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Supplementary Material

This material consists of the following items. These ad-
ditional discussion and pieces of information will aid in un-
derstanding the proposed method.
• Discussion;
• Comparison of Computational Efficiency;
• Another Example of Applying SVD-LoRA;
• More Ablation Studies;
• More Tasks and Vision models;
• More Qualitative Results.

A1. Discussion
As mentioned in the Sec. 1, future compressors are expected
to prioritize machine vision tasks as their main applica-
tions rather than human perception, ultimately addressing
multiple open-set machine vision tasks. In other words,
while ensuring superior performance in closed-set tasks
as a fundamental capability, there will be a growing de-
mand for effectively handling open-set tasks. Multi-task
and single-task bitstream LICs are actively researched to ad-
dress these needs. However, many previous methods strug-
gle to fully accommodating open-set tasks. A pre-trained,
single-model-based network still faces challenges in adapt-
ing to unseen dataset distributions and tasks. The proposed
method provides a effective approach for handling open-
set tasks. By applying SVD-LoRA to both the encoder and
decoder of the backbone LIC model, the method enables
fully instance-specific Test-Time Fine-Tuning (TTFT) for
adaptation to targeted open-set tasks. While the proposed
TTFT method introduces additional time overhead during
the encoding stage, this issue can be controlled by adjusting
TTFT iterations, as described in Sec. 5.4. Moreover, cer-
tain compression systems can inherently address this issue.
For example, compression systems in satellite and medical
imagery do not require a low-latency encoding process. In
these systems, performance is more critical than time over-
head.

Our proposed method can provide limitless potential for
performance improvement in line with the advancements in
learned image compression. As mentioned in Sec. 4.1 and
Sec. A3, the proposed method can be applied effectively
regardless of whether the architecture is transformer-based
or CNN-based. In other words, as the backbone network
advances, the proposed approach will also evolve in par-
allel with negligible increases in model size and inference
cost. As shown in Sec. A2, the proposed method maintains
cost efficiency at a level comparable to the backbone net-
work while simultaneously surpassing SOTA performance,

Table A1. Comparison of kMACs/pixel and model size. Com-
pared to previous SOTA method, our approach achieves superior
performance as mentioned in Sec. 5 while requiring fewer com-
putations and a smaller model size. Additionally, our approach
preserves computational efficiency and model size comparable to
the backbone LIC model.

kMACs/pixel Params (M)

Encoder Decoder Encoder Decoder

TIC 142.31 142.53 3.64 3.86

TransTIC 332.03 202.6 5.24 3.89

Ours (rank 2) 142.31 142.53 3.69 3.92
Ours (rank 4) 142.31 142.53 3.72 3.94
Ours (rank 8) 142.31 142.53 3.76 3.99

as demonstrated in Sec. 5.

A2. Comparison of Computational Efficiency

Table A1 demonstrates the cost efficiency of our approach.
In the Sec. 5, the proposed method exhibited superior
performance over the SOTA performance of TransTIC in
both closed-set and open-set tasks. Moreover, our ap-
proach maintains computational efficiency, as measured in
kMACs/pixel, and model size at levels comparable to the
backbone LIC model, whereas TransTIC requires signifi-
cantly more computational resources and larger parameter
sizes. In Table A1, bold text indicates the setting conditions
from Sec. 5. Although adjusting the rank in our method
does lead to changes in model size, the extent of variation
is minimal compared to that of TransTIC. The performance
impact of rank adjustments is discussed in Sec. A4.2.

A3. Another Example of Applying SVD-LoRA

As we mentioned in Sec. 4.1, the proposed method is com-
patible with various backbone LIC architectures, including
not only transformer-based models but also CNN models.
Fig. A1 shows an example of applying SVD-LoRA to the
CNN-based codec [14]. To verify the performance, we ap-
plied the closed set scenario for object detection, as previ-
ously described in Sec. 5. Consequently, Fig. A2 demon-
strates that the application of our method is also effective
for CNN-based codecs.
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Figure A1. An example of applying SVD-LoRA to the CNN-
based codec [14]. The SVD-LoRA is only applied to the CNN
layers of the main encoder and decoder, which are known to have
the most significant impact on task adaptation.
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Figure A2. Rate-accuracy performance when our approach is ap-
plied to a CNN-based codec. Experiments demonstrate that the
application of our method is also effective for CNN-based codecs.

A4. More Ablation Studies

A4.1. LoRA vs. SVD-LoRA

Fig. A3 shows the rate-accuracy performance comparison
between LoRA and SVD-LoRA. For this performance eval-
uation, we employed a closed set scenario without TTFT
for object detection, as described in Sec. 5. In the case of
LoRA, it is applied exclusively to the encoder, since apply-
ing LoRA to the decoder would prevent support for TTFT,
as mentioned in Sec. 5.4. In terms of performance, SVD-
LoRA slightly outperforms LoRA, indicating that SVD-
LoRA is more effective in learning the intrinsic dimension
of weights at the same rank level.
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Figure A3. Ablation on LoRA and SVD-LoRA. SVD-LoRA
slightly outperforms LoRA, demonstrating its superior ability to
capture the intrinsic dimension of weights at the same rank.

