
Style-Editor: Text-driven object-centric style editing
Supplementary Material

A. Detailed training process of the Style-Editor
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Figure 7. Simplified overview of the training process.

• The model takes three inputs: a source image (Isrc), which is the
subject of the style editing; a source text (T src), which identifies
the specific object in the source image to be modified; and a style
text (T sty), describing the desired style to be applied to the object.

• In the early iterations, the Pre-fixed Region Selection (PRS) is used
to divide Isrc into coarse foreground and background regions.

• Within the coarsely segmented foreground region, patches are gen-
erated. The Text-Matched Patch Selection (TMPS) module then
comes into play, selecting those patches that correspond to the ob-
ject mentioned in T src.

• The training of the model incorporates a combination of loss
functions: Patch-wise Co-Directional loss (Lpcd), Adaptive Back-
ground Preservation loss (Labp), Content loss (Lc), and Total Vari-
ation loss (Ltv).

A.1. Pre-fixed Region Selection (PRS)
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Figure 8. Overview of Pre-fixed Region Selection (PRS).

In our approach, we process the source image (Isrc) by dividing it into a 9 × 9 grid. From each grid point, we generate
three patches of varying sizes, centered on these points, resulting in a total of 243 patches. These patches are then passed



through the Text-Matched Patch Selection (TMPS) module, which identifies and selects the patches that are most relevant to
the source text (T src). We use a specific threshold τ (we set as 2) to determine the foreground region (M fg) of the image:
grids that exceed this threshold in terms of patch relevance are classified as part of the foreground. After the initial iterations,
further patch generation is concentrated within this coarse foreground region. The number of patches generated in subsequent
iterations is adjusted proportionally to the count of grids identified as part of the foreground region. This method ensures a
focused and relevant application of style editing where it is most pertinent according to the text input.

B. Comprehensive Analysis of our Style-Editor
In this section, we provide a detailed analysis of our Style-Editor model by evaluating its components and performance
through various experiments. Specifically, we focus on the impact of the patch distribution consistency loss, visualize the
style editing process, assess the computational overhead of the TMPS and PRS modules, explore the effect of patch size, and
compare our patch-wise approach with segmentation-based methods. This detailed examination and presentation of results
not only highlight the efficacy of our Style-Editor model but also provide valuable insights into the model’s operational
dynamics throughout its training phase.

B.1. The patch distribution consistency loss
To demonstrate the impact of the patch distribution consistency loss, denoted as Lcon, we conduct an ablation study. The
findings from this study are displayed in Fig. 9. A key observation from our experiments is that the inclusion of Lcon
significantly contributes to the preservation of vital features in the images, even after the style editing process. Notable
examples include the retention of text on a T-shirt, the intricate pattern of a tropical fish, and the clarity of numbers on a
bowling ball. These results highlight that the implementation of the Lcon loss is crucial in maintaining a focused distribution
of patches on the object. This focused approach is what enables the preservation of essential details and textures during the
style editing, ensuring that the core visual elements of the object remain intact and recognizable post-transformation. This
study thus underscores the effectiveness of the Lcon loss in enhancing the quality and fidelity of object-centric style editings
in our Style-Editor model.
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Figure 9. Qualitative comparison demonstrating the effect of the Lpcd loss by contrasting results with and without the Lcon loss.



B.2. Visualization of style editing process
Fig. 10 shows the iterative process of style editing as conducted by our model. Initially, the model prioritizes the preservation
of the background, ensuring it remains as close to the original image as possible. This early focus on background fidelity
is a crucial step in maintaining the overall integrity and context of the source image. As the training progresses through
successive iterations, the model begins to refine its approach. It gradually learns to enhance and accentuate the details within
both the object and the background. This progression illustrates the model’s sophisticated capability to strike a balance
between maintaining background fidelity and enhancing the object of interest. This iterative learning and adaptation process
is a key aspect of our model’s functionality. It demonstrates how the model evolves to effectively manage the complexities of
style editing, ensuring that both the object’s details and the background’s essence are harmoniously preserved and enhanced.

