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Supplementary Material

A. Implementation Details

To develop our method, we build on top of the widely used
open-source 3DGS codebase [20]. Our SplineGS archi-
tecture is trained over 1k iterations in the warm-up stage
and 20k iterations in the main training stage. We initial-
ize nst and ndy to 20k, densifying the Gaussians every
100 iterations until 12k. We optimize the number of con-
trol points with the proposed MACP every 100 iterations.
For depth and 2D tracking estimation, we employ the pre-
trained models from UniDepth [38] and CoTracker [19],
respectively. The learnable camera extrinsics [R̂t|T̂t] are
initialized by [I|0], while the initial learnable focal length
value f̂ is set to 500. We maintain the same gradient-based
densification [20] for both static {Gst

i } and dynamic {Gdy
i }

3D Gaussians. We set all λ values of Eq. 14 and 15 to 1.

B. Additional Ablation Study for Motion-
Adaptive Control Points Pruning (MACP)

As described in Eq. 8 of the main paper, we compute the
error E between S(t,P) and S(t,P′) by projecting the 3D
points of each cubic Hermite spline function [2, 8] over time
into pixel space of all training cameras. This error is then
used to update the new spline function. The 2D error mea-
surement is particularly effective because it directly aligns
with the image domain, where pixel-level accuracy is es-
sential for precise spline function updates. To determine the
updated spline function, we set the threshold value ϵ of the
error E in Eq. 8 to 1. To validate the rationale behind our
setup, we conduct an ablation study for novel view synthe-
sis on the NVIDIA dataset [56], examining different MACP
settings, including the ablated models without MACP (‘w/o
MACP (Nc = 4)’, ‘w/o MACP (Nc = Nf )’ in Table 3-(c))
and with MACP having variations in ϵ values. For the varia-
tions in ϵ values, we select 0.2, 1, 2, 3, and 5. Fig. 9 presents
the average PSNR values and the average number of con-
trol points for dynamic 3D Gaussians after training across
all scenes. As shown in Fig. 9, when ϵ is set to an exces-
sively small value (‘ϵ = 0.2’), our MAS architecture fails
to prune control points effectively, resulting in reduced effi-
ciency. Conversely, when ϵ is too large (‘ϵ = 5’), the prun-
ing becomes overly aggressive, resulting in an insufficient
number of control points to accurately represent complex
motion trajectories. This trade-off underscores the impor-
tance of selecting ϵ carefully to achieve a balance between
efficiency and representation quality.
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Figure 9. Ablation study on MACP. We conduct an ablation
study of our Motion-Adaptive Control points Pruning (MACP)
method for novel view synthesis on the NVIDIA dataset [56] by
adjusting the pruning error threshold ϵ. ‘PSNR (dB)’ and ‘# Ctrl.
Pts.’ denote the average PSNR value and the average number of
control points for dynamic 3D Gaussians after training, computed
across all scenes, respectively.

C. Memory Footprint Comparison

To further highlight the efficiency of our SplineGS, we com-
pared its memory footprint with other 3DGS-based meth-
ods [21, 24, 52, 55], as shown in Table 4. This compar-
ison evaluates the average model storage requirements af-
ter optimization on the NVIDIA dataset [56]. The storage
requirements of 3DGS-based methods depend on the num-
ber of 3D Gaussians, which is determined by their hyperpa-
rameters. For consistency, we use the same hyperparameter
settings for the 3DGS-based methods [21, 24, 52, 55] as
those specified in their original implementations. Ex4DGS
[21] requires the largest memory footprint, attributed to
its method of explicit keyframe dynamic 3D Gaussian fu-
sion. In contrast, our SplineGS, which achieves state-of-
the-art (SOTA) rendering quality as shown in Table 1, uti-
lizes only about one-tenth of the memory footprint required
by Ex4DGS [21], thanks to our efficient MAS representa-
tion and the MACP method.

