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1. Overview

1.1. Motivation

1. Long-Tailed Distributions: Real-world visual relationships are dominated by a few frequent head classes, while many
rare but critical fail classes are underrepresented. This imbalance leads to biased models that fail to generalize effectively
across all relationship types, compromising nuanced and accurate scene understanding.

2. Robustness to Distribution Shifts: Models often struggle with real-world factors such as lighting variations, occlusions, or
environmental changes. These distributional shifts degrade performance, limiting the applicability of scene graph models in
dynamic and unpredictable environments.

1.2. Motivational Drivers

e Improving Unbiasedness in Scene Understanding: A long-tailed distribution skews model learning towards frequent
classes, leading to biased predictions. Correctly predicting rare relationships is vital for tasks such as autonomous driving,

human-robot interaction, and security surveillance, where underrepresented classes can carry critical contextual information.

* Enhancing Real-World Applicability: Distributional shifts are unavoidable in real-world scenarios. Ensuring robustness
allows STSG models to remain reliable under practical deployment conditions, bolstering trust and usability.

1.3. Contributions

Thus, concisely, we re-iterate the contributions of the proposed work:

— Unbiased Learning with Curriculum-Guided Masking: The proposed IMPARTAIL framework leverages curriculum
learning and loss masking to prioritize tail classes progressively during training.

— Introduction of Robustness Metrics: Two new tasks—Robust Spatio-Temporal Scene Graph Generation and Robust Scene
Graph Anticipation—evaluate model resilience to input corruptions (a step towards analyzing the performance of STSG
models under realistic conditions).

2. Extended Related Work

2.1. Structured Visual Representation

Tasks. Learning to represent static visual data like 2D and 3D images as spatial graphs, with objects as nodes and relationships
as edges, is called Image Scene Graph Generation (ImgSGG). This field gained momentum with the foundational Visual
Genome project [23], advancing 2D ImgSGG research. Building on this foundation, [22] expanded the task to encompass static
3D scene data, including RGB and depth information. Object interactions over time provide richer context when dealing with
dynamic visual content like videos. Converting such content into structured Spatio-Temporal Scene Graphs (STSGs), where
nodes represent objects and edges capture their temporal relationships, is called Video Scene Graph Generation (VidSGG). The
research community has concentrated on improving representation learning through sophisticated object-centric architectures
like STTran [5] and RelFormer [34]. These include Open-Vocabulary ImgSGG [4], which expands the range of recognizable
objects and relationships. Weakly Supervised ImgSGG [21] to reduce the dependency on extensive labelled data by leveraging
weak supervision techniques. Panoptic ImgSGG [47] where panoptic segmentation has been integrated to enhance scene
graph representations. Zero-Shot ImgSGG [25, 45] to enable the detection of unseen visual relationships without explicit
labels. Shifting gears from identification and generating scene graphs, recently, Peddi et al.[30] introduced the Scene Graph
Anticipation (SGA) task to anticipate STSGs for future frames. Alongside these developments, foundation models have
advanced various ImgSGG task variants [4, 21, 25, 45, 47].

Unbiased Learning. TEMPURA [28] and FICoDe[20] address the challenges posed by long-tailed datasets, such as
those found in Action Genome [16] and VidVRD [33] and propose methods for unbiased VidSGG. Specifically, FloCoDe

[20] mitigates bias by emphasizing temporal consistency and correcting the imbalanced distribution of visual relationships.

Similarly, TEMPURA [28] addresses biases in relationship prediction with memory-guided training to generate balanced
relationship representations and applies a Gaussian Mixture Model to reduce predictive uncertainty. Note. To the best of
our knowledge, we are the first to systematically investigate model biases in the SGA task and assess the robustness of both
VidSGG and SGA models. In contrast to the above methods, although IMPARTAIL shares the goal of training unbiased
VidSGG models, it does so without additional architectural components. By modifying the training procedure, IMPARTAIL
achieves comparable performance and occasionally exceeds the results of these existing methods.

CVPR
#16783



CVPR
#16783

CVPR 2025 Submission #16783. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2.2. Learning Paradigms

2.2.1. Long-Tail Learning.

Long-tailed distributions with a few dominant classes (head classes) often overshadow a more significant number of un-
derrepresented ones (tail classes). This class imbalance typically results in models that perform well on head classes but
struggle to generalize to tail classes. To mitigate them, the research community has made significant strides in four directions,
which include (a) Cost-Sensitive Learning [1, 6, 14, 29, 38, 38, 40, 42, 43], (b) Mixtures-Of-Experts [41] , (c) Resampling
Techniques [3, 7, 44], and (d) Specialized Architectures [44, 46].

(a) Cost-Sensitive Learning addresses class imbalance by adjusting the loss function to assign different costs to classes
during training. Early approaches involved re-weighting samples inversely proportional to class frequency [14, 38], but this
often led to suboptimal performance on real-world data [6]. To improve upon this, advanced methods like label-distribution-
aware margin loss with Deferred Re-Weighting (DRW) were proposed [2]. Equalization Loss (EQL) [36] showed that
ignoring discouraging gradients for tail classes can prevent adverse effects on model learning. The Class-Balanced (CB) loss
[6] re-weights the loss based on the effective number of samples per class, achieving notable performance in single-label
classification. Asymmetric Loss (ASL) [1] and Distribution-Balanced (DB) loss [40] focus on balancing positive and negative
labels in multi-label classification. Other approaches include transferring knowledge from head to tail classes [29, 38] and
designing better training objectives through metric learning [42, 43].

(b) Mixture-of-Experts (MoE) methods tackle class imbalance by distributing samples among specialized expert models.
LFME [41] merges multiple experts using self-paced knowledge distillation, while RIDE [37] employs diversity loss and
dynamic routing for sample assignment.

(c) Resampling methods adjust the training data distribution by over-sampling tail classes or under-sampling head classes.
Techniques like SMOTE [3] create synthetic samples for minority classes, while under-sampling methods reduce samples
from majority classes [7]. Approaches, such as concatenating frames from different video clips [44], offer a different way to
balance data, particularly spatio-temporal data.

(d) Specialized architectures aim to enhance feature representation and aggregation for tail classes. FrameStack [44]
performs frame-level sampling guided by running average precision to improve tail class representation without explicitly
differentiating classes at the feature level. The Bilateral-Branch Network (BBN) [46] uses cumulative learning to balance
representation learning and classifier discrimination. Kang et al. [19] demonstrated that decoupling representation learning
from classifier training prevents head classes from overshadowing tail classes. While Kang et al. [19] argued that resampling
might not always be necessary if classifier training is focused correctly, Zhou et al. [46] showed that standard resampling could
harm representation learning. Li et al. [26] proposed Gaussian Clouded Logit Adjustment to perturb class logits, adjusting
decision boundaries for better generalization across classes.

2.2.2. Curriculum Learning (CL)

is a training methodology that structures training by presenting simpler examples first and progressively introducing more
complex ones. This approach aims to enhance learning efficiency by aligning the difficulty of training data with the model’s
learning capacity at each stage '[11-13, 24]. Despite its potential benefits, implementing CL presents significant challenges.
A primary obstacle is distinguishing between easy and hard training samples. This differentiation often requires additional
mechanisms, such as auxiliary neural networks acting as teachers or specialized algorithms. Difficulty measures can be
predefined based on certain heuristics [15] or learned automatically during the training process [12, 17, 18, 24, 27, 31, 39].
Alongside difficulty assessment, a scheduling strategy is essential to determine when and how to introduce more challenging
data [11]. The starting small concept influences our methodology [8], which recommends initiating learning with easier tasks.
Unlike conventional Curriculum Learning (CL) methods that introduce data progressively, our approach utilizes the entire
training dataset from the start. We adopt label selection to mask the loss function, offering a unique strategy that impacts the
learning process while keeping all training examples in play. This approach not only streamlines the implementation of CL but
also tackles the difficulties of determining and scheduling the complexity of training data.

t’s important to differentiate CL from other dynamic sampling techniques such as self-paced learning [24], boosting [10], hard example mining [35], and
active learning [32]. While these methods also adjust the training data based on certain criteria, they typically rely on the model’s current performance or
hypotheses to select samples rather than following a predefined difficulty progression as in CL.
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3. Limitations

1.

Limited Scope of Datasets: Experiments are primarily conducted on the Action Genome dataset.

* This is a primary concern of the field as the Action Genome is the only large-scale dataset available as a testbed for the
Spatio-Temporal Scene Graph tasks.

Model Robustness to Distribution Shifts:

* Although robustness is considered, the specific test corruptions may not cover all real-world scenarios. Instead, our work
can be considered a starting point for further developing robust learning techniques.

Bias Mitigation vs. Performance:

e In IMPARTAIL, balancing unbiased learning with high performance on head classes, although small, might result in a
trade-off between performance over head and tail classes. We conjecture that adding an external memory block to our
framework can help mitigate this issue.

Limited Evaluation Metrics:

* Although metrics such as recall and mean recall provide us insights about the performance of the trained models. These
might fail to capture the performance over higher-order spatial and temporal relationships.
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4. Approach

4.1. IMPARTAIL

Here, we present the complete algorithm for the proposed unbiased learning framework. Our framework has four key

components.

1. (I) Object Representation Processing Unit (ORPU): This module extracts object representations for detected objects
within video frames using a pre-trained object detector.

2. (II) Spatio-Temporal Context Processing Unit (STPU): This unit creates object-centric relationship representations,
tailored for two tasks: (i) observed relationships for VidSGG and (ii) anticipated relationships for SGA.

3. (IIT) Relationship Predicate Decoders: These decoders assign predicate labels to the observed or anticipated relationship
representations. Note: ORPU, STPU, and the predicate decoders can be adapted from any VidSGG or SGA method
following an object-centric framework.

4. (IV) Curriculum-Guided Masked Loss: This loss mechanism employs a curriculum-based masking strategy to exclude
certain relationship predicate labels during training progressively. Focusing on underrepresented classes helps the model
achieve a balanced class distribution.

(IV) Curriculum-Guided Masked Loss. This has two components as explained in the main paper: (a) Curriculum-Guided
Mask Generation and (b) Masked Predicate Classification Loss. First, we provide the complete algorithm for Mask
Generation and give an overview of the loss function employed. In the subsequent sections, we clearly explain and contrast
the loss functions for the original and the proposed IMPARTAIL variants.

4.1.1. Curriculum Guided Mask Generation.

Algorithm 1: Filtered Dataset Construction Algorithm 2: Mask Generation

Input: Epoch: e, Sampling Ratio: Zs, Dataset Annotations: D, Input: Epoch: e, Dataset Annotations: D, Videos: ¥, Filtered

Total predicate labels: IV, Total predicates: P, Videos: Dataset: F
v Output: Masks: M

Output: Filtered Dataset: F 1 Initialize empty mask list M
1 #** Determine Target Counts [can also be a fixed input] *#* 2 foreach Video v in ¥ do
2 Bm =e X Xs ** Masking Ratio ** 3 Initialize video mask M,
3 Nurget = round(N X %m) 4 foreach Frame f in v do
4 *#* Curriculum-based sampling probabilities Prob[rel] *** 5 Initialize frame mask M s
5 ##* Equally weighted distribution [can also be learnt] *** 6 foreach Object o in f do
6 Set Prob[rel] = L 7 Initialize object mask M,

Pl 8 Original relations R, from D[v][f]
7 Sample target counts T'ar[rel] from Multinomial distribution: . .
. . 9 foreach Relation rel in R, do
Tar[rel] ~ Multinomial( Nget, Prob[rel]) .

o . o 10 if rel € F[v][f] then

8 *** Randomly sample instances of relationships in the dataset Set I value M N=0
based on the target counts and construct filtered dataset *** 11 | Setmask value Mo[rel] =
9 Initialize positions Z[rel] to collect occurrences of rel 12 else Set K value M N=1
10 foreach v, f in D do s L et mask value Mo[rel] =
1 foreach Relatiunﬁel in D[v] [f] do " Add M, to M
12 L Append position (v, f, index) to Z[rel] =
15 | Add My to My

13 Initialize empty set C 16 | Add M, to M©

14 **% These relations are ignored and are omitted from the
filtered dataset constructed below ***

15 foreach Relation rel do

16 Randomly select T'ar[rel] positions which should be

masked from [rel] and add the remaining to C

17 *#** Filter Data ***
18 Initialize filtered data F
19 foreach v, f in D do

20 Initialize filtered frame F [v][f]

21 foreach Relation at position (v, f,) do
2 if (v, f,4) € K then

23 L L Add relation to F[v][f]
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150 4.2. Video Scene Graph Generation
151 4.2.1. IMPARTAIL + STTran
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Figure 1. (a) Architectural Components. In STTran, the Object Representations Processing Unit (ORPU) primarily consists of an
object detector and the visual features output by the object detector. Then, the Spatio-Temporal Context Processing Unit (STPU )takes
these visual features as input and first constructs relationship representations utilizing the features of interacting objects; then, these
relationship representations are fed to a spatial encoder and a transformer encoder. Thus, the spatio-temporal context-aware representations
output by the temporal encoder are fed into the predicate classifier for final predictions. Finally, these representations are decoded for
predicate classification. (b) Loss Function. The primary difference between STTran loss and the proposed IMPARTAIL + STTran loss

is illustrated using highlighting the employed losses. We do not mask any predicate label in STTran loss. In contrast, in the proposed
IMPARTAIL + STTran loss, we mask the losses corresponding to the head classes as generated by following the curriculum-based strategy.

Loss Function STTran
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Loss Function IMPARTAIL + STTran

T T
JRp— t. P . cpt wpwt b
L; = E Ly Loen = E Lgenr Lgen = g mg; Ly
t=1 t=1

()
—_———
(eY] Masked Predicate Classification Loss (2)

T
e-3 (v nye)
=1 %

t

Here,

f)ﬁj = PredClassifiergpserved (zﬁj) Ve e [1,T) (1

Predicate Classification Loss (Lgq). focuses on classifying the relationship representations between pairs of objects (oﬁ, 0§-)

across all frames (¢ € [1,T]) as detailed above. Here, L, represents multi-label margin loss and is computed as follows:

Ly = > max(0,1—pf[v] + p;[u]) )

uePt veP—

Implementation Details.

— Training Epochs. We have capped the number of training epochs for both models where one uses conventional loss and the
other uses the proposed IMPARTAIL framework to 5 epochs.

— Loss Function. Results reported in the literature for the method STTran were not reproducible using the Multi-Label
Margin Loss. However, we noticed we could reach closer numbers (still lower than reported) by employing BCE Loss and
training to 10 epochs.

— Hyperparameters. We use the same hyperparameter settings described in the paper.

Insight.  Our reported mean recall numbers closely match the numbers reported by the SOTA model TEMPURA [28]
without any additional architectural changes just by changing how the model is learnt. We also emphasize that although our

recall performance was hurt slightly, it is marginally lower than recall values compared to the original model and TEMPURA.
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4.2.2. IMPARTAIL + DSGDetr

(a) DSGDetr

(b)ImparTail +
DSGDetr

Figure 2. (a) Architectural Components. In DSGDetr, the Object Representations Processing Unit (ORPU) primarily consists of an
object detector, an object tracker and an object encoder. The visual features output by the object detector are used to construct tracklets
corresponding to each object, and these representations are further enhanced by passing them through an object encoder. Then, the Spatio-
Temporal Context Processing Unit (STPU )takes these visual features as input and first constructs relationship representations utilizing
the features of interacting objects; then, these relationship representations are fed to a spatial encoder and a transformer encoder. Thus,
the spatio-temporal context-aware representations output by the temporal encoder are fed into the predicate classifier for final predictions.
Finally, these representations are decoded for predicate classification. (b) Loss Function. The primary difference between DSGDetr loss

and the proposed IMPARTAIL + DSGDetr loss is illustrated using highlighting the employed losses. We do not mask any predicate label
in DSGDetr loss. In contrast, in the proposed IMPARTAIL + DSGDetr loss, we mask the losses corresponding to the head classes as
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Loss Function IMPARTAIL + DSGDetr
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Predicate Classification Loss (Lgq). focuses on classifying the relationship representations between pairs of objects (oﬁ, 0§-)

across all frames (¢ € [1,T]) as detailed above. Here, L, represents multi-label margin loss and is computed as follows:

Ly = > max(0,1—pf[v] + p;[u]) )

uePt veP—

Implementation Details.

— Training Epochs. We have capped the number of training epochs for both models where one uses conventional loss and the
other uses the proposed IMPARTAIL framework to 5 epochs.

— Loss Function. Results reported in the literature for the method DSGDetr were not reproducible using the Multi-Label
Margin Loss. However, we noticed we could reach closer numbers (still lower than reported) by employing BCE Loss and
training to 10 epochs.

— Hyperparameters. We use the same hyperparameter settings described in the paper.

Insight.  Our reported mean recall numbers closely match the numbers reported by the SOTA model TEMPURA [28]
without any additional architectural changes just by changing how the model is learnt. We also emphasize that although our

recall performance was hurt slightly, it is marginally lower than recall values compared to the original model and TEMPURA.