Figure 10. Visualization of the style editing process at intervals of every 10 iterations. This sequence illustrates the progressive transforma-
tion and refinement of the image style over time. The parts marked with blue dashed lines denote the iterations where the Pre-fixed Region
Selection (PRS) module operates, and the green patches in each iteration denote the patches selected through the Text-Matched Patch
Selection (TMPS). Areas not included in the patch are the regions where the Adaptive Background Preservation loss (Labp) is applied.

B.3. Computational overhead of TMPS and PRS
We conducted additional experiments to assess the computational overhead of the TMPS and PRS modules. In the course
of training, we processed the model with 5 distinct styles of text and 3 varieties of source images 10 times to calculate the
average time spent. These time estimates encompass both the loading of the CLIP model and the image processing depicted
in Tab. 3-(a), as well as the actual training period shown in Tab. 3-(b). This data reveals that the proposed modules add
merely an extra 10 seconds to the process (see Ours), and that the PRS can indeed reduce training time by approximately
8-9 seconds. This supports our assertion. During the inference phase, which merely involves loading a pre-saved training
checkpoint and introducing an image, the presence or absence of any modules does not alter the runtime as shown in Tab. 3-
(c), ensuring consistency across different scenarios. Thus, our experiments illustrate that while the inclusion of the TMPS
and PRS modules extends training and inference times, the increase is not significantly detrimental.

Method (seconds) (a) Total training time
(+model & data load) (b) Training time (c) Inference time

w/o PRS, w/o TMPS 40.7s 35.2s 0.28s
w/o PRS, w TMPS 59.9s (+19.2s) 53.3s (+18.1s) 0.28s (+0.0s)

w PRS, w TMPS (Ours) 51.9s (+11.2s) 44.3s (+9.1s) 0.28s (+0.0s)

Table 3. Comparison of different methods on training and inference times



B.4. Impact of Patch Size
We conducted additional experiments to investigate the impact of patch size in the TMPS module. The experimental setup
and results are presented in Tab. 4 and Tab. 5, highlighting how variations in patch sizes affect key performance metrics. Our
findings demonstrate that the TMPS module remains robustness across different patch sizes. Notably, our adaptive selection
of patch sizes, ranging from 64 to 128 for images of 512×512 size, yields well-rounded results throughout our experiments.
This adaptive approach reflects a careful trade-off: smaller patches enhance image quality metrics, such as PSNR, ConF ,
and ConB , while larger patches help preserve stylization consistency, especially around object boundaries. Nevertheless,
it is worth noting that such a reduction in patch size might also decrease the CLIP similarity for the foreground (SimF ),
potentially compromising the content’s integrity.

Foreground quality metrics Background quality metrics
Methods SimF ↑ ConF ↓ L1B ↓ ConB ↓ StyB ↓ SSIMB ↑ DISTSB ↓ PSNRB ↑
patch 64 0.3 3.46 0.09 1.2 0.11 0.90 0.08 27.92
patch 96 0.32 3.94 0.09 1.25 0.12 0.89 0.08 27.56

patch 128 0.33 4.24 0.10 1.29 0.13 0.89 0.08 27.17

Ours (patch 64-128) 0.33 3.75 0.10 1.15 0.10 0.90 0.07 27.65

Table 4. Quantitative evaluation of fixed patch sizes. Metrics include similarity (SimF , L1B), content loss (ConF , ConB), style loss
(StyB), structural similarity index (SSIM), perceptual distance (DISTS), and peak signal-to-noise ratio (PSNR). ↑ indicates higher values
are better, while ↓ indicates lower values are better.

Foreground quality metrics Background quality metrics
Methods SimF ↑ ConF ↓ L1B ↓ ConB ↓ StyB ↓ SSIMB ↑ DISTSB ↓ PSNRB ↑

patch 32-64 0.29 2.90 0.09 1.12 0.11 0.91 0.08 28.41
Ours (patch 64-128) 0.33 3.75 0.10 1.15 0.10 0.90 0.07 27.65

patch 128-256 0.34 4.43 0.11 1.37 0.15 0.87 0.09 26.05

Table 5. Quantitative evaluation of adaptive patch sizes. Metrics include similarity (SimF , L1B), content loss (ConF , ConB), style loss
(StyB), structural similarity index (SSIM), perceptual distance (DISTS), and peak signal-to-noise ratio (PSNR). ↑ indicates higher values
are better, while ↓ indicates lower values are better.