Table A2. TTFT time comparison with varying SVD-LoRA ranks.
The time overhead increases with rank, but the difference is negli-
gible since the SVD-LoRA weights constitute only a small portion
of the entire model.

TTFT Time (sec)

Rank 2 13.38
Rank 4 14.13
Rank 8 14.26

A4.2. Varying the Rank of SVD-LoRA

Fig. A4 and Table A2 respectively show the performance
and TTFT time comparison with different SVD-LoRA
ranks. For the performance evaluation, we employed a
closed set scenario for object detection, as described in
Sec. 5. Additionally, the TTFT time is measured under the
same conditions as Sec. 5.4. The proposed method in Sec. 5
used a rank of 4, and in this ablation study, we compared
ranks 2 and 8. As illustrated in Fig. A4, the performance
improvement from rank 2 to rank 4 is noticeable, whereas
the improvement from rank 4 to rank 8 is minimal. Whether
the LoRA rank is sufficient depends on the intrinsic dimen-
sional complexity of the weights required during the task
transfer process. Experimentally, we verified that rank 4
is appropriate for the dataset and task complexity we em-
ployed. As shown in Table A2, the difference in TTFT time
with varying ranks is negligible. As indicated in Table A1,
the number of learnable parameters due to varying ranks is
minimal compared to the overall model size, leading to an
insignificant impact on TTFT time.
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Figure A4. Ablation on the effect of varying SVD-LoRA rank.
The performance improves noticeably from rank 2 to 4 but shows
minimal gain from rank 4 to 8.

A4.3. Full fine-tuning on encoder side
Table A3 shows an ablation study on encoder full fine-
tuning for open-set object detection, with applying 40 TTFT
iterations. While Variant (encoder full fine-tuning) re-
sulted in a slight performance improvement, it requires
2.82M learnable parameters for each instance-specific
TTFT, which leads to an increase in TTFT time overhead.

Table A3. Ablation study on full fine-tuning of encoder. Vari-
ant (encoder full fine-tuning) slightly improves performance but
requires a large number of parameters for each instance-specific
TTFT.

Method BD-Rate(%) BD-mAP ↑ #Params

Ours Enc: SVD-LoRA(rank 4) -48.94 2.69 0.05 MDec: SVD-LoRA(rank 4)

Variant Enc: Full fine tuning -50.86 3.01 2.82 MDec: SVD-LoRA(rank 4)

A5. More Tasks and Vision models
We conducted additional experiments on other tasks, in-
cluding pose estimation [34] and depth estimation [63], us-
ing the datasets [2] and [22], respectively. Further exper-
iments were also performed with other models [8, 35] for
object detection and instance segmentation tasks. The re-
sults in Table A4 demonstrates that our method is effective
in different settings for open-set adaptation.

A6. More qualitative results
Fig. A5, Fig. A6, and Fig. A7 present qualitative results
across different machine vision tasks. The results are com-

pared with the backbone TIC and the SOTA competing
method, TransTIC, all evaluated at the quality level 1. The
analysis indicates that due to the compression loss in the
backbone model, texture quality is noticeably degraded, re-
sulting in lower performance scores on vision tasks com-
pared to the original image without compression. TransTIC
struggles to recover from this compression loss, leading to
suboptimal performance. In contrast, the proposed method,
which utilizes TTFT, demonstrates a notable ability to re-
store some of the texture, achieving higher performance
scores.



Table A4. Performance evaluation with more diverse datasets and tasks. Experiments show that our method is effective in different settings
for open-set adaptation.

Method Pose estimation [34] Depth estimation [63] Object detection w/ [8] Instance segmentation w/ [35]
BD-Rate(%) BD-PCKh@0.5 ↑ BD-Rate(%) BD-Error ↓ BD-Rate(%) BD-mAP ↑ BD-Rate(%) BD-mAP ↑

TransTIC(Open) -32.73 1.10 -33.81 -1.13 -44.94 3.05 -44.22 2.42

Ours(w/o TTFT, Open) -26.50 0.74 -42.61 -1.14 -32.48 2.09 -30.35 1.96

Ours(w/ TTFT, Open) -35.30 1.25 -66.65 -1.80 -47.21 3.21 -48.06 2.89
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Figure A5. Visualization of instance segmentation results. Ours (w/TTFT) effectively handles both closed-set and open-set tasks, while
the SOTA competing method struggles.
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Figure A6. Visualization of object detection results. Ours(w/TTFT) effectively restores texture, achieving performance scores comparable
to the original image in both closed-set and open-set tasks.
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Figure A7. Visualization of classification results. Ours (w/TTFT) classifies the correct label with a significantly higher confidence score,
while the SOTA competing method misclassifies.