CVPR
#16783

174

175

176

177

178
179

180

181
182
183
184
185
186
187

188
189
190



CVPR
#16783

191
192

193

CVPR 2025 Submission #16783. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

4.3. Scene Graph Anticipation

4.3.1. IMPARTAIL + STTran++
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Figure 3. (a) Architectural Components. In STTran++, the Object Representations Processing Unit (ORPU) primarily consists of an
object detector and the visual features output by the object detector. Then, the Spatio-Temporal Context Processing Unit (STPU) takes these
visual features as input and first constructs relationship representations utilizing the features of interacting objects; then, these relationship
representations are fed to a spatial encoder and a transformer encoder. Thus, the spatio-temporal context-aware representations output by
the temporal encoder are fed as input to another transformer encoder to anticipate the future relationship representations corresponding
to interacting objects. Thus, relationship representations from the temporal encoder and future relationship representations from the
anticipatory transformer encoder are input to two predicate classifiers for final predictions. (b) Loss Function. The primary difference

between STTran++ loss and the proposed IMPARTAIL + STTran++ loss is illustrated using highlighting the employed losses. We do not

mask any predicate label in STTran++ loss. In contrast, in the proposed IMPARTAIL + STTran++ loss, we mask the losses corresponding
to the head classes output by predicate classification heads corresponding to both observed and anticipated relationship representations.

Loss Function STTran++
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Predicate Classification Loss (II)
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Thus, the total objective for training the proposed method can be written as:
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Loss Function IMPARTAIL + STTran++
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Thus, the total objective for training the proposed method can be written as:
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205 Implementation Details.
206 — Training Epochs. We have capped the number of training epochs for both models, where one uses conventional loss, and
207 the other uses the proposed IMPARTAIL framework to 5 epochs.
208 — Loss Function. Results reported in the literature for the method STTran++ were reproducible using the Multi-Label
209 Margin Loss. We sometimes achieved higher numbers than those reported in the original paper.
210 — Hyperparameters. We use the same hyperparameter settings described in the paper[30].

211 4.3.2. IMPARTAIL + DSGDetr++
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Figure 4. (a) Architectural Components. In DSGDetr++, the Object Representations Processing Unit (ORPU) primarily consists of an
object detector an object tracker and an object encoder. The visual features output by the object detector are used to construct tracklets
corresponding to each object, and these representations are further enhanced by passing them through an object encoder. Then, the
Spatio-Temporal Context Processing Unit (STPU) takes these visual features as input and first constructs relationship representations
utilizing the features of interacting objects; then, these relationship representations are fed to a spatial encoder and a transformer encoder.
Thus, the spatio-temporal context-aware representations output by the temporal encoder are fed as input to another transformer encoder
to anticipate the future relationship representations corresponding to interacting objects. Thus, relationship representations from the
temporal encoder and future relationship representations from the anticipatory transformer encoder are input to two predicate classifiers for
final predictions. (b) Loss Function. The primary difference between DSGDetr++ loss and the proposed IMPARTAIL + DSGDetr++

loss is illustrated using highlighting the employed losses. We do not mask any predicate label in DSGDetr++ loss. In contrast, in the

proposed IMPARTAIL + DSGDetr++ loss, we mask the losses corresponding to the head classes output by predicate classification heads
corresponding to both observed and anticipated relationship representations.
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Loss Function DSGDetr++
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Reconstruction Loss (IV)

Thus, the total objective for training the proposed method can be written as:
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Loss Function IMPARTAIL + DSGDetr++
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Thus, the total objective for training the proposed method can be written as:
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Implementation Details.

— Training Epochs. We have capped the number of training epochs for both models, where one uses conventional loss, and

the other uses the proposed IMPARTAIL framework to 5 epochs.

— Loss Function. Results reported in the literature for the method DSGDetr++ were reproducible using the Multi-Label

Margin Loss. We sometimes achieved higher numbers than those reported in the original paper.
— Hyperparameters. We use the same hyperparameter settings described in the paper[30].

4.3.3. IMPARTAIL + SceneSayer

Loss Function SceneSayer
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Loss Function IMPARTAIL + SceneSayer
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Figure 5. (a) Architectural Components. In SceneSayer, the Object Representations Processing Unit (ORPU) primarily consists of an
object detector an object tracker and an object encoder. The visual features output by the object detector are used to construct tracklets
corresponding to each object, and these representations are further enhanced by passing them through an object encoder. Then, the
Spatio-Temporal Context Processing Unit (STPU) takes these visual features as input and first constructs relationship representations
utilizing the features of interacting objects; then, these relationship representations are fed to a spatial encoder and a transformer encoder.
Thus, the spatio-temporal context-aware representations output by the temporal encoder are used as initial values and an Ordinary Differential
Equation/ Stochastic Differential Equation is solved to estimate the anticipated future relationship representations corresponding to the
interacting objects. Thus, relationship representations from the temporal encoder and future relationship representations from the anticipatory
transformer encoder are input to two predicate classifiers for final predictions. (b) Loss Function. The primary difference between

SceneSayer loss and the proposed IMPARTAIL + SceneSayer loss is illustrated using highlighting the employed losses. We do not mask

any predicate label in SceneSayer loss. In contrast, in the proposed IMPARTAIL + SceneSayer loss, we mask the losses corresponding
to the head classes output by predicate classification heads corresponding to both observed and anticipated relationship representations.
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5. Ablation-Overview

5.1. Video Scene Graph Generation

5.1.1. Modes
We evaluate the trained models corresponding to baseline variants STTran , DSGDetr and the proposed method

IMPARTAIL + STTran , IMPARTAIL + DSGDetr using three standard modes described in the literature. (1) Scene Graph

Detection (SGDET), (2) Scene Graph Classification (SGCLS) and (3) Predicate Classification (PREDCLS).

— Scene Graph Detection (SGDET): In this mode, the model is input with frames corresponding to videos. It is tasked to
detect objects and predict the relationship predicates between the detected objects.

— Scene Graph Classification (SGCLS): In this mode, the model is input with frames corresponding to videos along with
bounding boxes of the objects. It is tasked to predict the relationship predicates between the objects.

— Predicate Classification (PREDCLS): In this mode, the model is input with frames corresponding to videos along with
bounding boxes of the objects and the object labels. It is tasked to predict the relationship predicates between the objects.

5.1.2. Implementation Details.

— Min Threshold. As IMPARTAIL proposes a curriculum-guided mask generation strategy, where the number of labels
masked in each epoch increases monotonically.
1. Thus, based on the maximum amount of masking applied, we train three variants of models - {70, 40, 10}.
2. These models correspond to the following scenarios: (1) 70: Start from the complete data and reach a {70%, 40%, 10% }
masked settings in the last epochs, respectively.
— In section 6, we provide findings corresponding to the proposed training scenarios.

5.2. Scene Graph Anticipation
5.2.1. Modes

We evaluate the trained models corresponding to baseline variants STTran++ , DSGDetr++ ,
SceneSayerODE , SceneSayerSDE and the proposed methods IMPARTAIL + STTran++ , IMPARTAIL + DSGDetr++ ,

IMPARTAIL + SceneSayerODE ,

IMPARTAIL + SceneSayerSDE using three standard modes described in the literature. (1) Action Genome Scenes (AGS),
(2) Partially Grounded Action Genome Scenes (PGAGS) and (3) Grounded Action Genome Scenes (GAGS).

— Action Genome Scenes (AGS): In this mode, the model receives only the video frames and is tasked to detect objects and
infer future relationships between them.

— Partially Grounded Action Genome Scenes (PGAGS): In this mode, the model, along with frames, also receives the
bounding boxes corresponding to the objects. It is tasked to use this information to infer relationships corresponding to
future frames

— Grounded Action Genome Scenes (GAGS): In this mode, the model, along with frames, also receives the bounding boxes
corresponding to the objects and their labels. It is tasked to use this information to infer future relationships corresponding
to interacting objects.

5.2.2. Implementation Details.

— Min Threshold. As IMPARTAIL proposes a curriculum-guided mask generation strategy, where the number of labels
masked in each epoch increases monotonically.
1. Thus, based on the maximum amount of masking applied, we train three variants of models - {70, 40, 10}.
2. These models correspond to the following scenarios: (1) 70: Start from the complete data and reach a {70%, 40%, 10% }
masked settings in the last epochs, respectively.
— In section 6, we provide findings corresponding to the proposed training scenarios.

5.3. Robustness Evaluation.

In section 6, we evaluate the robustness of trained models corresponding to input corruptions and present the results for each
mode described above.
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6. Ablation Results

6.1. Video Scene Graph Generation

6.1.1. Findings
1. Table 1 provides a comparative analysis under NO CONSTRAINT graph building strategy for different modes and

methods for VidSGG, presenting results under various recall metrics (R@ 10, R@20, R@50, R@100) and mean recall
metrics (mMR@10, mR @20, mR @50, mR @100).

(a) We observe that employing the proposed method, the mean recall metrics improved across all modes with only a
marginal decrease in recall scores; for example, in the SGDET mode with the STTran method, R@ 10 slightly decreases
from 20.30 to 20.20, conversely, mR @ 10 increases from 19.30 to 23.50.

(b) We also observe that the mean recall scores follow a monotonic trend as we increase the masking ratio (avoiding more
head classes). We note that the reduction in the recall values is very low.

2. Table 2, Table 3 provides a comparative analysis under WITH/SEMI CONSTRAINT graph building strategy

(a) We observe that the proposed method improves the mean recall significantly across most setups, though its effect on
standard recall metrics is mixed, slightly resulting in a decrease.

. In Table 2 for STTran under the SGCLS mode, while our method slightly reduced standard recall metrics @100 by 11.6%,

there is a notable improvement in mean recall, mR @100 by 36.2%. PREDCLS mode shows less variability in recall
changes using our method but substantially increases mean recalls @50 for STTran, jumping from 34.80 to 52.90. While
IMPARTAIL (Ours) augmentation in constrained and semi-constrained results in decreases in R@50 by 15%, it boosts
mR @50 by over 25%.

6.1.2. Results

Table 1. No Constraint Results for VidSGG.

Mode Method \ S \ NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran [5] - 51.60 62.80 66.30 66.60 38.80 47.10 59.90 66.70
+IMPARTAIL (Ours) | 70 | 49.80 (-349%)  62.40 (-0.64%) 66.40 (+0.15%) 66.70 (+0.15%) | 43.10 (+11.08%) 53.10 (+12.74%)  61.00 (+1.84%)  65.00 (-2.55%)
+IMPARTAIL (Ours) | 40 | 49.90 (:329%) 62.10 (-1.11%)  66.40 (+0.15%) 66.70 (+0.15%) | 45.10 (+16.24%) 55.10 (+16.99%)  64.10 (+7.01%)  66.60 (-0.15%)
SGCLS +IMPARTAIL (Ours) | 10 | 48.50 (-6.01%) 61.30 (-2.39%) 66.20 (-0.15%)  66.50 (-0.15%) | 47.40 (+22.16%) 57.50 (+22.08%) 66.60 (+11.19%)  68.10 (+2.10%)
DSGDetr [9] - 55.50 68.00 72.40 72.80 39.90 49.40 64.60 72.70
+IMPARTAIL (Ours) | 70 | 5330 (:3.96%) 67.30 (-1.03%) 72.10 (041%) 72.60 (-:0.27%) | 42.90 (+7.52%)  53.10 (+7.49%)  66.10 (+2.32%)  72.20 (-0.69%)
+IMPARTAIL (Ours) | 40 | 50.90 (-829%)  66.10 (-2.79%) 72.10 (-0.41%)  72.60 (-0.27%) | 45.00 (+12.78%) 55.50 (+12.35%)  67.20 (+4.02%)  71.40 (-1.79%)
+IMPARTAIL (Ours) | 10 | 5020 (:9.55%)  65.30 (-3.97%) 71.90 (-0.69%) 72.70 (-0.14%) | 48.80 (+22.31%) 59.60 (+20.65%) 70.10 (+8.51%)  72.20 (-0.69%)
STTran [5) - 20.30 31.10 45.90 48.40 19.30 26.90 35.60 39.70
+IMPARTAIL (Ours) | 70 | 19.80 (-2.46%) 30.20 (-2.89%) 4580 (-0.22%) 48.60 (+0.41%) | 20.80 (+7.77%) 2950 (+9.67%)  38.70 (+8.71%)  42.00 (+5.79%)
+IMPARTAIL (Ours) | 40 | 2020 (-049%)  30.80 (-0.96%) 4530 (-131%) 48.20 (-0.41%) | 22.60 (+17.10%) 31.10 (+15.61%)  39.10 (+9.83%)  42.10 (+6.05%)
SGDET +IMPARTAIL (Ours) | 10 | 20.00 (-148%)  30.10 (-3.22%) 45.10 (-1.74%)  48.50 (+0.21%) | 23.50 (+21.76%) 33.60 (+24.91%) 43.80 (+23.03%) 47.00 (+18.39%)
DSGDetr [9] - 29.80 39.00 46.40 4830 2330 29.80 36.00 39.70
+IMPARTAIL (Ours) | 70 | 28.60 (-4.03%)  38.00 (-2.56%) 46.40 49.00 (+1.45%) | 25.00 (+7.30%)  32.00 (+7.38%)  39.30 (+9.17%)  42.50 (+7.05%)
+IMPARTAIL (Ours) | 40 | 25.90 (-13.09%) 36.10 (-7.44%) 45.60 (-1.72%) 48.70 (+0.83%) | 24.70 (+6.01%)  32.20 (+8.05%)  39.60 (+10.00%)  43.20 (+8.82%)
+IMPARTAIL (Ours) | 10 | 2650 (-11.07%) 36.10 (-7.44%) 4520 (-2.59%) 48.40 (+0.21%) | 27.50 (+18.03%) 35.20 (+18.12%) 43.30 (+20.28%) 46.60 (+17.38%)
STTran [5] - 7320 92,70 99.20 99.90 4570 63.40 80.50 95.60
+IMPARTAIL (Ours) | 70 | 7020 (-4.10%) 91.40 (-1.40%) 99.30 (+0.10%) 99.90 55.00 (+2035%) 71.80 (+1325%) 8670 (+7.70%)  97.00 (+1.46%)
+IMPARTAIL (Ours) | 40 | 67.50 (-7.79%)  89.70 (-3.24%) 99.20 99.90 54.80 (+19.91%) 72.10 (+13.72%)  86.70 (+7.70%)  97.20 (+1.67%)
PREDCL | TIMPARTALL (Ours) | 10 | 67.50 (-7.79%)  88.80 (421%) 99.00 (-0.20%) 99.90 65.50 (+4333%) 8200 (+29.34%) 93.00 (+15.53%)  99.60 (+4.18%)
DSGDetr [9] - 72.80 92.40 99.20 99.90 45.60 64.40 80.50 94.70
+IMPARTAIL (Ours) | 70 | 67.70 (-7.01%)  89.60 (-3.03%) 99.20 99.90 56.00 (+22.81%) 72.60 (+12.73%)  85.90 (+6.71%)  97.30 (+2.75%)
+IMPARTAIL (Ours) | 40 | 68.00 (-6.59%)  90.10 (-2.49%) 99.20 99.90 5450 (+19.52%) 71.80 (+11.49%) 8640 (+7.33%)  97.30 (+2.75%)
+IMPARTAIL (Ours) | 10 | 65.80 (:9.62%) 87.70 (-5.09%)  98.90 (-0.30%) 99.90 59.40 (+30.26%) 7620 (+18.32%) 89.80 (+11.55%)  98.10 (+3.59%)
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Table 2. With Constraint Results for VidSGG.