Methods Memory footprint (MB) ↓ # Gaussian (K)

4DGS (CVPR’24) [52] 50 136
D3DGS (CVPR’24) [55] 92 382
Ex4DGS (NeurIPS’24) [21] 256 436
STGS (CVPR’24) [24] 19 128

SplineGS (Ours) 26 183

Table 4. Memory footprint comparison results. ‘Memory foot-
print (MB)’ refers to the memory size of each trained model, while
‘# Gaussian (K)’ represents the total number of 3D Gaussians after
training.



D. Dynamic 3D Gaussian Trajectory Visualiza-
tion

Please note that the term motion tracking in our main paper
(Fig. 6), also referred to as dynamic 3D Gaussian trajec-
tory visualization in 2D space, differs from the term track-
ing used in 2D Tracking methods such as [19], which aim to
find 2D pixel correspondences among given video frames.
Our SplineGS leverages spline-based motion modeling to
directly capture the deformation of each dynamic 3D Gaus-
sian along the temporal axis, enabling the rendering of tar-
get novel views. For 2D visualization of the 3D motion
of each dynamic 3D Gaussian, which is referred to as mo-
tion tracking in our main paper, we project its trajectory
onto the 2D pixel space of the novel views. We compute
a rasterized 2D track T G = {φG

t′ |φG
t′ ∈ R2}t′∈[t1,t2]

over the specified time interval [t1, t2] as the Gaussians’
trajectories visualization shown in Fig. 6 of the main pa-
per. For this motion tracking rasterization, we compute the
projected pixel coordinates at time t′ for each 3D Gaussian
using the camera pose [R∗|T ∗] of the target novel view as
πK̂(R∗S(t′,P)+T ∗). Then, we compute φG

t′ by replacing
the color ci in Eq. 2 with the projected pixel coordinate as

φG
t′ =

∑
i∈N πK̂(R∗Si(t

′,P) + T ∗)αdy
i

∏i−1
j=1(1− αdy

j ),
(18)

where αdy
i denotes the density of the ith dynamic 3D Gaus-

sian.

Figure 10. Visual results of dynamic 3D Gaussian trajectory
projected to novel views for our SplineGS.

As shown in Fig. 6 of the main paper, D3DGS [55] fails
to reconstruct dynamic regions. STGS [24] renders dy-
namic regions more effectively than D3DGS [55], but it still
produces poor visualizations of 3D Gaussian trajectories.
In the original STGS [24] paper, they propose the temporal
opacity σi(t) as

σi(t) = σs
i exp(−sτi |t− µτ

i |2), (19)

where µτ
i is the temporal center, sτi is the temporal scaling

factor and σs
i is the time-independent spatial opacity. To

further investigate the motion tracking results of STGS [24],
we render novel views for STGS [24] after training by set-
ting the opacity of each 3D Gaussian with (a) its origi-
nal temporal opacity σi(t) and (b) the fixed value of time-
independent spatial opacity σs

i , as shown in Fig. 11.

Figure 11. Visual results of novel view synthesis at a spe-
cific time using the same STGS [24] models after optimiza-
tion with (a) their original time-varying opacity and (b) time-
independent spatial opacity, respectively. Please note that we
use their original time-varying opacity during training.

We observe that when the opacity of each 3D Gaus-
sian is set to a time-independent value, the rendered novel
view synthesis results show multiple instances of the same
moving objects (e.g. a horse or a parachute) appearing
simultaneously, as illustrated in Fig. 11-(b). This obser-
vation suggests that, to represent a moving object across
time, STGS [24] may adjust the opacities of different sets of
3D Gaussians through their temporal opacities σi(t), rather
than deforming the spatial 3D positions of a single set of
3D Gaussians along the temporal axis. While this approach
can produce dynamic rendering results, it may not allow for
the direct extraction of 3D Gaussian trajectories along the
temporal axis. In contrast, our SplineGS with MAS directly
models the motion trajectories of dynamic 3D Gaussians,
enabling the extraction of more reasonable 3D trajectories,
as shown in Fig. 10.