B.5. Comparison with Segmentation method
To evaluate the effectiveness of our approach compared to segmentation-based methods, we conducted experiments by apply-
ing a mask to our results using the open-vocabulary segmentation model ODISE [61]. The comparative results are illustrated
in Fig. 11. When applying a ‘Sunlight’ style to a towel image, our model generates results where light naturally diffuses
around the object. In contrast, segmentation-based methods rely on per-pixel binary classification (0 or 1) to determine
the presence of an object, resulting in abrupt and unnatural transitions at the boundaries where the style is applied. This
disrupts the overall continuity and realism of the stylized image. Furthermore, segmentation-based methods typically re-
quire additional training on datasets, such as the MSCOCO [38] dataset. These findings highlight the advantage of our
model in maintaining seamless and natural style editing, avoiding the artifacts commonly observed at object boundaries in
segmentation-based methods. Moreover, by leveraging the CLIP encoder for both style transfer and object patch identifica-
tion, our approach eliminates the need for pre-trained segmentation networks, achieving both simplicity and effectiveness.

C. Visualization of evaluation metric
To evaluate the performance of object-centric style editing, we conducted evaluations using the annotations from the MS
COCO 2017 dataset. Fig. 12 presents the visualized results used as reference examples for the evaluation metrics employed
in our experiments. In particular, M fg gt denotes the ground truth (GT) mask corresponding to the target class. Using this
mask, we calculated the foreground quality metrics by masking regions outside the class object areas and cropping the images
according to the mask area, as shown in Isrc ⊙M fg gt and Iout ⊙M fg gt in the Fig. 12. Conversely, the background quality
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Figure 11. Qualitative comparison between our results and our results with segmentation masks applied.

metrics were measured using images where the object regions were excluded, as represented by Isrc⊙M bg gt and Iout⊙M bg gt

in the Fig. 12.
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Figure 12. Example images for evaluating foreground quality metrics and background quality metrics.



D. Complex input texts
We have conducted further experiments using a diverse set of examples featuring intricate ‘source’ and ‘style’ texts resulting
in Fig. 13. For example, in the ‘cake to emerald’ scenario, although the stylized image with simple text retains aspects of
the original cake’s style, the detailed source text enables the creation of a cake styled purely in emerald. Similarly, in the
‘barn to snowy’ scenario, the model adeptly preserves the background’s style while effectively applying style editing to the
foreground object. Furthermore, our experiments incorporating complex ‘style’ texts illustrate the complexity of the text does
not impede our method’s ability to achieve the intended editing effects. These results clearly demonstrate that our method is
adept not only at managing simple texts but is equally effective with complex textual inputs. This expansion of our testing
framework underscores our method’s robustness and versatility in accommodating a broad spectrum of textual complexities.
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Figure 13. Our style editing results with complex image-text scenarios.

E. Limitations of Style-Editor
A noted limitation of Style-Editor is its reliance on the CLIP model’s feature space and classification capabilities. Conse-
quently, its performance may diminish for styles or objects less represented or absent in the CLIP training dataset, such as
recent art or gadgets, as illustrated in Fig. 14. This dependency highlights a potential area for future development, aiming to
enhance Style-Editor’s adaptability to emerging styles and objects.

Smartphone →
“Red”

VR device →
“Golden”

White flower →
“I put a spell on you by Tiemar Tegene” (2023)

Bag →
“Andrea Marie Breiling by Emma” (2022)

Source Image Output Image Style ImageOutput ImageSource Image

Figure 14. Failure cases of Style-Editor. The numbers following the style text denote the year of the art work was created.



F. User study
We conducted two rounds of user studies to enhance our evaluation process, the results of which are presented in Tab. 6. This
study involved 50 participants, whose ages ranged from their 20s to 50s. We designed the study to assess three key aspects:
stylization quality, background preservation, and content preservation, providing nine examples within each category for
evaluation. The evaluation included the mask-based editing models Glide [41], and Blended Diffusion [1], along with the
top-4 models from Tab. 1 — FlexIT [7], LEDITS ++ [3], Null text inversion [40], and Text2LIVE [2]. In each round, we
compared the stylized images produced by three competing models with those generated by our model. Our analysis indicates
that our model excels in achieving a balanced object-centric style editing, effectively maintaining the semantic integrity of
the object and the background without compromise. In particular, compared with mask-based methods, our model delivers
more natural and stable performance. The user study question examples are illustrated in Fig. 15.