Mode Method \ s \ WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran [5] - 44.90 46.50 46.50 46.50 25.00 27.50 27.60 27.60
+IMPARTAIL (Ours) | 70 | 42.00 (-6.46%) 4330 (-6.88%) 4330 (-6.88%) 4330 (-6.88%) | 25.90 (+3.60%)  28.70 (+4.36%)  28.80 (+4.35%)  28.80 (+4.35%)
+IMPARTAIL (Ours) | 40 | 4240 (-5.57%) 4370 (-6.02%)  43.80 (-581%)  43.80 (-5.81%) | 27.80 (+11.20%) 30.60 (+11.27%) 30.70 (+11.23%)  30.70 (+11.23%)
SGCLS +IMPARTAIL (Ours) | 10 | 39.90 (-11.14%) 41.10 (-11.61%) 41.10 -11.61%) 41.10 (-11.61%) 32.30 (+29.20%) 36.20 (+31.64%) 36.20 (+31.16%) 36.20 (+31.16%)
DSGDetr [9] - 47.80 49.30 49.40 49.40 25.60 28.10 28.10 28.10
+IMPARTAIL (Ours) | 70 | 46.00 (-3.77%) 4740 (-3.85%)  47.40 (-4.05%) 4740 (-4.05%) | 27.10 (+5.86%)  30.20 (+7.47%) 3030 (+7.83%)  30.30 (+7.83%)
+IMPARTAIL (Ours) | 40 | 41.20 (-13.81%) 4240 (-14.00%) 4240 (-14.17%) 4240 (-14.17%) | 27.90 (+8.98%)  30.80 (+9.61%)  30.80 (+9.61%)  30.80 (+9.61%)
+IMPARTAIL (Ours) | 10 | 40.50 (-15.27%) 42.00 (-14.81%) 42.00 (-14.98%) 42.00 (-14.98%) 32.20 (+25.78%) 36.00 (+28.11%) 36.00 (+28.11%) 36.00 (+28.11%)
STTran [5] - 19.00 29.40 32.10 3210 8.00 16.60 19.30 19.30
+IMPARTAIL (Ours) | 70 | 17.90 (-5.79%)  27.80 (-5.44%)  30.60 (-4.67%)  30.60 (-4.67%) | 8.20(+2.50%)  17.50 (+5.42%)  20.60 (+6.74%)  20.60 (+6.74%)
+IMPARTAIL (Ours) | 40 | 1750 (-7.89%)  27.50 (-6.46%)  30.30 (-5.61%) 3030 (-5.61%) | 8.80 (+10.00%) 19.20 (+15.66%) 22.60 (+17.10%) 22.60 (+17.10%)
SGDET +IMPARTAIL (Ours) | 10 | 16.00 (-15.79%) 25.60 (-12.93%) 2840 (-11.53%) 28.40 (-11.53%)  9.40 (+17.50%)  21.50 (+29.52%) 25.90 (+34.20%) 25.90 (+34.20%)
DSGDetr [9] - 17.10 28.80 33.90 33.90 6.70 14.70 19.10 19.10
+IMPARTAIL (Ours) | 70 | 1630 (-4.68%)  27.50 (-451%)  32.50 (-4.13%)  32.60 (-3.83%) | 7.40 (+1045%) 17.60 (+19.73%) 2320 (+21.47%) 23.20 (+21.47%)
+IMPARTAIL (Ours) | 40 | 14.10 (-17.54%) 2340 (-18.75%) 27.40 (-19.17%) 27.50 (-18.88%) | 7.30 (+8.96%)  16.80 (+14.29%) 2240 (+17.28%) 22.40 (+17.28%)
+IMPARTAIL (Ours) | 10 | 15.40 (-9.94%) 2570 (-10.76%) 30.10 (-11.21%) 30.10 (-11.21%)  7.50 (+11.94%) 17.80 (+21.09%) 23.70 (+24.08%) 23.80 (+24.61%)
STTran [5] - 66.40 69.90 69.90 69.90 30.50 34.70 34.80 34.80
+IMPARTAIL (Ours) | 70 | 61.50 (-7.38%)  64.80 (-7.30%)  64.80 (-7.30%)  64.80 (-7.30%) | 34.30 (+12.46%) 39.70 (+14.41%) 39.80 (+14.37%) 39.80 (+14.37%)
+IMPARTAIL (Ours) | 40 | 57.20 (-13.86%) 60.20 (-13.88%) 60.30 (-13.73%) 6030 (-13.73%) | 37.40 (+22.62%) 43.60 (+25.65%) 43.80 (+25.86%) 43.80 (+25.86%)
PREDCLS | HIMPARTAIL (Ours) | 10 | 57.70 (-13.10%) 6080 (-13.02%) 60.80 (-13.02%) 6080 (-13.02%) 4400 (+44.26%) 5270 (+51.87%) 52.90 (+52.01%) 52.90 (+52.01%)
DSGDetr [9] - 66.50 70.00 70.00 70.00 31.50 36.10 36.20 36.20
+IMPARTAIL (Ours) | 70 | 58.30 (-12.33%) 61.50 (-12.14%)  61.50 (-12.14%) 61.50 (-12.14%) | 38.20 (+21.27%) 45.00 (+24.65%) 45.10 (+24.59%) 45.10 (+24.59%)
+IMPARTAIL (Ours) | 40 | 58.00 (-12.78%) 61.10 (-12.71%) 61.10 (-12.71%)  61.10 (-12.71%) | 37.30 (+18.41%) 43.40 (+20.22%) 43.50 (+20.17%) 43.50 (+20.17%)
+IMPARTAIL (Ours) | 10 | 55.50 (-16.54%) 5830 (-16.71%) 5830 (-16.71%) 5830 (-16.71%) 41.00 (+30.16%) 48.10 (+33.24%) 48.20 (+33.15%) 48.20 (+33.15%)
Table 3. Semi Constraint Results for VidSGG.
Mode Method \ s \ SEMI CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran [5] - 49.90 55.80 56.20 56.20 29.50 39.90 40.90 40.90
+IMPARTAIL (Ours) | 70 | 49.00 (-1.80%)  55.60 (-0.36%) 56.20 56.20 32.50 (+10.17%) 4580 (+14.79%) 47.60 (+16.38%) 47.60 (+16.38%)
+IMPARTAIL (Ours) | 40 | 48.60 (-2.61%)  54.80 (-1.79%)  55.20 (-1.78%)  55.20 (-1.78%) | 34.30 (+16.27%) 48.40 (+21.30%) 50.00 (+22.25%) 50.00 (+22.25%)
SGCLS +IMPARTAIL (Ours) | 10 | 46.40 (-7.01%) 5240 (-6.09%)  52.80 (-6.05%)  52.80 (-6.05%) 36.20 (+22.71%) 50.50 (+26.57%) 52.20 (+27.63%) 52.20 (+27.63%)
DSGDetr [9] - 53.90 60.40 60.70 60.70 30.10 40.60 41.60 41.60
+IMPARTAIL (Ours) | 70 | 52.30 (-2.97%)  59.60 (-1.32%)  60.30 (-0.66%)  60.30 (-0.66%) | 32.50 (+7.97%) 45.20 (+11.33%) 47.20 (+13.46%) 47.20 (+13.46%)
+IMPARTAIL (Ours) | 40 | 5050 (-6.31%)  58.50 (-3.15%)  59.50 (-1.98%)  59.50 (-1.98%) | 33.90 (+12.62%) 49.00 (+20.69%) 51.70 (+24.28%) 51.70 (+24.28%)
+IMPARTAIL (Ours) | 10 | 46.80 (-13.17%) 53.80 (-10.93%) 5440 (-10.38%) 54.40 (-10.38%) 36.80 (+22.26%) 52.40 (+29.06%) 54.90 (+31.97%) 54.90 (+31.97%)
STTran [5] - 18.60 31.00 41.20 41.50 7.70 1820 30.40 30.80
+IMPARTAIL (Ours) | 70 | 18.00 (-3.23%)  30.10 (-2.90%)  41.10 (-0.24%)  41.70 (+0.48%) | 7.90 (+2.60%)  19.00 (+4.40%) 33.90 (+11.51%) 34.60 (+12.34%)
+IMPARTAIL (Ours) | 40 | 17.70 (-4.84%)  29.70 (-4.19%)  39.10 (-5.10%)  39.40 (-5.06%)  8.70 (+12.99%) 21.30 (+17.03%) 34.80 (+14.47%) 35.10 (+13.96%)
SGDET +IMPARTAIL (Ours) | 10 | 1640 (-11.83%) 28.20(-9.03%) 37.90 (-8.01%) 3820 (-7.95%) | 8.60 (+11.69%) 21.80 (+19.78%) 38.30 (+25.99%) 38.80 (+25.97%)
DSGDetr [9] - 16.40 28.70 40.70 41.50 6.50 16.00 30.40 31.50
+IMPARTAIL (Ours) | 70 | 15.80 (-3.66%)  27.90 (-2.79%)  40.20 (-123%) 4120 (-0.72%) | 6.90 (+6.15%)  17.30 (+8.12%) 3420 (+12.50%) 35.60 (+13.02%)
+IMPARTAIL (Ours) | 40 | 14.10 (-14.02%) 2520 (-1220%)  37.30 (-835%)  38.70 (-6.75%) | 6.90 (+6.15%)  16.70 (+4.38%)  33.40 (+9.87%)  35.20 (+11.75%)
+IMPARTAIL (Ours) | 10 | 1520 (-7.32%)  26.80 (-6.62%)  37.90 (-6.88%)  39.00 (-6.02%)  7.30 (+12.31%) 18.40 (+15.00%) 36.60 (+20.39%) 38.40 (+21.90%)
STTran [5] - 71.80 82.50 83.30 83.30 36.60 51.80 53.80 53.80
+IMPARTAIL (Ours) | 70 | 69.60 (-3.06%)  81.30 (-1.45%)  82.60 (-0.84%)  82.60 (-0.84%) | 41.60 (+13.66%) 61.90 (+19.50%) 65.60 (+21.93%) 65.60 (+21.93%)
+IMPARTAIL (Ours) | 40 | 6640 (-7.52%)  77.90 (-5.58%)  79.30 (-4.80%) 7930 (-4.80%) | 42.10 (+15.03%) 62.40 (+20.46%) 66.20 (+23.05%) 66.20 (+23.05%)
PREDCLS | HIMPARTAIL (Ours) | 10 | 63.80 (-11.14%) 7420 (10.06%) 7520 (9.72%) 7520 (9.72%) 4170 (+30.33%) 69.70 (+34.56%) 7T3.40 (+3643%) 7T3.40 (+36.43%)
DSGDetr [9] - 71.30 82.50 83.50 83.50 36.50 52.50 55.20 55.20
+IMPARTAIL (Ours) | 70 | 66.80 (-6.31%) 7890 (-4.36%)  80.40 (-3.71%)  80.40 (-3.71%) | 41.60 (+13.97%) 63.00 (+20.00%) 67.70 (+22.64%) 67.70 (+22.64%)
+IMPARTAIL (Ours) | 40 | 66.10 (-7.29%)  77.30 (-6.30%)  78.70 (-5.75%)  78.70 (-5.75%) | 42.30 (+15.89%) 61.70 (+17.52%) 6530 (+18.30%) 65.30 (+18.30%)
+IMPARTAIL (Ours) | 10 | 63.50 (-10.94%) 7550 (-8.48%)  77.10 (-7.66%)  77.10 (-7.66%)  43.90 (+2027%) 65.40 (+24.57%) 69.80 (+26.45%) 69.80 (+26.45%)
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6.2. Scene Graph Anticipation

6.2.1. Findings

Here, S - represents the amount of things included in the masked dataset. To be more precise, S = 10% means that only 10%
of the labels are included in training the model for the current epoch and 90% of the labels are masked, thus voiding their
contribution to the loss. So S = 70% has more labels contributing to the training loss and S = 10% less number of labels
contributing to the training loss.

1. Table 4, Table 5, Table 6, Table 7, compare proposed method’s performance across various base methods (STTran++,
DSGDet++, SceneSayerODE, and SceneSayerSDE) at different F values (0.3, 0.5, 0.7, and 0.9) for Scene Graph Generation
(SGA) task, under the GAGS-No Constraint setting.

(a) In Table 4, SceneSayerODE shows the most consistent gain in lower recall metrics (R@10 and mR@ 10) when
IMPARTAIL is included. For $=70, improvements with IMPARTAIL are substantial, especially for STTran++ (e.g.,
+13.74% for R@10). Lower values of S (e.g., S=10) tend to result in less significant improvements. Metrics like
mR @50 and mR@ 100 remain stable or show slight improvements, emphasizing IMPARTAIL’s balanced handling of
long-tail distributions.

(b) In Table 5, Table 6, Table 7, IMPARTAIL continues to show consistent improvements, especially for mR metrics, with
substantial gains seen in SceneSayerODE and SceneSayerSDE for mR@ 10 and mR @20. The relative improvement
in metrics is more pronounced compared to Table 4, suggesting that IMPARTAIL is more impactful as the F value
increases.

2. Table 8, Table 9, Table 10, Table 11, evaluates IMPARTAIL under the Partially Grounded Action Genome Scenes (PGAGS)
- No Constraint setting.

(a) As F increases from 0.3 to 0.9, the improvements in mR metrics, particularly for mR @ 10 and mR @20, become more
pronounced.

(b) IMPARTAIL improves both R metrics (favouring head classes) and mR metrics (favouring tail classes) as F increases.

For instance, significant gains in mR @ 10 and mR @20 consistently align with moderate or stable improvements in
R@10 and R@20 across all models and configurations.

(c) All baseline methods (STTran++, DSGDet++, SceneSayerODE, and SceneSayerSDE) benefit from the inclusion of
IMPARTAIL (Ours), though the degree of improvement varies. The results also highlight IMPARTAIL’s compatibility
with high S, with significant gains observed at high F values (e.g., +49.76% for mR@10 at F=0.7).

3. Table 12, Table 13, Table 14, Table 15, present the performance evaluation of IMPARTAIL’s under the Action Genome
Scenes (AGS) in No Constraint graph building strategy, for Scene Graph Generation (SGA).

(a) Atlower F values (e.g., F=0.3), the improvements in mR metrics are moderate. At higher F values (e.g., #=0.9),
mR metrics show substantial improvement, highlighting IMPARTAIL’s strong performance.

(b) For SceneSayerSDE (Table 15, 7=0.9), mR @10 increases from 19.10 to 29.30 (+53.40%) with IMPARTAIL.

(c) IMPARTAIL achieves balanced gains.For example in Table 13 (F=0.5), for DSGDet++, IMPARTAIL improves R@10
from 21.9 to 22.8 (+4.11%) and mR@10 from 11.80 to 13.50 (+14.41%).

4. Table 16, Table 17, Table 18, Table 19, present the With Constraint evaluation results for Scene Graph Generation (SGA) for
GAGS. Table 20, Table 21, Table 22, Table 23, present the With Constraint evaluation results for Scene Graph Generation
(SGA) for PGAGS. Table 24, Table 25, Table 26, Table 27 present the With Constraint evaluation results for Scene Graph
Generation (SGA) for GAGS.

(a) IMPARTAIL consistently improves under constrained settings but with smaller gains than the No Constraint scenario.

(b) GAGS (Tables 16-19) for fully grounded relationships and constraints result in consistent performance gains with
IMPARTAIL, especially for SceneSayerSDE.

(c) Gains in mR metrics dominate, with the highest improvements observed at F=0.9. In PGAGS, gains are moderate
compared to GAGS, with mR metrics seeing smaller improvements.
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349 6.2.2. Results - No Constraint Setting - Grounded Action Genome Scenes (GAGS)

Table 4. GAGS-No Constraint-0.3 results for SGA.

7 | Method \ s \ NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 39.30 55.60 65.20 65.80 23.10 35.50 59.20 70.60
+IMPARTAIL (Ours) | 70 | 44,70 (+13.74%)  57.60 (+3.60%)  65.00 (-0.31%) 65.80 24,60 (+6.49%)  37.60 (+5.92%)  59.50 (+0.51%) 70.60
+IMPARTAIL (Ours) | 40 | 4020 (+2.29%)  55.10 (-0.90%)  64.80 (-0.61%) 65.80 2150 (-6.93%) 3350 (-5.63%) 5620 (-5.07%)  69.80 (-1.13%)
+IMPARTAIL (Ours) | 10 | 40.50 (+3.05%) 5520 (-:0.72%)  64.60 (-:0.92%) 65.70 (-0.15%) | 21.70 (-6.06%)  35.70 (+0.56%)  59.90 (+1.18%) 70.60
DSGDetr-++ [30] - 43.80 57.80 65.10 65.80 21.20 34.30 57.40 70.10
+IMPARTAIL (Ours) | 70 | 44.10 (+0.68%)  57.30 (-0.87%) 65.10 65.80 22.10 (+4.25%)  35.60 (+3.79%)  59.50 (+3.66%)  69.90 (-0.29%)
+IMPARTAIL (Ours) | 40 | 44.30 (+1.14%)  57.40 (-0.69%) 65.10 65.80 26.20 (+23.58%) 39.90 (+16.33%)  60.00 (+4.53%)  69.90 (-0.29%)
03 | +IMPARTAIL (Ours) | 10 | 37.50 (-1438%)  52.90 (-8.48%) 63.90 (-1.84%) 65.70 (-0.15%) | 20.10(-5.19%)  33.50 (-2.33%)  58.40 (+1.74%)  70.80 (+1.00%)
SceneSayerODE [30] | - 40.30 54.00 63.80 65.70 2220 34.50 56.70 68.20
+IMPARTAIL (Ours) | 70 | 40.70 (+0.99%)  55.70 (+3.15%) 64.70 (+1.41%) 65.70 25.10 (+13.06%) 38.40 (+11.30%)  60.30 (+6.35%)  69.70 (+2.20%)
+IMPARTAIL (Ours) | 40 | 39.70 (-149%)  53.80 (-0.37%) 63.80 65.60 (-0.15%) | 20.00(-9.91%) 3150 (-8.70%)  54.40 (-4.06%)  67.80 (-0.59%)
+IMPARTAIL (Ours) | 10 | 2870 (-28.78%) 44.60 (-17.41%) 61.50 (-3.61%) 6540 (-:0.46%) | 22.80 (+2.70%)  35.90 (+4.06%)  57.40 (+1.23%)  69.50 (+1.91%)
SceneSayerSDE [30] - 46.40 58.80 65.20 65.80 23.10 35.70 57.70 68.60
+IMPARTAIL (Ours) | 70 | 44.60 (-3.88%)  58.20 (-1.02%) 65.20 65.80 28.80 (+24.68%) 4370 (+22.41%)  62.80 (+8.84%)  71.20 (+3.79%)
+IMPARTAIL (Ours) | 40 | 46.10 (-0.65%)  58.90 (+0.17%) 65.20 65.80 24.90 (+7.79%)  37.80 (+5.88%)  58.60 (+1.56%)  68.90 (+0.44%)
+IMPARTAIL (Ours) | 10 | 38.90 (-16.16%)  54.00 (-8.16%)  64.80 (-0.61%) 65.80 31.60 (+36.80%) 44.60 (+24.93%) 64.50 (+11.79%) 71.20 (+3.79%)