E. Additional Details for Methodology
Camera Intrinsic. To predict the shared camera intrinsics
for our camera parameter estimation, we adopt a pinhole
camera model which is widely used in COLMAP-free novel
view synthesis methods [30, 32, 37, 50] as

K =

fx s cx
0 fy cy
0 0 1

 , (20)

where s = 0 represents the skewness of the camera, while
cx and cy denote the coordinates of the principal point in



pixels. Without loss of generality, we assume that fx =
fy = f , indicating equal focal lengths in both directions,
and set cx and cy to half the width and height of the video
frame, respectively.
Other 3D Gaussian Attributes. Other attributes of dy-
namic 3D Gaussians are represented as follows. For
the rotation, we adopt a polynomial function inspired by
STGS [24], defined as

qi(t) = q0
i +

∑nq

k=1 ∆qi,kt
k, (21)

where q0
i is a time-independent base quaternion of the

ith dynamic 3D Gaussian and ∆qi,k is an offset quater-
nion of the kth-order term of ith dynamic 3D Gaussian,
both of which are learnable parameters. we set nq = 1.
This ensures a simple yet effective representation of time-
dependent rotations [24]. For the scale, we set it to be
time-independent when using the NVIDIA dataset [56]. On
the other hand, depending on the scene’s characteristics, we
can learn the scale’s deformation by leveraging the Discrete
Cosine Transform (DCT) to capture the continuously vary-
ing scale of each dynamic 3D Gaussian, inspired by DynI-
BaR [26]. The scale function is expressed as

si(t) = s0i +∆si(t),

∆si(t) =
√

2/Nf

∑K
k=1 ζi,k cos

(
π

2Nf
(2t+ 1)k

)
,

(22)

where s0i is a time-independent base scale vector of the ith

dynamic 3D Gaussian and ζi,k ∈ R3 represents the kth co-
efficient of the ith dynamic 3D Gaussian, both of which are
learnable parameters. Here, K = 10 controls the number of
frequency components used in the DCT, allowing flexible
yet compact modeling of temporal scale variations. For the
color, following STGS [24], we use the splatted feature ren-
dering to predict the final pixel colors. For static regions,
we remove the time-encoded feature while preserving the
diffuse and specular features.

F. Limitation

In-the-wild videos often exhibit significant and rapid cam-
era and object movements, resulting in blurry input frames.
This blurriness subsequently degrades the quality of the ren-
dered novel views. As shown in Fig. 12, the methods solely
designed for dynamic scene reconstruction may overfit to
the blurry training frames. A straightforward solution is to
employ state-of-the-art 2D deblurring methods to enhance
the quality of input frames. Additionally, in future research,
we plan to integrate a deblurring approach directly into the
reconstruction pipeline. This integration could establish a
joint deblurring and rendering optimization framework, ad-
dressing low-quality issues and enhancing the final rendered
outputs without requiring separate preprocessing.

Figure 12. Limitations of our SplineGS. When the training video
frame contains blurriness, our model cannot effectively recon-
struct sharp renderings due to the absence of a deblurring method.

G. Additional Qualitative Results
G.1. Novel View Synthesis on NVIDIA

Figs. 13, 14, and 15 present additional visual comparisons
for novel view synthesis on the NVIDIA dataset [56].

G.2. Novel View and Time Synthesis on NVIDIA

Figs. 16, 17, and 18 present additional visual compar-
isons for novel view and time synthesis on the NVIDIA
dataset [56].

G.3. Novel View Synthesis on DAVIS

Figs. 19 and 20 present additional visual comparisons for
novel view synthesis on the DAVIS dataset [39].



Figure 13. Visual comparisons for novel view synthesis on the Jumping scene from the NVIDIA dataset.

Figure 14. Visual comparisons for novel view synthesis on the Playground scene from the NVIDIA dataset.