Method StyQual ↑ BackPre ↑ ContPre ↑
Blended Diffusion [1] 4.4 % 7.3 % 2.4 %

Glide [41] 1.1 % 12.0 % 3.6 %
Text2LIVE [2] 29.3 % 14.9 % 11.8 %

FlexIT [7] 14 % 5.1 % 2.9 %
LEDITS++ [3] 13.3 % 6 % 6.2 %

Null-text inversion [40] 5.8 % 25.8 % 16 %

Ours (Avg.) 66 % 64.4 % 78.6 %

Table 6. User study detailing preference percentages.

G. Additional quantitative results
To assess the robustness of our model, we conducted additional quantitative experiments on the top-5 models from Tab. 1,
with training time evaluated following the settings in Sec. B.3. The test set was expanded by randomly selecting 50 images
from the MSCOCO 2017 dataset and pairing each with 10 different style text descriptions, yielding a total of 500 stylized
images for evaluation. As presented in Tab. 7, our model consistently outperforms others on the extended test set while
ranking second in speed. Notably, even compared to LEDITS++ [3], the fastest model, our approach demonstrates superior
performance in both foreground and background metrics. These results validate its strong generalization ability and highlight
its well-balanced stylized output at a relatively fast pace.

Foreground metrics Background metrics
Methods SimF ↑ ConF ↓ L1B ↓ ConB ↓ StyB ↓ SSIMB ↑ DISTSB ↓ PSNRB ↑ Time (s) ↓

FlexIT [7] 0.24 7.03 0.20 4.09 0.36 0.66 0.14 21.17 59.8
LEDITS++ [3] 0.21 5.98 0.19 2.70 0.42 0.75 0.13 21.43 10.4

NTI [40] 0.20 4.64 0.16 3.02 0.32 0.74 0.12 23.46 102.3
LPM [46] 0.20 8.62 0.25 4.81 0.73 0.67 0.19 19.53 119.9

Text2LIVE [2] 0.30 3.65 0.13 1.25 0.17 0.87 0.08 25.47 412.6

Ours 0.31 3.09 0.10 0.95 0.08 0.89 0.08 26.71 44.3

Table 7. Additional quantitative comparison with 500 stylized images. ↑ indicates that higher values are better, while ↓ indicates that lower
values are better.
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Figure 15. User study question examples. The order of options was shuffled for each question.



H. Additional object-centric style editing results using our Style-Editor
We show additional results of our Style-Editor method across diverse scenes, as seen in Fig. 16, Fig. 17, Fig. 18, and Fig. 19.
These figures illustrate the effectiveness of our approach in various style editing scenarios, emphasizing the versatility of
Style-Editor. TMPS plays a crucial role in initiating the style editing process. It specifically targets image areas that corre-
spond with the input text, ensuring that the chosen style is applied seamlessly and appropriately to the relevant objects. This
targeted approach results in a harmonious blend of the new style with the original image, particularly in areas corresponding
to the source text. Furthermore, our method incorporates an innovative ABP loss. This component of Style-Editor is vital in
maintaining the integrity of the background areas during the style editing process. It ensures that these areas remain unaf-
fected by the changes applied to the object of interest. This loss function is key to achieving a balanced and natural-looking
result where the style changes are confined to the targeted object, while the rest of the image retains its original appearance.
The results in Fig. 16, Fig. 17, Fig. 18, and Fig. 19 collectively showcase the robust customizability and adaptability of the
Style-Editor method. They demonstrate its capability to handle a diverse range of styles and scenarios, effectively adapting
the chosen style to the specific objects in the image as dictated by the source text, all while preserving the overall aesthetic
and integrity of the background.
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Figure 16. Stylization results demonstrating various “artistic” styles guided by text using our Style-Editor model.
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Figure 17. Stylization results demonstrating various “color” styles guided by text using our Style-Editor model.
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Figure 18. Stylization results demonstrating various “texture” styles guided by text using our Style-Editor model.
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Figure 19. Our additional stylization results with various image-text scenarios.
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