Table 5. GAGS-No Constraint-0.5 results for SGA.

| Method \ S \ NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] B 45.10 63.30 73.40 74.00 2520 39.40 63.50 75.30
+IMPARTAILL (Ours) | 70 | 50.50 (+11.97%) 64.90 (+2.53%)  73.30 (-0.14%) 74.00 2730 (+8.33%)  41.60 (+5.58%) 64.50 (+1.57%) 75.40 (+0.13%)
+IMPARTAILL (Ours) | 40 | 45.60 (+1.11%)  62.60 (-1.11%)  73.00 (-0.54%) 74.00 2390 (-5.16%)  37.40(-5.08%)  60.70 (-4.41%)  74.90 (-0.53%)
+IMPARTAILL (Ours) | 10 | 4540 (+0.67%)  61.90 (2.21%)  72.60 (-1.09%) 73.90 (-0.14%) | 23.70 (-5.95%)  39.20 (:0.51%)  64.10 (+0.94%) 75.00 (-0.40%)
DSGDetr++ [30] - 49.50 65.40 73.40 74.00 23.20 37.30 62.90 74.90
+IMPARTAIL (Ours) | 70 | 50.10 (+121%)  65.00 (-0.61%) 73.40 74.00 24.90 (+7.33%)  39.70 (+6.43%)  64.10 (+1.91%)  75.00 (+0.13%)
+IMPARTAIL (Ours) | 40 | 49.90 (+0.81%)  64.50 (-1.38%) 73.40 74.00 28.20 (+21.55%) 4220 (+13.14%)  64.90 (+3.18%) 75.20 (+0.40%)
05| +IMPARTAIL (Ours) | 10 | 41.70 (-15.76%)  60.00 (-8.26%) 7230 (-1.50%)  73.90 (-0.14%) | 2330 (+0.43%)  38.40 (+2.95%) 63.20 (+0.48%) 7520 (+0.40%)
SceneSayerODE [30] | - 47.20 62.40 72.50 73.90 24.90 38.00 61.80 74.30
+IMPARTAIL (Ours) | 70 | 46.80 (-0.85%) 6330 (+1.44%) 73.00 (+0.69%) 74.00 (+0.14%) | 27.90 (+12.05%) 42.50 (+11.84%) 65.20 (+5.50%) 75.40 (+1.48%)
+IMPARTAIL (Ours) | 40 | 46.60 (-1.27%)  62.30 (-0.16%)  72.30 (-0.28%) 73.90 22.00 (-11.65%)  35.10 (-7.63%)  60.50 (-2.10%)  73.60 (-0.94%)
+IMPARTAIL (Ours) | 10 | 34.50 (-26.91%) 5270 (-15.54%)  70.40 (-2.90%)  73.80 (-0.14%) | 26.50 (+6.43%)  40.90 (+7.63%) 6320 (+2.27%) 74.90 (+0.81%)
SceneSayerSDE [30] - 52,00 66.20 73.40 74.00 25.00 39.00 62.70 73.70
+IMPARTAILL (Ours) | 70 | 50.10(-3.65%) 6530 (-1.36%)  73.50 (+0.14%) 74.00 31.80 (+27.20%) 46.70 (+19.74%)  67.50 (+7.66%) 75.40 (+2.31%)
+IMPARTAIL (Ours) | 40 | 51.80 (-0.38%) 66.20 73.40 74.00 27.00 (+8.00%)  40.70 (+4.36%)  63.60 (+1.44%) 74.80 (+1.49%)
+IMPARTAIL (Ours) | 10 | 44.00 (-1538%)  61.10 (-7.70%)  73.00 (-0.54%) 74.00 34.60 (+38.40%) 49.00 (+25.64%) 68.50 (+9.25%) 7530 (+2.17%)
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Table 6. GAGS-No Constraint-0.7 results for SGA.

| Method \ s \ NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 54.70 74.20 83.40 83.80 31.20 47.00 75.40 86.00
+IMPARTAIL (Ours) | 70 | 60.40 (+10.42%)  76.10 (+2.56%) 83.40 83.80  34.40 (+10.26%) 51.50 (+9.57%)  76.10 (+0.93%) 86.00

+IMPARTAIL (Ours) | 40 | 56.40 (+3.11%)  73.60 (-0.81%)  83.10 (-0.36%)  83.80 30.70 (-1.60%) 46.50 (-1.06%)  73.30 (-2.79%)  85.90 (-0.12%)
+IMPARTAIL (Ours) | 10 | 5440 (-0.55%)  72.60 (-2.16%)  82.90 (-0.60%)  83.80 31.10 (-0.32%) 49.20 (+4.68%)  76.50 (+1.46%) 86.20 (+0.23%)

DSGDetr++ [30] - 59.60 76.10 83.40 83.80 28.60 46.10 73.80 85.80
+IMPARTAIL (Ours) | 70 | 60.20 (+1.01%)  75.80 (-0.39%) 83.40 83.80 | 32.40 (+13.29%)  49.70 (+7.81%)  76.00 (+2.98%) 86.00 (+0.23%)
+IMPARTAIL (Ours) | 40 | 59.90 (+0.50%)  75.50 (-0.79%) 83.40 83.80  35.70 (+24.83%) 53.20 (+15.40%) 76.50 (+3.66%) 85.80

07 | +IMPARTAIL (Ours) | 10 | 5040 (-15.44%)  70.90 (-6.83%) 82.80 (:0.72%)  83.80 | 31.40 (+9.79%)  49.70 (+7.81%) 7570 (+2.57%) 86.10 (+0.35%)

SceneSayerODE [30] - 58.50 74.00 82.80 83.80 | 29.80 45.20 72.00 84.20
+IMPARTAIL (Ours) | 70 | 56.80 (-2.91%)  74.60 (+0.81%) 83.10 (+0.36%) 83.80  32.70 (+9.73%) 5110 (+13.05%) 75.30 (+4.58%) 84.90 (+0.83%)
+IMPARTAIL (Ours) | 40 | 57.90 (-1.03%) 74.00 82.80 83.80 | 27.40(-8.05%)  44.60 (-1.33%)  71.80 (-0.28%)  84.10 (-0.12%)
+IMPARTAIL (Ours) | 10 | 44.90 (-23.25%) 65.10 (-12.03%) 81.50 (-1.57%)  83.80 | 31.70 (+6.38%) 49.90 (+10.40%) 73.80 (+2.50%) 85.90 (+2.02%)

SceneSayerSDE [30] - 61.40 76.20 83.30 83.80 30.20 45.40 72.80 84.00
+IMPARTAIL (Ours) | 70 | 60.20 (-1.95%)  76.10 (-0.13%)  83.40 (+0.12%)  83.80 | 37.90 (+25.50%) 55.60 (+22.47%) 77.30 (+6.18%) 86.10 (+2.50%)
+IMPARTAIL (Ours) | 40 | 61.20 (-0.33%) 76.20 83.20 (-0.12%)  83.80 | 31.60 (+4.64%)  47.90 (+5.51%) 73.40 (+0.82%) 85.20 (+1.43%)

+IMPARTAIL (Ours) | 10 | 53.30(-13.19%)  72.30 (-5.12%)  83.10 (-0.24%)  83.80  40.90 (+35.43%) 58.10 (+27.97%) 78.30 (+7.55%) 86.20 (+2.62%)

Table 7. GAGS-No Constraint-0.9 results for SGA.

| Method [ s | NO CONSTRAINT
R@10 R@20 R@50 R@100 | mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 68.70 86.80 93.50 93.80 4250 60.80 84.80 94.90
+IMPARTAIL (Ours) | 70 | 74.30 (+8.15%) ~ 88.00 (+1.38%) 93.50 9380 | 47.50 (+11.76%) 6470 (+6.41%)  89.00 (+4.95%) 94.90
+IMPARTALL (Ours) | 40 | 70.50 (+2.62%)  86.20 (-0.69%) 93.50 93.80 | 43.00 (+1.18%)  61.00 (+0.33%) 8850 (+436%) 9470 (-0.21%)
+IMPARTAIL (Ours) | 10 | 67.50 (1.75%) 8520 (-1.84%) 9340 (0.11%) 93.80 | 4630 (+8.94%) 6440 (+592%) 9140 (+7.78%) 94.90
DSGDetr++ [30] - 73.60 88.30 93.50 93.80 39.00 58.80 83.20 94.90
+IMPARTAIL (Qurs) | 70 | 74.10 (+0.68%)  87.90 (-0.45%) 93.50 93.80 | 4630 (+18.72%)  63.50 (+7.99%)  88.90 (+6.85%) 94.90
+IMPARTAIL (Ours) | 40 | 73.10 (0.68%)  87.40 (-1.02%) 93.50 93.80 | 50.00 (+2821%) 67.60 (+1497%) 88.80 (+6.73%) 9470 (-0.21%)
09 | +IMPARTAIL (Ours) | 10 | 63.90(-13.18%) 8390 (-4.98%) 9330 (-021%) 93.80 | 46.90 (+20.26%) 6570 (+11.73%) 91.00 (+9.38%)  94.80 (-0.11%)
SceneSayerODE [30] | - 73.00 87.20 93.30 93.80 37.20 54.30 81.50 94.70
+IMPARTAIL (Ours) | 70 | 70.50 (-3.42%)  86.40 (-0.92%) 93.30 93.80 | 40.80 (+9.68%)  57.80 (+6.45%) 8470 (+3.93%)  94.80 (+0.11%)

+IMPARTAIL (Ours) | 40 | 72.50 (-0.68%)  86.70 (-0.57%) 93.20(-0.11%)  93.80 | 34.40(-7.53%)  52.10(-4.05%)  83.60 (+2.58%)  94.40 (-0.32%)
+IMPARTAIL (Ours) | 10 | 61.60 (-15.62%) 8140 (-6.65%) 93.00 (:0.32%)  93.80 | 39.90 (+7.26%)  58.60 (+7.92%)  87.00 (+6.75%)  94.90 (+0.21%)

SceneSayerSDE [30] - 73.70 87.30 93.30 93.80 37.30 54.00 80.50 94.70
+IMPARTAIL (Ours) | 70 | 73.00 (-0.95%) 87.40 (+0.11%) 93.50 (+0.21%)  93.80 | 45.50 (+21.98%) 63.10 (+16.85%) 89.80 (+11.55%) 94.90 (+0.21%)
+IMPARTAIL (Ours) | 40 | 73.30 (-0.54%) 87.30 93.40 (+0.11%)  93.80 38.70 (+3.75%)  56.50 (+4.63%)  82.30 (+2.24%)  94.80 (+0.11%)
+IMPARTAIL (Ours) | 10 | 67.00 (-9.09%)  84.80 (-2.86%) 93.30 93.80 | 49.00 (+31.37%) 67.30 (+24.63%) 91.40 (+13.54%) 94.90 (+0.21%)
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350 6.2.3. Results - No Constraint Setting - Partially Grounded Action Genome Scenes (PGAGS)

Table 8. PGAGS-No Constraint-0.3 results for SGA.

| Method \ s \ NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 31.00 4230 46.60 46.80 1850 2870 48.80 52.50
+IMPARTAIL (Ours) | 70 | 33.20 (+7.10%)  41.30 (-2.36%) 46.60 47.00 (+0.43%) | 16.60 (-1027%) 2720 (-523%)  49.30 (+1.02%)  52.80 (+0.57%)

+IMPARTAIL (Ours) | 40  34.00 (+9.68%)  42.50 (+0.47%) 46.70 (+0.21%) 47.00 (+0.43%) | 19.70 (+6.49%)  29.60 (+3.14%)  49.60 (+1.64%)  52.80 (+0.57%)
+IMPARTAIL (Ours) | 10 ‘ 29.40 (-5.16%)  40.20 (-4.96%)  45.80 (-1.72%)  46.20 (-1.28%) 21.20 (+14.59%) 31.50 (+9.76%)  49.20 (+0.82%)  52.40 (-0.19%)

DSGDetr++ [30] - 35.60 44.00 48.20 48.50 ‘ 17.90 28.60 49.20 53.80
+IMPARTAIL (Ours) | 70 | 34.40 (-3.37%) 43.50 (-1.14%) 48.20 48.50 21.10 (+17.88%)  30.50 (+6.64%)  49.70 (+1.02%) 53.80
+IMPARTAIL (Ours) | 40 | 32.20 (-9.55%) 41.80 (-5.00%)  47.50 (-1.45%)  47.80 (-1.44%) | 18.10 (+1.12%) 28.40 (-0.70%) 49.00 (-0.41%)  52.80 (-1.86%)

0.3 +IMPARTAIL (Ours) | 10 | 32.20 (-9.55%) 42.00 (-4.55%)  47.70 (-1.04%)  48.00 (-1.03%) | 21.00 (+17.32%) 31.60 (+10.49%)  50.80 (+3.25%)  53.50 (-0.56%)

SceneSayerODE [30] - 30.00 39.80 46.90 48.10 14.30 2330 44.60 53.50
+IMPARTAIL (Ours) | 70 | 2520 (-1600%) 3570 (-10.30%) 4520 (-3.62%) 47.30 (-1.66%) | 16.90 (+18.18%) 25.70 (+10.30%)  45.60 (+2.24%)  52.60 (-1.68%)
+IMPARTAIL (Ours) | 40  34.80 (+16.00%) 42.40 (+6.53%) 47.00 (+0.21%) 47.70 (-0.83%) | 20.40 (+42.66%) 29.90 (+28.33%) 47.30 (+6.05%)  53.40 (-0.19%)
+IMPARTAIL (Ours) | 10 | 27.70 (-7.67%) ~ 37.20 (-6.53%) 46.10 (-1.71%) 48.20 (+0.21%) 21.90 (+53.15%) 3140 (+34.76%) 49.30 (+10.54%) 53.70 (+0.37%)

SceneSayerSDE [30] - 35.90 43.70 47.80 48.40 20.60 31.20 49.80 55.00
+IMPARTAIL (Ours) | 70 | 34.80(-3.06%)  42.80 (-2.06%)  47.10 (-1.46%) 48.00 (-0.83%) | 24.30 (+17.96%) 34.50 (+10.58%)  50.80 (+2.01%)  54.20 (-1.45%)
+IMPARTAIL (Ours) | 40 | 3550 (-1.11%)  43.20(-1.14%)  47.60 (-0.42%) 48.20 (-0.41%) | 21.50 (+4.37%)  32.10 (+2.88%)  49.10(-1.41%)  54.40 (-1.09%)
+IMPARTAIL (Ours) | 10 | 33.30(-7.24%)  41.90 (-4.12%)  47.00 (-1.67%) 47.90 (-1.03%)  27.50 (+33.50%) 37.70 (+20.83%) 52.60 (+5.62%)  54.50 (-0.91%)

Table 9. PGAGS-No Constraint-0.5 results for SGA.

| Method \ s \ NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 3430 46.70 51.50 51.60 20.90 32.50 50.10 53.20

+IMPARTAIL (Ours) | 70 | 36.60 (+6.71%)  45.70 (-2.14%)  51.10 (-0.78%)  51.50 (-0.19%) | 18.70 (-10.53%)  30.70 (-5.54%) 49.40 (-1.40%)  52.70 (-0.94%)
+IMPARTAIL (Ours) | 40 | 37.30 (+8.75%) 46.90 (+0.43%) 51.10 (-0.78%) 51.30 (-0.58%) | 21.90 (+4.78%)  33.20 (+2.15%) 50.00 (-0.20%)  52.30 (-1.69%)
+IMPARTAIL (Ours) | 10 | 32.50(-5.25%)  44.10 (-5.57%) 50.40 (-2.14%) 50.80 (-1.55%) 24.00 (+14.83%) 34.90 (+7.38%)  50.50 (+0.80%)  52.70 (-0.94%)