Figure 15. Visual comparisons for novel view synthesis on the Truck scene from the NVIDIA dataset.



Figure 16. Visual comparisons for novel view and time synthesis on the Balloon2 scene from the NVIDIA dataset.

Figure 17. Visual comparisons for novel view and time synthesis on the Jumping scene from the NVIDIA dataset.

Figure 18. Visual comparisons for novel view and time synthesis on the Umbrella scene from the NVIDIA dataset.



Figure 19. Visual comparisons for novel view synthesis on the Horsejump-high scene from the DAVIS dataset.

Figure 20. Visual comparisons for novel view synthesis on the Paragliding-launch scene from the DAVIS dataset.
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Zollhöfer, Christoph Lassner, and Christian Theobalt. Non-
rigid neural radiance fields: Reconstruction and novel view
synthesis of a dynamic scene from monocular video. In
ICCV, 2021. 2

[48] Diwen Wan, Ruijie Lu, and Gang Zeng. Superpoint gaus-
sian splatting for real-time high-fidelity dynamic scene re-
construction. arXiv preprint arXiv:2406.03697, 2024. 6

[49] Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi
Li, and Angjoo Kanazawa. Shape of motion: 4d reconstruc-
tion from a single video. arXiv preprint arXiv:2407.13764,
2024. 6

[50] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Vic-
tor Adrian Prisacariu. Nerf-: Neural radiance fields without
known camera parameters. CoRR, 2021. 3, 2

[51] Chung-Yi Weng, Brian Curless, Pratul P. Srinivasan,
Jonathan T. Barron, and Ira Kemelmacher-Shlizerman. Hu-
manNeRF: Free-viewpoint rendering of moving people from
monocular video. In CVPR, 2022. 2

[52] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
In CVPR. 2, 6, 7, 8, 1

[53] Gengshan Yang, Minh Vo, Neverova Natalia, Deva Ra-
manan, Vedaldi Andrea, and Joo Hanbyul. Banmo: Building
animatable 3d neural models from many casual videos. In
CVPR, 2022. 2

[54] Jinyu Yang, Mingqi Gao, Zhe Li, Shang Gao, Fangjing
Wang, and Feng Zheng. Track anything: Segment anything
meets videos. arXiv, 2023. 5

[55] Ziyi Yang, Xinyu Gao, Wen Zhou, Shaohui Jiao, Yuqing
Zhang, and Xiaogang Jin. Deformable 3d gaussians for high-
fidelity monocular dynamic scene reconstruction. In CVPR,
2024. 1, 2, 6, 7, 8

[56] Jae Shin Yoon, Kihwan Kim, Orazio Gallo, Hyun Soo Park,
and Jan Kautz. Novel view synthesis of dynamic scenes
with globally coherent depths from a monocular camera. In
CVPR, 2020. 1, 6, 7, 3

[57] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

[58] Kaichen Zhou, Jia-Xing Zhong, Sangyun Shin, Kai Lu,
Yiyuan Yang, Andrew Markham, and Niki Trigoni. Dyn-
point: Dynamic neural point for view synthesis. Advances
in Neural Information Processing Systems, 36:69532–69545,
2023. 6


	. Introduction
	. Related Work
	. Preliminary: 3D Gaussian Splatting
	. Proposed Method: SplineGS
	. Overview of SplineGS
	. Motion-Adaptive Spline for 3D Gaussians
	. Camera Parameter Estimation
	. Optimization

	. Experiments
	. Comparison with State-of-the-Art Methods
	. Ablation Study

	. Conclusion
	. Implementation Details
	. Additional Ablation Study for Motion-Adaptive Control Points Pruning (MACP)
	. Memory Footprint Comparison
	. Dynamic 3D Gaussian Trajectory Visualization
	. Additional Details for Methodology
	. Limitation
	. Additional Qualitative Results
	. Novel View Synthesis on NVIDIA
	. Novel View and Time Synthesis on NVIDIA
	. Novel View Synthesis on DAVIS


