 0.012, as the intersection between DSFs is perfectly
allowed.

14. Results of Ablation Studies

In Sec. 5.2, the abstraction performances and the number of
resulting DSFs are compared for each abstraction method:
the region reduction method Alg. 1, the region expansion
method Alg. 2, and the hybrid method Alg. 3 with the
two od. These results are visualized in Fig. 15 for the robot

links CAD data provided by the MuJoCo Menagerie [8] and
the YCB dataset [1]. The IoU, Chamfer-L1 distance, and
Nc for all categories are summarized in Tab. 4. The same
hyperparameters as Sec. 5.2 are used for each method.

15. Additional Results
To supplement the limited visualizations of abstraction re-
sults in Fig. 8, additional results for all categories are pro-
vided in Figs. 16 to 21 using the same baselines as Sec. 5.1.
The hyperparameters are consistent with those in Sec. 5.1,
including the batch size and the maximum training steps
for CvxNet [3], Nv and Nh for CoDSF and our method
(MDSF), and the overlap parameter od for Alg. 1.



Figure 16. Abstraction results for the Franka-fr3 in the MuJoCo Menagerie [8]. From left to right: Input mesh, CvxNet [3], Marching-
Primitives (MP [6]), DSF fitting for CoACD [7] results (CoDSF), and our DSF abstraction algorithm (MDSF, Alg. 3).

Figure 17. Abstraction results for the Lite6 (top three rows) and the Xarm7 (bottom row) in the MuJoCo Menagerie [8]. From left to right:
Input mesh, CvxNet [3], Marching-Primitives (MP [6]), DSF fitting for CoACD [7] results (CoDSF), and our DSF abstraction algorithm
(MDSF, Alg. 3).



Figure 18. Abstraction results for the Xarm7 (top three rows) and the A1 (bottom row) in the MuJoCo Menagerie [8]. From left to right:
Input mesh, CvxNet [3], Marching-Primitives (MP [6]), DSF fitting for CoACD [7] results (CoDSF), and our DSF abstraction algorithm
(MDSF, Alg. 3).

Figure 19. Abstraction results for the A1 (top row) and the G1 (bottom three rows) in the MuJoCo Menagerie [8]. From left to right: Input
mesh, CvxNet [3], Marching-Primitives (MP [6]), DSF fitting for CoACD [7] results (CoDSF), and our DSF abstraction algorithm (MDSF,
Alg. 3).



Figure 20. Abstraction results for the G1 in the MuJoCo Menagerie [8]. From left to right: Input mesh, CvxNet [3], Marching-Primitives
(MP [6]), DSF fitting for CoACD [7] results (CoDSF), and our DSF abstraction algorithm (MDSF, Alg. 3).

Figure 21. Abstraction results for the YCB dataset [1]. From left to right: Input mesh, CvxNet [3], Marching-Primitives (MP [6]), DSF
fitting for CoACD [7] results (CoDSF), and our DSF abstraction algorithm (MDSF, Alg. 3).
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