DSGDetr++ [30] - 39.60 49.60 54.30 54.50 ‘ 19.90 32.30 50.60 55.80
+IMPARTAIL (Ours) | 70 | 37.40(-5.56%)  48.30 (-2.62%) 53.70 (-1.10%)  54.00 (-0.92%) 23.10 (+16.08%) 33.60 (+4.02%)  50.50 (-0.20%)  55.30 (-0.90%)
+IMPARTAIL (Ours) | 40 | 36.30(-8.33%)  47.10 (-5.04%) 53.00 (-2.39%)  53.30 (-2.20%) | 20.50 (+3.02%)  31.60 (-2.17%) 50.00 (-1.19%)  55.00 (-1.43%)

0.5 +IMPARTAIL (Ours) | 10 | 35.50 (-10.35%)  47.30 (-4.64%)  54.10 (-0.37%) 54.50 22.60 (+13.57%)  35.20 (+8.98%)  52.50 (+3.75%)  56.70 (+1.61%)
SceneSayerODE [30] - 34.10 45.10 52.80 54.10 16.90 26.30 45.70 54.00
+IMPARTAIL (Ours) | 70 | 29.00 (-14.96%) 41.40 (-8.20%)  51.90 (-1.70%) 54.10 19.70 (+16.57%)  29.70 (+12.93%)  47.40 (+3.72%)  54.40 (+0.74%)
+IMPARTAIL (Ours) | 40 | 39.10 (+14.66%) 48.00 (+6.43%) 53.40 (+1.14%) 54.20 (+0.18%) | 22.70 (+34.32%) 33.60 (+27.76%)  49.70 (+8.75%)  55.60 (+2.96%)
+IMPARTAIL (Ours) | 10 | 32.10(-5.87%)  42.90 (-4.88%) 52.20 (-1.14%) 54.10 25.00 (+47.93%) 36.00 (+36.88%) 50.40 (+10.28%) 55.40 (+2.59%)
SceneSayerSDE [30] - 39.90 48.90 53.70 54.50 22.90 34.30 51.00 56.20
+IMPARTAIL (Ours) | 70 | 38.70 (-3.01%)  47.90 (-2.04%) 53.30(-0.74%)  54.00 (-0.92%) | 26.90 (+17.47%) 37.70 (+9.91%)  52.70 (+3.33%)  56.70 (+0.89%)
+IMPARTAIL (Ours) | 40 | 39.70 (-0.50%)  48.40 (-1.02%)  53.50 (-0.37%) 54.20 (-0.55%) | 23.60 (+3.06%) 34.30 50.60 (-0.78%)  56.00 (-0.36%)

+IMPARTAIL (Ours) | 10 | 37.00 (-7.27%)  46.80 (-4.29%) 52.80 (-1.68%) 53.90 (-1.10%)  30.30 (+32.31%) 40.90 (+19.24%) 52.30 (+2.55%)  55.00 (-2.14%)
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Table 10. PGAGS-No Constraint-0.7 results for SGA.

| Method [ s | NO CONSTRAINT
|  Rew R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 41.40 54.90 59.60 59.70 2530 3830 56.10 58.40
+IMPARTAIL (Ours) | 70 | 44.80 (+821%) 5440 (-091%) 5930 (:0.50%) 59.50 (034%) | 2440 (-3.56%) 38.70 (+1.04%) 5640 (+0.53%) 59.90 (+2.57%)
+IMPARTAIL (Ours) | 40 45.50 (+9.90%)  55.50 (+1.09%) 59.60 59.70 28.00 (+10.67%) 4170 (+8.88%)  57.10 (+1.78%)  59.30 (+1.54%)

+IMPARTAIL (Ours) 10‘ 39.60 (-4.35%)  53.00 (-3.46%)  59.10 (-0.84%)  59.50 (-0.34%)  29.80 (+17.79%) 43.90 (+14.62%) 57.60 (+2.67%) 59.40 (+1.71%)

DSGDetr++ [30] - 47.70 58.10 62.40 62.60 ‘ 24.80 39.50 57.30 61.10
+IMPARTAIL (Ours) | 70 | 45.40 (-4.82%)  57.30 (-1.38%)  62.10 (-0.48%) 62.20 (-0.64%) 28.70 (+15.73%)  40.90 (+3.54%) 57.60 (+0.52%)  60.80 (-0.49%)
+IMPARTAIL (Ours) | 40 | 44.30(-7.13%)  55.90 (-3.79%) 61.20 (-1.92%) 61.40 (-1.92%) | 26.30 (+6.05%)  41.00 (+3.80%) 58.10 (+1.40%) 61.90 (+1.31%)

0.7 +IMPARTAIL (Ours) | 10 | 42.80 (-10.27%) 55.60 (-4.30%)  62.00 (-0.64%)  62.30 (-0.48%) | 28.10 (+13.31%)  42.20 (+6.84%) 58.50 (+2.09%) 61.80 (+1.15%)

SceneSayerODE [30] - 40.90 53.00 60.40 61.60 20.50 32.40 52.80 60.10
+IMPARTAIL (Ours) | 70 | 35.30 (-13.69%) 49.00 (-7.55%) 59.40 (-1.66%) 61.30 (-0.49%) | 23.40 (+14.15%) 36.10 (+11.42%) 52.70 (-0.19%)  59.60 (-0.83%)
+IMPARTAIL (Ours) | 40 46.00 (+12.47%) 56.00 (+5.66%) 61.20 (+1.32%) 61.90 (+0.49%) | 27.10 (+32.20%) 40.00 (+23.46%) 56.40 (+6.82%) 61.20 (+1.83%)
+IMPARTAIL (Ours) | 10 ‘ 40.40 (-1.22%)  52.20 (-1.51%)  60.60 (+0.33%)  62.00 (+0.65%) 30.70 (+49.76%) 43.90 (+35.49%) 55.90 (+5.87%) 60.20 (+0.17%)

SceneSayerSDE [30] - 47.40 57.00 61.90 62.50 27.00 40.20 57.20 61.70
+IMPARTAIL (Ours) | 70 | 46.50 (-1.90%)  56.10 (-1.58%) 61.30 (-0.97%)  62.10 (-0.64%) | 32.10 (+18.89%) 4520 (+12.44%) 60.40 (+5.59%) 63.50 (+2.92%)
+IMPARTAIL (Ours) | 40 | 47.30(-0.21%)  56.90 (-0.18%) 62.00 (+0.16%) 62.60 (+0.16%) | 28.40 (+5.19%)  40.50 (+0.75%) 57.90 (+1.22%) 63.50 (+2.92%)
+IMPARTAIL (Ours) | 10 | 44.30 (-6.54%)  55.20(-3.16%) 61.00 (-1.45%) 62.00 (-0.80%) 35.50 (+31.48%) 48.20 (+19.90%) 58.50 (+2.27%) 61.20 (-0.81%)

Table 11. PGAGS-No Constraint-0.9 results for SGA.

7 | Method [ s | NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 50.00 61.60 64.40 64.50 3240 46.90 60.60 62.60

+IMPARTAIL (Ours) | 70 | 54.00 (+8.00%) 62.30 (+1.14%) 65.00 (+0.93%) 65.00 (+0.78%) | 35.10 (+8.33%)  48.70 (+3.84%) 61.40 (+1.32%) 63.10 (+0.80%)
+IMPARTAIL (Ours) | 40 | 53.30 (+6.60%) 62.20 (+0.97%) 65.00 (+0.93%) 65.10 (+0.93%) | 36.80 (+13.58%)  49.60 (+5.76%)  62.10 (+2.48%) 63.40 (+1.28%)
+IMPARTAIL (Ours) | 10 | 48.20 (-3.60%)  60.50 (-1.79%) 64.90 (+0.78%) 65.10 (+0.93%) | 40.90 (+26.23%) 52.10 (+11.09%) 63.80 (+5.28%) 64.60 (+3.19%)

DSGDetr++ [30] - 57.10 66.40 69.40 69.50 33.00 49.00 64.20 68.20
+IMPARTAIL (Ours) | 70 | 54.90 (-3.85%)  65.40(-1.51%) 68.80 (-0.86%) 68.90 (-0.86%) | 35.90 (+8.79%)  49.40 (+0.82%)  63.90 (-0.47%)  67.50 (-1.03%)
+IMPARTAIL (Ours) | 40 | 54.30 (-4.90%)  65.00 (-2.11%)  68.60 (-1.15%)  68.80 (-1.01%) | 35.70 (+8.18%)  51.50 (+5.10%)  65.70 (+2.34%) 69.30 (+1.61%)

0.9 +IMPARTAIL (Ours) | 10 | 52.60 (-7.88%)  64.30 (-3.16%)  69.00 (-0.58%)  69.20 (-0.43%) | 38.30 (+16.06%)  52.60 (+7.35%) 67.30 (+4.83%) 69.20 (+1.47%)

SceneSayerODE [30] - 50.60 62.00 68.50 69.70 27.40 41.70 61.10 69.30
+IMPARTAIL (Ours) | 70 | 44.80 (-11.46%) 58.50 (-5.65%)  68.30 (-0.29%)  70.00 (+0.43%) | 29.90 (+9.12%)  42.60 (+2.16%)  60.80 (-0.49%)  68.50 (-1.15%)
+IMPARTAIL (Ours) | 40 | 54.70 (+8.10%) 64.30 (+3.71%) 68.80 (+0.44%) 69.50 (-0.29%) | 32.90 (+20.07%) 46.60 (+11.75%) 62.00 (+1.47%)  69.10 (-0.29%)
+IMPARTAIL (Ours) | 10 | 51.20 (+1.19%) 63.00 (+1.61%) 69.20 (+1.02%) 70.30 (+0.86%) | 37.80 (+37.96%) 52.90 (+26.86%) 65.20 (+6.71%) 69.60 (+0.43%)

SceneSayerSDE [30] - 56.30 65.70 69.50 70.00 33.20 48.20 64.30 69.50
+IMPARTAIL (Ours) | 70 | 55.20 (-1.95%)  65.00 (-1.07%)  69.20 (-0.43%)  69.90 (-0.14%) | 38.10 (+14.76%)  51.50 (+6.85%)  65.70 (+2.18%)  69.10 (-0.58%)
+IMPARTAIL (Ours) | 40 56.30 65.70 69.90 (+0.58%) 70.60 (+0.86%) | 34.10 (+2.71%) 48.10 (-0.21%)  65.70 (+2.18%) 71.80 (+3.31%)

+IMPARTAIL (Ours) | 10 | 53.70 (-4.62%)  64.20(-2.28%)  69.10 (-0.58%)  70.20 (+0.29%) | 42.00 (+26.51%) 54.50 (+13.07%) 66.40 (+3.27%) 69.30 (-0.29%)
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351 6.2.4. Results - No Constraint Setting - Action Genome Scenes (AGS)

Table 12. AGS-No Constraint-0.3 results for SGA.

| Method \ s \ NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 22.90 36.00 51.30 55.20 13.10 20.20 36.20 49.90
+IMPARTAIL (Ours) | 70 | 22.70 (-0.87%)  35.80 (-0.56%)  50.50 (-1.56%) 55.20 1220 (-6.87%)  19.00 (-5.94%)  35.70 (-1.38%)  50.30 (+0.80%)

+IMPARTAIL (Ours) | 40 | 22.10 (-3.49%) 35.50 (-1.39%)  50.50 (-1.56%)  55.00 (-0.36%) 12.80 (-2.29%) 21.10 (+4.46%)  37.50 (+3.59%)  51.10 (+2.40%)
+IMPARTAIL (Ours) | 10 | 19.50 (-14.85%) 30.40 (-15.56%) 48.50 (-5.46%)  54.90 (-0.54%) | 11.10 (-15.27%)  18.50 (-8.42%) 36.50 (+0.83%)  51.10 (+2.40%)

DSGDetr++ [30] - 20.80 33.10 49.20 53.90 11.50 17.80 34.10 49.10
+IMPARTAIL (Ours) | 70 | 21.30 (+2.40%)  33.60 (+1.51%)  49.00 (-0.41%) 54.30 (+0.74%) | 12.40 (+7.83%) 19.30 (+8.43%)  34.90 (+2.35%)  48.90 (-0.41%)
+IMPARTAIL (Ours) | 40 | 18.40 (-11.54%) 29.70 (-10.27%)  47.30 (-3.86%)  53.80 (-0.19%) | 12.50 (+8.70%)  20.60 (+15.73%)  36.50 (+7.04%)  49.20 (+0.20%)

0.3 +IMPARTAIL (Ours) | 10 | 18.90 (-9.13%) 29.90 (-9.67%)  47.10 (-4.27%) 53.10 (-1.48%) | 12.80 (+11.30%) 21.80 (+22.47%) 37.50 (+9.97%) 49.70 (+1.22%)

SceneSayerODE [30] - 22.60 31.60 44.50 51.70 12.60 19.30 32.70 44.30
+IMPARTAIL (Ours) | 70 | 20.50 (-9.29%) 29.50 (-6.65%)  42.50 (-4.49%)  49.90 (-3.48%) | 13.40 (+6.35%)  20.40 (+5.70%)  33.90 (+3.67%)  45.00 (+1.58%)
+IMPARTAIL (Ours) | 40 | 26.70 (+18.14%) 36.10 (+14.24%) 47.40 (+6.52%) 52.60 (+1.74%) | 14.30 (+13.49%) 21.50 (+11.40%) 35.50 (+8.56%)  45.80 (+3.39%)

+IMPARTAIL (Ours) | 10 22.60 32.10 (+1.58%)  45.20 (+1.57%) 52.20 (+0.97%) | 14.20 (+12.70%) 22.60 (+17.10%) 37.50 (+14.68%) 47.50 (+7.22%)
SceneSayerSDE [30] - 26.30 35.70 47.20 52.40 14.30 22.00 36.40 46.80

+IMPARTAIL (Ours) | 70 | 25.90 (-1.52%) 35.30 (-1.12%) 47.20 52.90 (+0.95%) | 17.50 (+22.38%) 26.60 (+20.91%) 40.80 (+12.09%) 50.70 (+8.33%)

+IMPARTAIL (Ours) | 40 | 26.50 (+0.76%) 35.50 (-0.56%) 47.20 52.40 15.30 (+6.99%)  22.90 (+4.09%)  37.10 (+1.92%)  47.60 (+1.71%)

+IMPARTAIL (Ours) | 10 | 22.80 (-13.31%)  32.20 (-9.80%)  44.60 (-5.51%) 51.20(-2.29%) | 20.20 (+41.26%) 29.30 (+33.18%) 43.30 (+18.96%) 51.30 (+9.62%)

Table 13. AGS-No Constraint-0.5 results for SGA.

| Method [ | NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 24.60 38.40 54.50 58.60 13.90 21.30 38.50 52.50
+IMPARTAIL (Ours) | 70 | 24.00 (244%)  38.10 (:0.78%)  54.00 (:0.92%) 58.60 1260 (:935%)  19.90 (6.57%)  37.90 (-1.56%) 5340 (+1.71%)
+IMPARTAIL (Ours) | 40 | 23.10 (-6.10%)  37.60 (:2.08%)  53.60 (-165%) 58.50 (0.17%) | 12.90 (-7.19%) 21.30 39.00 (+1.30%)  53.90 (+2.67%)

+IMPARTAIL (Ours) | 10 | 21.00 (-14.63%)  33.10 (-13.80%) 51.90 (-4.77%) 58.40 (-0.34%) | 12.10(-12.95%)  20.00 (-6.10%)  39.60 (+2.86%) 54.30 (+3.43%)

DSGDetr++ [30] - 21.90 34.70 52.10 57.30 11.80 18.20 36.10 52.70
+IMPARTAIL (Ours) | 70 | 22.80 (+4.11%)  36.10 (+4.03%)  52.90 (+1.54%) 58.30 (+1.75%) | 13.10 (+11.02%) 20.60 (+13.19%) 37.80 (+4.71%)  55.60 (+5.50%)
+IMPARTAIL (Ours) | 40 | 20.00 (-8.68%) 32.30(-6.92%)  51.30 (-1.54%) 57.50 (+0.35%) | 13.10 (+11.02%) 21.60 (+18.68%)  39.60 (+9.70%)  56.40 (+7.02%)

0.5 +IMPARTAIL (Ours) | 10 | 20.00 (-8.68%) 32.10 (-7.49%)  50.50 (-3.07%) 56.70 (-1.05%) | 13.50 (+14.41%) 22.90 (+25.82%) 40.70 (+12.74%) 52.60 (-0.19%)

SceneSayerODE [30] - 25.80 35.80 48.90 55.00 14.00 22.30 36.50 49.00
+IMPARTAIL (Ours) | 70 | 23.40 (-9.30%) 33.50 (-6.42%)  47.00 (-3.89%) 54.20 (-1.45%) | 14.90 (+6.43%)  23.20 (+4.04%)  37.30 (+2.19%)  48.40 (-1.22%)
+IMPARTAIL (Ours) | 40 | 29.40 (+13.95%) 39.50 (+10.34%) 51.40 (+5.11%) 56.10 (+2.00%) | 15.30 (+9.29%)  22.90 (+2.69%)  37.90 (+3.84%) 49.00

+IMPARTAIL (Ours) | 10 | 24.90 (-3.49%) 3490 (-2.51%)  48.60 (-0.61%) 55.60 (+1.09%) | 15.60 (+11.43%) 24.80 (+11.21%) 39.70 (+8.77%)  50.50 (+3.06%)

SceneSayerSDE [30] - 29.00 39.10 51.50 56.70 15.40 23.70 38.70 50.80
+IMPARTAIL (Ours) | 70 | 28.10 (-3.10%) 38.20 (-2.30%)  50.90 (-1.17%)  56.40 (-0.53%) | 18.20 (+18.18%) 27.10 (+14.35%) 42.80 (+10.59%) 52.80 (+3.94%)
+IMPARTAIL (Ours) | 40 | 29.20 (+0.69%)  39.30 (+0.51%) 51.80 (+0.58%) 56.60 (-0.18%) | 16.50 (+7.14%)  25.10 (+5.91%)  40.10 (+3.62%)  50.60 (-0.39%)
+IMPARTAIL (Ours) | 10 | 25.10 (-13.45%)  35.70 (-8.70%)  48.50 (-5.83%)  54.90 (-3.17%) | 21.80 (+41.56%) 31.40 (+32.49%) 45.40 (+17.31%) 53.80 (+5.91%)
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Table 14. AGS-No Constraint-0.7 results for SGA.

| Method [ | NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 27.20 42.10 59.70 63.90 15.70 23.70 41.90 57.50
+IMPARTAIL (Ours) | 70 | 26.80 (-1.47%)  43.00 (+2.14%) 59.70 63.90 1490 (-5.10%)  23.90 (+0.84%)  42.60 (+1.67%)  58.30 (+1.39%)
+IMPARTAIL (Ours) | 40 | 25.80 (-5.15%) 41.80 (-0.71%) 59.30 (-0.67%) 63.80 (-0.16%) | 14.90 (-5.10%)  24.70 (+4.22%)  44.00 (+5.01%)  58.90 (+2.43%)
+IMPARTAIL (Ours) | 10 | 23.60 (-13.24%) 36.50 (-13.30%) 57.00 (-4.52%) 63.50 (-0.63%) | 14.00 (-10.83%) 2320 (-2.11%)  43.70 (+4.30%)  59.60 (+3.65%)
DSGDetr++ [30] - 24.90 38.20 56.90 62.00 1320 20.00 38.80 56.50
+IMPARTAIL (Ours) | 70 | 24.80 (-0.40%)  40.00 (+4.71%) 57.80 (+1.58%) 6320 (+1.94%) | 14.40 (+9.09%) 2320 (+16.00%) 41.30 (+6.44%)  56.90 (+0.71%)
+IMPARTAIL (Ours) | 40 | 22.50 (:9.64%)  36.70 (-3.93%) 56.30 (-1.05%) 61.70 (-0.48%) | 14.90 (+12.88%) 24.80 (+24.00%) 43.90 (+13.14%) ~57.20 (+1.24%)
0.7 | +IMPARTAIL (Ours) | 10 | 22.20 (-10.84%)  35.70 (-6.54%)  56.00 (-1.58%) 62.10 (+0.16%) | 15.90 (+20.45%) 26.70 (+33.50%) 4530 (+16.75%) 57.90 (+2.48%)
SceneSayerODE [30] - 31.70 42.10 55.10 60.50 16.40 24.90 40.50 53.00
+IMPARTAIL (Ours) | 70 | 28.90 (-8.83%)  39.50 (-6.18%)  53.30(-3.27%)  59.90 (-0.99%) | 17.80 (+8.54%)  27.00 (+8.43%)  41.60 (+2.72%)  53.40 (+0.75%)
+IMPARTAIL (Ours) | 40 | 34.00 (+7.26%) 44.30 (+5.23%) 56.00 (+1.63%) 60.60 (+0.17%) | 17.50 (+6.71%)  25.80 (+3.61%)  41.10 (+1.48%)  52.60 (-0.75%)
+IMPARTAIL (Ours) | 10 | 29.20 (-7.89%)  40.00 (-4.99%)  53.40 (-3.09%)  60.00 (-0.83%) | 18.90 (+15.24%) 29.40 (+18.07%) d43.80 (+8.15%)  53.90 (+1.70%)
SceneSayerSDE [30] - 33.80 43.90 56.40 61.10 17.30 26.10 42.50 54.00
+IMPARTAIL (Ours) | 70 | 33.40 (-1.18%)  43.70 (-0.46%)  56.00 (-0.71%) 61.10 21,10 (+21.97%)  31.40 (+20.31%)  46.80 (+10.12%)  57.20 (+5.93%)
+IMPARTAIL (Ours) | 40 | 34.20 (+1.18%)  44.40 (+1.14%) 56.80 (+0.71%) 6140 (+0.49%) | 19.00 (+9.83%)  27.80 (+6.51%)  43.60 (+2.59%)  54.40 (+0.74%)
+IMPARTAIL (Ours) | 10 | 30.00 (-11.24%)  41.20 (-6.15%)  54.20 (-3.90%) 60.30 (-1.31%) | 25.60 (+47.98%) 35.10 (+34.48%) 50.00 (+17.65%) 58.00 (+7.41%)
Table 15. AGS-No Constraint-0.9 results for SGA.
7 | Method [ | NO CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 30.20 45.80 64.40 68.40 18.20 27.50 47.20 62.80
+IMPARTAIL (Ours) | 70 | 30.10 (-0.33%)  47.80 (+4.37%) 64.50 (+0.16%) 68.40 19.50 (+7.14%)  29.60 (+7.64%)  50.00 (+5.93%)  64.00 (+1.91%)
+IMPARTAIL (Ours) | 40 | 29.30 (-2.98%)  47.10 (+2.84%) 64.50 (+0.16%) 68.30 (-0.15%) | 20.50 (+12.64%) 31.80 (+15.64%) 5190 (+9.96%)  63.80 (+1.59%)
+IMPARTAIL (Ours) | 10 | 2630 (-1291%) 40.70 (-11.14%) ~ 60.90 (-5.43%)  68.00 (-0.58%) | 18.80 (+3.30%)  30.40 (+10.55%) 51.40 (+8.90%)  64.80 (+3.18%)
DSGDetr++ [30] - 28.70 43.40 62.70 67.10 15.50 23.80 44.90 61.70
+IMPARTAIL (Ours) | 70 | 27.90 (-2.79%) 4510 (+3.92%) 63.90 (+1.91%) 68.40 (+1.94%) | 18.50 (+19.35%) 28.70 (+20.59%)  48.50 (+8.02%)  62.00 (+0.49%)
+IMPARTAIL (Ours) | 40 | 27.40 (-4.53%)  43.80 (+0.92%) 62.90 (+0.32%) 67.40 (+0.45%) | 20.50 (+32.26%) 32.30 (+35.71%) 52.40 (+16.70%) 63.00 (+2.11%)
0.9 | +IMPARTAIL (Ours) | 10 | 2620 (-8.71%)  40.60 (-6.45%) 61.40 (-2.07%) 67.60 (+0.75%) | 21.20 (+36.77%) 32.10 (+34.87%) 51.20 (+14.03%) 61.70
SceneSayerODE [30] | - 37.80 49.10 61.40 66.20 18.90 28.60 45.20 58.40
+IMPARTAIL (Ours) | 70 | 35.60 (-5.82%)  47.00 (-4.28%)  60.00 (-2.28%) 6520 (-1.51%) | 21.20 (+12.17%) 31.80 (+11.19%) 4820 (+6.64%)  58.20 (-0.34%)
+IMPARTALL (Ours) | 40 | 39.30 (+3.97%) 50.10 (+2.04%) 61.60 (+0.33%) 66.10 (-0.15%) | 20.10 (+6.35%)  29.60 (+3.50%)  45.60 (+0.88%)  57.80 (-1.03%)
+IMPARTAIL (Ours) | 10 | 3420 (:9.52%)  46.00 (-631%) 59.20(-3.58%) 6530 (-1.36%) | 23.10 (+22.22%) 33.90 (+18.53%) 49.50 (+9.51%)  58.00 (-0.68%)
SceneSayerSDE [30] - 38.50 49.90 61.90 66.50 19.10 29.00 45.60 59.40
+IMPARTAIL (Ours) | 70 | 39.30 (+2.08%)  50.60 (+1.40%) 61.90 66.40 (-0.15%) | 24.80 (+29.84%) 3630 (+25.17%)  51.30 (+12.50%) ~ 60.00 (+1.01%)
+IMPARTAIL (Ours) | 40 | 40.20 (+4.42%) 50.80 (+1.80%) 62.00 (+0.16%) 66.70 (+0.30%) | 21.80 (+14.14%)  31.40 (+8.28%)  47.60 (+4.39%)  58.70 (-1.18%)
+IMPARTAIL (Ours) | 10 | 35.50 (-7.79%)  47.20 (-5.41%)  60.70 (-1.94%)  66.00 (-0.75%) | 29.30 (+53.40%) 39.40 (+35.86%) 53.00 (+16.23%) 63.60 (+7.07%)
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Table 16. GAGS-With Constraint-0.3 results for SGA.

6.2.5. Results - With Constraint Setting - Grounded Action Genome Scenes (GAGS)
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7 | Method \ s \ WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 26.50 29.50 29.60 29.60 15.90 18.50 18.60 18.60
+IMPARTAIL (Ours) | 70  36.60 (+38.11%) 39.70 (+34.58%) 39.80 (+34.46%) 39.80 (+34.46%) 1870 (+17.61%) 21.40 (+15.68%) 21.40 (+15.05%) 21.40 (+15.05%)
+IMPARTAIL (Ours) | 40 | 32.60 (+23.02%) 35.60 (+20.68%) 35.60 (+20.27%) 35.60 (+20.27%) | 17.00 (+6.92%)  19.40 (+4.86%)  19.40 (+4.30%)  19.40 (+4.30%)
+IMPARTAIL (Ours) | 10 | 33.30 (+25.66%) 35.80 (+21.36%) 35.80 (+20.95%) 35.80 (+20.95%) | 17.80 (+11.95%) 20.40 (+10.27%) 2040 (+9.68%)  20.40 (+9.68%)
DSGDetr++ [30] - 36.20 39.30 39.30 39.30 15.10 17.50 1750 17.50
+IMPARTAIL (Ours) | 70 37.00 (+2.21%)  40.20 (+2.29%) 4030 (+2.54%)  40.30 (+2.54%) | 17.20 (+13.91%) 19.90 (+13.71%) 20.00 (+14.29%) 20.00 (+14.29%)
+IMPARTAIL (Ours) | 40 | 36.40 (+0.55%)  39.40 (+0.25%)  39.40 (+0.25%)  39.40 (+0.25%) 1890 (+25.17%) 22.00 (+25.71%) 22.00 (+25.71%) 22.00 (+25.71%)
0.3 | +IMPARTAIL (Ours) | 10 | 30.90 (-14.64%) 3320 (-1552%) 3320 (-15.52%) 3320 (-15.52%) | 17.10 (+1325%) 1970 (+12.57%) 19.70 (+12.57%) 1970 (+12.57%)
SceneSayerODE [30] | - 34.60 37.30 37.30 37.30 | 1520 17.90 18.00 18.00
+IMPARTAIL (Ours) | 70 | 33.20 (-4.05%)  36.00 (-349%)  36.00 (-3.49%)  36.00 (-3.49%) 1740 (+1447%) 2110 (+17.88%) 21.20 (+17.78%) 21.20 (+17.78%)
+IMPARTAIL (Ours) | 40 | 33.70 (-2.60%) 3640 (2.41%) 3640 (-241%)  36.40 (-241%) | 1330 (-1250%) 15.90 (-11.17%)  15.90 (-11.67%)  15.90 (-11.67%)
+IMPARTAIL (Ours) | 10 | 23.10 (-33.24%) 2470 (-33.78%)  24.70 (-33.78%)  24.70 (-33.78%) | 16.50 (+8.55%) 19.80 (+10.61%) 19.90 (+10.56%) 19.90 (+10.56%)
SceneSayerSDE [30] - 38.30 41.70 41.70 41.70 16.10 19.20 19.30 19.30
+IMPARTAIL (Ours) | 70 | 36.40 (-4.96%)  39.70 (-4.80%)  39.80 (-4.56%)  39.80 (-4.56%) | 2030 (+26.09%) 24.60 (+28.12%) 24.70 (+27.98%) 24.70 (+27.98%)
+IMPARTAIL (Ours) | 40  38.60 (+0.78%)  42.00 (+0.72%)  42.00 (+0.72%)  42.00 (+0.72%) 16.10 19.20 1920 (-0.52%)  19.20 (-0.52%)
+IMPARTAIL (Ours) | 10 | 30.60 (-20.10%)  33.00 (:20.86%) ~33.00 (-20.86%) 33.00 (-20.86%) 24.50 (+52.17%) 29.90 (+55.73%) 30.00 (+55.44%) 30.00 (+55.44%)
Table 17. GAGS-With Constraint-0.5 results for SGA.
| Method s \ WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 30.90 34.20 34.20 3420 17.80 20.90 21.00 21.00
+IMPARTAIL (Ours) | 70 4170 (+34.95%) 45.00 (+31.58%) 45.10 (+31.87%) 45.10 (+31.87%) 2130 (+19.66%) 24.80 (+18.66%) 24.80 (+18.10%) 24.80 (+18.10%)
+IMPARTAIL (Ours) | 40 | 36.70 (+18.77%) 40.00 (+16.96%) 40.00 (+16.96%) 40.00 (+16.96%) | 19.10 (+7.30%)  22.10 (+5.74%)  22.10 (+5.24%)  22.10 (+5.24%)
+IMPARTAIL (Ours) | 10 | 37.50 (+21.36%) 40.20 (+17.54%) 40.20 (+17.54%) 40.20 (+17.54%) | 19.90 (+11.80%) 2270 (+8.61%)  22.80 (+8.57%)  22.80 (+8.57%)
DSGDetr-++ [30] - 4120 44.60 4470 4470 17.10 20.00 20.00 20.00
+IMPARTAIL (Ours) | 70 4190 (+1.70%)  45.40 (+1.79%) 4540 (+1.57%)  45.40 (+1.57%) ‘ 19.90 (+16.37%)  23.10 (+15.50%)  23.10 (+15.50%)  23.10 (+15.50%)
+IMPARTAIL (Ours) | 40 4120 4450 (-0.22%)  44.50 (-045%)  44.50 (-0.45%)  21.20 (+23.98%) 24.50 (+22.50%) 24.60 (+23.00%) 24.60 (+23.00%)
0.5 | +IMPARTAIL (Ours) | 10 | 3470 (-15.78%) 3740 (-16.14%) 37.40 (-1633%) 37.40 (-16.33%) | 21.10 (+2339%) 24.50 (+22.50%) 24.50 (+22.50%) 24.50 (+22.50%)
SceneSayerODE [30] | - 40.30 43.50 43.50 4350 | 17.50 20.70 20.90 20.90
+IMPARTAIL (Ours) | 70 | 38.00 (-5.71%)  41.10 (-552%)  41.10 (-552%)  41.10(-5.52%) 19.50 (+11.43%) 23.70 (+14.49%) 23.90 (+14.35%) 23.90 (+14.35%)
+IMPARTAIL (Ours) | 40 | 39.00 (-3.23%) 4230 (-2.76%) 4230 (-2.76%)  42.30 (-2.76%) | 15.00 (-14.29%) 18.00 (-13.04%) 18.10 (-13.40%)  18.10 (-13.40%)
+IMPARTAIL (Ours) | 10 | 27.50 (-31.76%) 2940 (-32.41%)  29.40 (-32.41%)  29.40 (-32.41%) ‘ 1930 (+10.29%) 2320 (+12.08%) 23.50 (+12.44%)  23.50 (+12.44%)
SceneSayerSDE [30] - 43.70 47.40 47.40 47.40 18.20 21.70 21.80 21.80
+IMPARTAIL (Ours) | 70 | 40.90 (-6.41%)  44.40 (-6.33%)  44.40(-6.33%)  44.40 (-6.33%) | 22.40 (+23.08%) 27.00 (+24.42%) 27.30 (+25.23%) 27.30 (+25.23%)
+IMPARTAIL (Ours) | 40 | 4320 (-1.14%)  46.90 (-1.05%)  46.90 (-1.05%)  46.90 (-1.05%) | 17.80(-220%) 2120 (-230%)  21.40(-1.83%)  21.40 (-1.83%)
+IMPARTAIL (Ours) | 10 | 3530 (-19.22%)  37.90 (-20.04%)  37.90 (-20.04%)  37.90 (-20.04%)  27.60 (+51.65%) 33.40 (+53.92%) 33.60 (+54.13%) 33.60 (+54.13%)
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Table 18. GAGS-With Constraint-0.7 results for SGA.

7 Im [ o] WITH CONSTRAINT
ethod S
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 37.30 40.50 40.50 40.50 21.90 25.00 25.00 25.00
+IMPARTAIL (Ours) | 70  49.50 (+32.71%) 52.70 (+30.12%) 5270 (+30.12%) 5270 (+30.12%) 26.20 (+19.63%) 30.10 (+20.40%) 30.10 (+20.40%) 30.10 (+20.40%)
+IMPARTAIL (Ours) | 40 | 44.80 (+20.11%) 47.70 (+17.78%) 47.70 (+17.78%) 47.70 (+17.78%) | 24.00 (+9.59%)  26.90 (+7.60%)  26.90 (+7.60%)  26.90 (+7.60%)
+IMPARTAIL (Ours) | 10 | 43.70 (+17.16%) 46.20 (+14.07%) 4620 (+14.07%) 46.20 (+14.07%) | 25.80 (+17.81%) 29.10 (+16.40%) 29.10 (+16.40%) 29.10 (+16.40%)
DSGDetr++ [30] - 48.50 51.80 51.80 51.80 20.80 23.80 23.80 23.80
+IMPARTAIL (Ours) | 70  49.80 (+2.68%)  52.90 (+2.12%)  53.00 (+2.32%)  53.00 (+2.32%) | 2530 (+21.63%) 28.70 (+20.59%) 28.70 (+20.59%) 28.70 (+20.59%)
+IMPARTAIL (Ours) | 40 | 4920 (+1.44%)  52.30 (+0.97%) 5230 (+0.97%)  52.30 (+0.97%) | 26.90 (+29.33%) 30.70 (+28.99%) 30.80 (+29.41%) 30.80 (+29.41%)
07 | +IMPARTAIL (Ours) | 10 | 40.70 (-16.08%) 43.10 (-16.80%) 43.10 (-16.80%) 43.10 (-16.80%) 28.30 (+36.06%) 32.50 (+36.55%) 32.50 (+36.55%) 32.50 (+36.55%)
SceneSayerODE [30] | - 48.50 51.50 51.50 51.50 20.70 24.00 24.00 24.00
+IMPARTAIL (Ours) | 70 | 4550 (-6.19%) 4850 (-5.83%)  48.50 (-5.83%)  48.50 (-5.83%)  23.50 (+13.53%) 27.80 (+15.83%) 27.90 (+16.25%) 27.90 (+16.25%)
+IMPARTAIL (Ours) | 40 | 47.50 (-2.06%)  50.60 (-1.75%)  50.60 (-1.75%)  50.60 (-1.75%) | 18.10 (-12.56%) 2130 (-11.25%) 2130 (-11.25%)  21.30 (-11.25%)
+IMPARTAIL (Ours) | 10 | 34.30 (-29.28%) 3620 (-29.71%) 3620 (-29.71%)  36.20 (-29.71%) | 23.20 (+12.08%) 27.50 (+14.58%) 27.50 (+14.58%) 27.50 (+14.58%)
SceneSayerSDE [30] - 50.90 54.10 54.10 54.10 21.00 24.60 24.60 24.60
+IMPARTAIL (Ours) | 70 | 48.50 (-4.72%)  51.70 (-4.44%) 5170 (-4.44%)  51.70 (-4.44%) | 26.50 (+26.19%) 31.40 (+27.64%) 31.50 (+28.05%) 31.50 (+28.05%)
+IMPARTAIL (Ours) | 40 | 50.50 (-0.79%)  53.80 (-0.55%)  53.80 (-0.55%)  53.80 (-0.55%) | 20.90 (-0.48%)  24.40 (-0.81%)  24.40(-0.81%)  24.40(-0.81%)
+IMPARTAIL (Ours) | 10 | 4150 (-1847%) 43.90 (-18.85%) 43.90 (-18.85%) 43.90 (-18.85%) 32.10 (+52.86%) 38.40 (+56.10%) 38.50 (+56.50%) 38.50 (+56.50%)
Table 19. GAGS-With Constraint-0.9 results for SGA.
7 | Method \ s \ WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 45.50 47.80 47.80 47.80 28.80 31.30 31.30 31.30
+IMPARTAIL (Ours) | 70  59.00 (+29.67%) 61.30 (+28.24%) 6130 (+28.24%) 61.30 (+28.24%) | 34.20 (+18.75%) 37.20 (+18.85%) 3730 (+19.17%) 37.30 (+19.17%)
+IMPARTAIL (Ours) | 40 | 53.90 (+18.46%) 56.00 (+17.15%) 56.00 (+17.15%) 56.00 (+17.15%) | 31.90 (+10.76%)  34.40 (+9.90%)  34.40 (+9.90%)  34.40 (+9.90%)
+IMPARTAIL (Ours) | 10 | 50.90 (+11.87%) 52.70 (+10.25%) 5270 (+10.25%) 52.70 (+10.25%) 36.70 (+27.43%) 40.30 (+28.75%) 40.30 (+28.75%) 40.30 (+28.75%)
DSGDetr++ [30] - 57.70 60.00 60.00 60.00 27.00 29.40 29.40 29.40
+IMPARTAIL (Ours) | 70 59.20 (+2.60%)  61.40 (+2.33%)  61.40 (+2.33%)  61.40 (+2.33%) | 34.20 (+26.67%) 36.90 (+25.51%) 36.90 (+25.51%) 36.90 (+25.51%)
+IMPARTAIL (Ours) | 40 | 57.00(-121%)  59.10 (-1.50%)  59.10 (-1.50%)  59.10 (-1.50%) | 37.00 (+37.04%) 40.10 (+36.39%) 40.10 (+36.39%) 40.10 (+36.39%)
09 | +IMPARTAIL (Ours) | 10 | 46.10 (-20.10%) 47.60 (-20.67%) 47.60 (-20.67%)  47.60 (-20.67%) 38.70 (+43.33%) 42.80 (+45.58%) 42.80 (+45.58%) 42.80 (+45.58%)
SceneSayerODE [30] | - 58.50 60.60 60.60 60.60 25.10 27.60 27.60 27.60
+IMPARTAIL (Ours) | 70 | 54.10 (-7.52%)  56.10 (-7.43%)  56.10 (-743%)  56.10 (-7.43%) | 27.70 (+10.36%) 30.60 (+10.87%) 30.60 (+10.87%) 30.60 (+10.87%)
+IMPARTAIL (Ours) | 40 | 56.70 (-3.08%)  59.00 (-2.64%)  59.00 (-2.64%)  59.00 (-2.64%) | 21.80 (-13.15%) 24.40 (-11.59%) 24.40 (-11.59%)  24.40 (-11.59%)

+IMPARTAIL (Ours) | 10 | 43.80 (-25.13%)  45.30 (-25.25%) 45.30(-25.25%) 4530 (-25.25%) 28.50 (+13.55%) 31.60 (+14.49%) 31.60 (+14.49%) 31.60 (+14.49%)
SceneSayerSDE [30] - 59.00 61.20 61.20 61.20 24.70 27.30 27.30 27.30
+IMPARTAIL (Ours) | 70 | 57.00 (-3.39%) 59.20 (-3.27%) 59.20 (-3.27%) 59.20 (-3.27%) | 31.80 (+28.74%) 35.40 (+29.67%) 35.40 (+29.67%) 35.40 (+29.67%)
+IMPARTAIL (Ours) | 40 | 58.10 (-1.53%) 60.30 (-1.47%) 60.30 (-1.47%) 60.30 (-1.47%) 24.60 (-0.40%) 27.30 27.30 27.30
+IMPARTAIL (Ours) | 10 | 49.40 (-16.27%) 51.10 (-16.50%)  51.10(-16.50%) 51.10 (-16.50%)  38.60 (+56.28%) 43.50 (+59.34%) 43.50 (+59.34%) 43.50 (+59.34%)
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353 6.2.6. Results - With Constraint Setting - Partially Grounded Action Genome Scenes (PGAGS)

Table 20. PGAGS-With Constraint-0.3 results for SGA.

7 | Method \ s \ WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 2030 21.40 21.40 21.40 12.60 13.60 13.60 13.60
+IMPARTAIL (Ours) | 70 | 26.70 (+31.53%) 27.70 (+29.44%) 27.70 (+29.44%)  27.70 (+29.44%) | 12.80 (+1.59%) 13.60 13.60 13.60
+IMPARTAIL (Ours) | 40  27.60 (+35.96%) 28.70 (+34.11%) 28.70 (+34.11%) 28.70 (+34.11%) | 15.10 (+19.84%) 16.30 (+19.85%) 16.30 (+19.85%) 1630 (+19.85%)
+IMPARTAIL (Ours) | 10 | 21.80 (+7.39%) 2240 (+4.67%) 2240 (+4.67%) 2240 (+4.67%) 17.60 (+39.68%) 18.90 (+38.97%) 18.90 (+38.97%) 18.90 (+38.97%)
DSGDetr++ [30] - 28.10 29.30 29.30 29.30 13.00 14.00 14.00 14.00
+IMPARTAIL (Ours) | 70 | 26.50 (-5.69%)  27.60 (-5.80%)  27.60(-5.80%)  27.60(-5.80%) | 14.70 (+13.08%) 15.80 (+12.86%) 15.80 (+12.86%) 15.80 (+12.86%)
+IMPARTAIL (Ours) | 40 | 24.60 (-12.46%) 25.80 (-11.95%) 25.80 (-11.95%) 25.80 (-11.95%) | 13.90 (+6.92%)  14.90 (+6.43%)  14.90 (+6.43%)  14.90 (+6.43%)
03| +IMPARTAIL (Ours) | 10 | 2530 (-9.96%) 2630 (-10.24%) 2630 (-1024%)  26.30 (-10.24%) 16.40 (+26.15%) 17.80 (+27.14%) 17.80 (+27.14%) 17.80 (+27.14%)
SceneSayerODE [30] | - 22.60 23.70 23.80 23.80 9.40 10.50 10.50 10.50
+IMPARTAIL (Ours) | 70 | 18.10 (-19.91%)  18.80 (-20.68%) 18.80 (-21.01%)  18.80 (-21.01%) | 10.50 (+11.70%) 11.80 (+12.38%) 11.80 (+12.38%) 11.80 (+12.38%)
+IMPARTAIL (Ours) | 40  28.00 (+23.89%) 29.40 (+24.05%) 29.40 (+23.53%) 29.40 (+23.53%) | 12,70 (+35.11%) 14.10 (+34.29%) 14.10 (+34.29%) 14.10 (+34.29%)
+IMPARTAIL (Ours) | 10 | 21.60 (4.42%) 2230 (-5.91%) 2240 (-5.88%)  22.40 (-5.88%) 15.60 (+65.96%) 17.80 (+69.52%) 17.80 (+69.52%) 17.80 (+69.52%)
SceneSayerSDE [30] - 29.30 30.80 30.80 30.80 13.50 15.20 1520 15.20
+IMPARTAIL (Ours) | 70 | 27.70 (-5.46%) 2920 (-5.19%)  29.20(-5.19%)  29.20 (-5.19%) | 1650 (+22.22%) 18.50 (+21.71%) 18.50 (+21.71%) 18.50 (+21.71%)
+IMPARTAIL (Ours) | 40 | 28.60 (-239%)  30.10 (-2.27%)  30.10(-227%)  30.10 (-227%) | 14.10 (+4.44%)  15.80 (+3.95%)  15.80 (+3.95%)  15.80 (+3.95%)
+IMPARTAIL (Ours) | 10 | 25.60 (-12.63%) 26.80 (-12.99%) 26.80 (-12.99%) 26.80 (-12.99%)  20.30 (+50.37%) 23.90 (+57.24%) 23.90 (+57.24%) 23.90 (+57.24%)
Table 21. PGAGS-With Constraint-0.5 results for SGA.
| Method s \ WITH CONSTRAINT
| R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 22.50 23.80 23.80 23.80 14.30 15.80 15.80 15.80
+IMPARTAIL (Ours) | 70 | 29.50 (+31.11%)  30.60 (+28.57%) 30.60 (+28.57%) 30.60 (+28.57%) | 14.50 (+1.40%) 1570 (-0.63%)  15.70 (-0.63%)  15.70 (-0.63%)
+IMPARTAIL (Ours) | 40 3020 (+34.22%) 31.40 (+31.93%) 31.40 (+31.93%) 31.40 (+31.93%) | 16.90 (+18.18%) 18.50 (+17.09%) 18.50 (+17.09%) 18.50 (+17.09%)
+IMPARTAIL (Ours) | 10 | 2410 (+7.11%)  25.00 (+5.04%) ~ 25.00 (+5.04%) 2500 (+5.04%) 20.20 (+41.26%) 22.00 (+39.24%) 22.00 (+39.24%) 22.00 (+39.24%)
DSGDetr-++ [30] - 31.70 33.00 33.00 33.00 15.00 16.30 1630 16.30
+IMPARTAIL (Ours) | 70 | 28.70 (-9.46%)  29.90 (-9.39%)  29.90 (-9.39%)  29.90 (-9.39%) | 16.80 (+12.00%) 18.30 (+12.27%) 18.30 (+12.27%) 18.30 (+12.27%)
+IMPARTAIL (Ours) | 40 | 2830 (-10.73%)  29.50 (-10.61%)  29.50 (-10.61%)  29.50 (-10.61%) | 16.00 (+6.67%) 1740 (+6.75%) 1740 (+6.75%)  17.40 (+6.75%)
05| +IMPARTAIL (Ours) | 10 | 28.50 (-10.09%) 29.50 (-10.61%)  29.50 (-10.61%) 29.50 (-10.61%)  18.60 (+24.00%) 20.10 (+2331%) 20.10 (+23.31%) 20.10 (+23.31%)
SceneSayerODE [30] | - 25.80 27.20 2720 27.20 11.20 12.80 12.80 12.80
+IMPARTAIL (Ours) | 70 | 21.20 (-17.83%) 2220 (-18.38%) 22.20 (-18.38%)  22.20 (-18.38%) | 12.60 (+12.50%) 14.50 (+13.28%) 14.50 (+13.28%) 14.50 (+13.28%)
+IMPARTAIL (Ours) | 40  31.90 (+23.64%) 33.60 (+23.53%) 33.60 (+23.53%) 33.60 (+23.53%) | 14.50 (+29.46%) 1640 (+28.12%) 16.40 (+28.12%)  16.40 (+28.12%)
+IMPARTAIL (Ours) | 10 | 2530 (-1.94%)  2630(331%)  2630(-331%) 2630 (-331%) 18.00 (+60.71%) 21.30 (+66.41%) 2140 (+67.19%) 21.40 (+67.19%)
SceneSayerSDE [30] - 33.00 34.80 34.80 34.80 15.20 17.50 17.50 17.50
+IMPARTAIL (Ours) | 70 | 31.20 (-5.45%)  32.80 (-5.75%)  32.80(-5.75%)  32.80 (-5.75%) | 18.40 (+21.05%) 21.00 (+20.00%) 21.10 (+20.57%) 21.10 (+20.57%)
+IMPARTAIL (Ours) | 40 | 3230 (-2.12%)  34.10(-2.01%)  34.10(-2.01%)  34.10(-2.01%) | 15.70 (+3.29%)  17.90 (+2.29%)  17.90 (+2.29%)  17.90 (+2.29%)
+IMPARTAIL (Ours) | 10 | 28.90 (-12.42%) 3030 (-12.93%)  30.30 (-12.93%)  30.30 (-12.93%) 2220 (+46.05%) 26.50 (+51.43%) 26.50 (+51.43%) 26.50 (+51.43%)
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Table 22. PGAGS-With Constraint-0.7 results for SGA.

7 Im [ o] WITH CONSTRAINT
ethod S
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 27.10 28.20 2820 28.20 17.20 18.60 18.60 18.60
+IMPARTAIL (Ours) | 70 36.10 (+33.21%) 37.10 (+31.56%) 37.10 (+31.56%) 37.10 (+31.56%) | 18.70 (+8.72%)  19.90 (+6.99%)  19.90 (+6.99%)  19.90 (+6.99%)
+IMPARTAIL (Ours) | 40 | 36.00 (+32.84%) 37.00 (+31.21%) 37.00 (+3121%) 37.00 (+31.21%) | 21.00 (+22.09%) 22.70 (+22.04%) 22.70 (+22.04%) 22.70 (+22.04%)
+IMPARTAIL (Ours) | 10 | 29.60 (+9.23%)  30.20 (+7.09%) 3020 (+7.09%)  30.20 (+7.09%)  25.60 (+48.84%) 27.40 (+47.31%) 27.40 (+47.31%) 27.40 (+47.31%)
DSGDetr-++ [30] - 37.30 38.50 38.50 38.50 18.10 19.40 19.40 19.40
+IMPARTAIL (Ours) | 70 | 3430 (-8.04%) 3540 (-8.05%) 3540 (-8.05%) 3540 (-8.05%) | 20.70 (+14.36%) 22.10 (+13.92%) 22.10 (+13.92%) 22.10 (+13.92%)
+IMPARTAIL (Ours) | 40 | 33.90 (:9.12%) 3490 (-935%)  34.90(-935%)  34.90 (-9.35%) | 20.60 (+13.81%) 21.80 (+12.37%) 21.80 (+12.37%) 21.80 (+12.37%)
07| +IMPARTAIL (Ours) | 10 | 33.40 (-10.46%) 34.50 (-10.39%) 34.50 (-10.39%) 34.50 (-10.39%) ~ 23.60 (+30.39%) 25.50 (+31.44%) 25.50 (+31.44%) 25.50 (+31.44%)
SceneSayerODE [30] | - 30.80 32.20 32.20 32.20 13.60 15.10 15.10 15.10
+IMPARTAIL (Ours) | 70 | 25.60 (-16.88%)  26.60 (-17.39%)  26.60 (-17.39%)  26.60 (-17.39%) | 14.70 (+8.09%)  16.70 (+10.60%) 16.70 (+10.60%)  16.70 (+10.60%)
+IMPARTAIL (Ours) | 40  37.20 (+20.78%) 38.70 (+20.19%) 38.70 (+20.19%) 38.70 (+20.19%) | 16.90 (+24.26%) 18.70 (+23.84%) 18.80 (+24.50%) 18.80 (+24.50%)
+IMPARTAIL (Ours) | 10 | 3110 (+0.97%)  32.10(-031%)  32.10(-031%)  32.10(-031%) 2220 (+63.24%) 25.60 (+69.54%) 25.70 (+70.20%) 25.70 (+70.20%)
SceneSayerSDE [30] - 38.80 40.30 40.30 40.30 17.90 19.90 19.90 19.90
+IMPARTAIL (Ours) | 70 | 36.80 (-5.15%)  38.30(-4.96%) 3830 (-4.96%)  38.30 (-4.96%) | 21.70 (+21.23%) 24.00 (+20.60%) 24.00 (+20.60%) 24.00 (+20.60%)
+IMPARTAIL (Ours) | 40 | 3840 (-1.03%)  40.00 (-0.74%)  40.00 (-0.74%)  40.00 (-0.74%) | 18.80 (+5.03%)  20.70 (+4.02%)  20.70 (+4.02%)  20.70 (+4.02%)
+IMPARTAIL (Ours) | 10 | 3440 (-11.34%)  35.60 (-11.66%)  35.60 (-11.66%)  35.60 (-11.66%) 25.90 (+44.69%) 30.00 (+50.75%) 30.10 (+51.26%) 30.10 (+51.26%)
Table 23. PGAGS-With Constraint-0.9 results for SGA.
7 | Method \ s \ WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 31.00 31.80 31.80 31.80 21.20 22.50 2250 22.50
+IMPARTAIL (Ours) | 70  42.00 (+35.48%) 42.80 (+34.59%) 42.80 (+34.59%) 42.80 (+34.59%) | 26.00 (+22.64%) 27.20 (+20.89%) 27.20 (+20.89%) 27.20 (+20.89%)
+IMPARTAIL (Ours) | 40 | 39.90 (+28.71%)  40.60 (+27.67%) 40.60 (+27.67%) 40.60 (+27.67%) | 26.60 (+25.47%) 28.10 (+24.89%) 28.10 (+24.89%) 28.10 (+24.89%)
+IMPARTAIL (Ours) | 10 | 32.70 (+5.48%)  33.20 (+4.40%) 3320 (+4.40%)  33.20 (+4.40%) 32.60 (+53.77%) 34.20 (+52.00%) 3420 (+52.00%) 34.20 (+52.00%)
DSGDetr-++ [30] - 43.10 44.00 44.00 44.00 2220 23.40 23.40 23.40
+IMPARTAIL (Ours) | 70 | 40.00 (-7.19%)  40.80 (-7.27%)  40.80 (-7.27%)  40.80 (-7.27%) | 24.90 (+12.16%) 26.20 (+11.97%) 2620 (+11.97%) 26.20 (+11.97%)
+IMPARTAIL (Ours) | 40 | 39.60 (-8.12%)  40.50 (-7.95%)  40.50 (-7.95%)  40.50 (-7.95%) | 26.20 (+18.02%) 27.50 (+17.52%) 27.50 (+17.52%) 27.50 (+17.52%)
09 | +IMPARTAIL (Ours) | 10 | 38.50 (-10.67%) 39.20 (-10.91%) 39.20 (-10.91%) 39.20 (-10.91%) 30.90 (+39.19%) 32.20 (+37.61%) 32.20 (+37.61%) 32.20 (+37.61%)
SceneSayerODE [30] | - 36.60 37.60 37.60 37.60 16.60 17.90 17.90 17.90
+IMPARTAIL (Ours) | 70 ‘ 31.80 (-13.11%)  32.60 (-13.30%)  32.60 (-13.30%)  32.60 (-13.30%) | 18.40 (+10.84%) 20.10 (+12.29%) 20.10 (+12.29%) 20.10 (+12.29%)
+IMPARTAIL (Ours) | 40 4270 (+16.67%) 43.80 (+16.49%) 43.80 (+16.49%) 43.80 (+16.49%) | 19.40 (+16.87%) 20.90 (+16.76%) 20.90 (+16.76%) 20.90 (+16.76%)
+IMPARTAIL (Ours) | 10 | 3840 (+4.92%) 3930 (+4.52%) 3930 (+4.52%)  39.30 (+4.52%) 28.30 (+70.48%) 30.90 (+72.63%) 30.90 (+72.63%) 30.90 (+72.63%)
SceneSayerSDE [30] - 44.40 4550 4550 4550 21.00 22.60 22.60 22.60
+IMPARTAIL (Ours) | 70 ‘ 4310 (-2.93%) 4420 (-2.86%)  44.20 (-2.86%)  44.20 (-2.86%) | 25.20 (+20.00%) 27.00 (+19.47%) 27.00 (+19.47%) 27.00 (+19.47%)
+IMPARTAIL (Ours) | 40 4470 (+0.68%)  45.90 (+0.88%)  45.90 (+0.88%)  45.90 (+0.88%) | 21.80 (+3.81%) 2350 (+3.98%)  23.50 (+3.98%)  23.50 (+3.98%)
+IMPARTAIL (Ours) | 10 | 40.50 (-8.78%) 4140 (-9.01%) 4140 (-9.01%) 4140 (:9.01%) 3160 (+50.48%) 3470 (+53.54%) 3470 (+53.54%) 34.70 (+53.54%)
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7 | Method \ s \ WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 19.40 31.10 33.50 33.50 7.60 15.30 16.90 16.90
+IMPARTAIL (Ours) | 70 | 19.70 (+1.55%)  30.20 (-2.89%) 3240 (-3.28%)  32.40(-3.28%) | 7.80 (+2.63%) 1510 (-1.31%)  16.80(-0.59%)  16.80 (-0.59%)
+IMPARTAIL (Ours) | 40 | 1920 (-1.03%)  30.30 (-2.57%)  32.60 (-2.69%)  32.60 (-2.69%) | 8.40 (+10.53%) 16.80 (+9.80%) 18.60 (+10.06%) 18.60 (+10.06%)
+IMPARTAIL (Ours) | 10 | 18.30 (-5.67%) 27.40 (-11.90%) 29.30 (-12.54%)  29.30 (-12.54%) 8.90 (+17.11%) 17.90 (+16.99%) 19.70 (+16.57%) 19.70 (+16.57%)
DSGDetr++ [30] - 18.80 28.30 29.90 29.90 7.10 12.80 13.80 13.80
+IMPARTAIL (Ours) | 70 | 18.60 (-1.06%)  27.40 (-3.18%)  29.10(-2.68%)  29.10 (-2.68%) | 8.20 (+15.49%) 15.20 (+18.75%) 16.60 (+20.29%) 16.60 (+20.29%)
+IMPARTAIL (Ours) | 40 | 16.50 (-12.23%) 24.70 (-12.72%) 2630 (-12.04%)  26.30 (-12.04%) | 8.30 (+16.90%) 15.80 (+23.44%) 17.10 (+23.91%) 17.10 (+23.91%)
03| +IMPARTAIL (Ours) | 10 | 16.90 (-10.11%) 23.50 (-16.96%) 24.50 (-18.06%) 2450 (-18.06%)  9.30 (+30.99%) 18.40 (+43.75%) 20.20 (+46.38%) 20.20 (+46.38%)
SceneSayerODE [30] - 15.10 2570 30.10 30.20 5.50 11.90 19.00 19.00
+IMPARTAIL (Ours) | 70 | 13.80 (-8.61%) 23.00 (-10.51%) 26.80 (-10.96%) 26.80 (-11.26%) | 5.80 (+5.45%)  12.80 (+7.56%) 16.40 (-13.68%) 16.40 (-13.68%)
+IMPARTAIL (Ours) | 40 | 1630 (+7.95%) 28.20 (+9.73%) 33.70 (+11.96%) 33.80 (+11.92%) | 5.80 (+5.45%) 1250 (+5.04%) 16.00 (-15.79%)  16.10 (-15.26%)
+IMPARTAIL (Ours) | 10 | 14.80 (-1.99%)  24.80 (-3.50%)  29.10(-3.32%)  29.10 (-3.64%)  6.60 (+20.00%) 15.40 (+29.41%) 20.40 (+7.37%)  20.40 (+7.37%)
SceneSayerSDE [30] - 15.90 27.80 33.40 33.50 5.90 13.40 17.20 17.20
+IMPARTAIL (Ours) | 70 | 16.10 (+1.26%) 28.10 (+1.08%)  33.70 (+0.90%)  33.70 (+0.60%) | 6.70 (+13.56%) 15.80 (+17.91%) 20.80 (+20.93%) 20.80 (+20.93%)
+IMPARTAIL (Ours) | 40 | 16.10 (+1.26%)  28.20 (+1.44%)  33.90 (+1.50%)  34.00 (+1.49%) 5.90 13.10 (-2.24%) 17.20 17.20
+IMPARTAIL (Ours) | 10 | 13.10 (-17.61%) 23.00 (-17.27%) 27.20 (-18.56%) 27.20 (-18.81%) 7.30 (+23.73%) 19.30 (+44.03%) 25.90 (+50.58%) 26.00 (+51.16%)
Table 25. AGS-With Constraint-0.5 results for SGA.
7 | Method s WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 20.40 33.30 35.90 35.90 7.90 16.40 18.40 18.40
+IMPARTAIL (Ours) | 70 | 21.10 (+3.43%)  32.70 (-1.80%)  34.90 (-2.79%)  34.90 (-2.79%) | 8.30 (+5.06%)  16.50 (+0.61%)  18.30 (-0.54%)  18.30 (-0.54%)
+IMPARTAIL (Ours) | 40 | 20.60 (+0.98%)  32.50 (-240%)  35.00 (-2.51%)  35.00 (-2.51%) | 8.90 (+12.66%) 17.80 (+8.54%)  19.80 (+7.61%)  19.80 (+7.61%)
+IMPARTAIL (Ours) | 10 | 19.80 (-2.94%) 29.70 (-10.81%) 31.80 (-11.42%) 31.80 (-11.42%) | 9.30 (+17.72%) 18.70 (+14.02%) 20.90 (+13.59%) 20.90 (+13.59%)
DSGDetr++ [30] - 19.80 30.00 31.90 31.90 7.40 13.40 14.60 14.60
+IMPARTAIL (Ours) | 70 | 20.10 (+1.52%) 29.60 (-1.33%)  31.50 (-1.25%)  31.50 (-1.25%) | 8.70 (+17.57%) 16.40 (+22.39%) 17.90 (+22.60%) 17.90 (+22.60%)
+IMPARTAIL (Ours) | 40 | 18.10 (-8.59%) 27.00 (-10.00%) 28.80 (-9.72%)  28.80 (-9.72%) | 8.90 (+20.27%) 17.00 (+26.87%) 18.60 (+27.40%) 18.60 (+27.40%)
0.5 | +IMPARTAIL (Ours) | 10 | 18.10(-8.59%) 2530 (-15.67%) 26.70 (-16.30%) 26.70 (-16.30%) | 9.80 (+32.43%) 19.80 (+47.76%) 21.90 (+50.00%) 21.90 (+50.00%)
SceneSayerODE [30] - 16.60 28.20 33.50 33.60 5.80 12.60 16.90 16.90
+IMPARTAIL (Ours) | 70 | 15.10 (-9.04%) 2540 (-9.93%) 30.00 (-10.45%) 30.00 (-10.71%) | 5.90 (+1.72%)  13.50 (+7.14%)  18.00 (+6.51%)  18.00 (+6.51%)
+IMPARTAIL (Ours) | 40 | 17.30 (+4.22%) 29.90 (+6.03%) 36.20 (+8.06%)  36.30 (+8.04%) | 6.00 (+3.45%)  12.70 (+0.79%) 16.90 16.90
+IMPARTAIL (Ours) | 10 | 15.60 (-6.02%) 2620 (-7.09%)  31.30 (-6.57%)  31.40 (-6.55%) | 6.80 (+17.24%) 16.10 (+27.78%) 22.00 (+30.18%) 22.00 (+30.18%)
SceneSayerSDE [30] - 17.50 30.00 36.50 36.50 6.40 13.70 18.30 18.30
+IMPARTAIL (Ours) | 70 | 16.90 (-3.43%)  29.70 (-1.00%)  36.20 (-0.82%)  36.20 (-0.82%) | 6.80 (+6.25%) 16.10 (+17.52%) 21.90 (+19.67%) 21.90 (+19.67%)
+IMPARTAIL (Ours) | 40 | 17.40 (-0.57%)  30.20 (+0.67%) 36.70 (+0.55%)  36.70 (+0.55%) | 6.30 (-1.56%) 13.70 18.40 (+0.55%)  18.40 (+0.55%)
+IMPARTAIL (Ours) | 10 | 14.50 (-17.14%) 24.80 (-17.33%) 29.90 (-18.08%) 30.00 (-17.81%) | 7.40 (+15.62%) 19.10 (+39.42%) 27.70 (+51.37%) 27.80 (+51.91%)
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Table 26. AGS-With Constraint-0.7 results for SGA.

7 | Method \ s \ WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 22.50 36.40 39.20 39.20 9.10 18.20 20.20 20.20
+IMPARTAIL (Ours) | 70 | 23.50 (+4.44%)  36.50 (+0.27%)  39.10 (-0.26%)  39.10 (-0.26%) | 9.90 (+8.79%)  19.30 (+6.04%)  21.50 (+6.44%)  21.50 (+6.44%)
+IMPARTAIL (Ours) | 40 | 23.00 (+2.22%)  36.00 (-1.10%)  38.70 (-1.28%)  38.70 (-1.28%) | 10.40 (+1429%) 20.50 (+12.64%) 22.80 (+12.87%) 22.80 (+12.87%)
+IMPARTAIL (Ours) | 10 | 21.90 (-2.67%) 32.70 (-10.16%) 34.90 (-10.97%) 34.90 (-10.97%) | 10.90 (+19.78%) 21.90 (+20.33%) 24.10 (+19.31%) 24.10 (+19.31%)
DSGDetr++ [30] - 2220 33.20 35.10 35.10 8.40 14.80 16.00 16.00
+IMPARTAIL (Ours) | 70 | 22.40 (+0.90%)  32.60 (-1.81%)  34.50 (-1.71%)  34.50 (-1.71%) | 10.10 (+20.24%) 18.40 (+24.32%) 20.10 (+25.63%) 20.10 (+25.63%)
+IMPARTAIL (Ours) | 40 | 2050 (-7.66%)  30.60 (-7.83%)  32.60 (-7.12%)  32.60 (-7.12%) | 10.50 (+25.00%) 19.50 (+31.76%) 21.20 (+32.50%) 21.20 (+32.50%)
07 | +IMPARTAIL (Ours) | 10 | 2020 (-9.01%) 28.10 (-1536%) 29.60 (-15.67%) 29.60 (-15.67%) | 11.50 (+36.90%) 23.10 (+56.08%) 25.20 (+57.50%) 25.20 (+57.50%)
SceneSayerODE [30] - 19.00 32.00 37.90 38.00 6.70 14.00 18.50 18.50
+IMPARTAIL (Ours) | 70 | 17.60 (-7.37%)  28.90 (-9.69%)  33.90 (-10.55%) 33.90 (-10.79%) | 6.90 (+2.99%)  15.00 (+7.14%)  19.60 (+5.95%)  19.60 (+5.95%)
+IMPARTAIL (Ours) | 40 | 19.50 (+2.63%) 33.10 (+3.44%) 39.50 (+4.22%) 39.50 (+3.95%) | 6.80 (+1.49%)  13.90(-0.71%)  18.20 (-1.62%)  18.30 (-1.08%)
+IMPARTAIL (Ours) | 10 | 17.50 (-7.89%)  28.90 (-9.69%)  34.10 (-10.03%) 34.20 (-10.00%) | 7.90 (+17.91%) 17.70 (+26.43%) 23.40 (+26.49%) 23.40 (+26.49%)
SceneSayerSDE [30] - 19.50 33.00 39.60 39.70 7.10 14.60 19.30 19.30
+IMPARTAIL (Ours) | 70 | 19.10 (-2.05%)  32.50 (-1.52%)  39.40 (-0.51%)  39.40 (-0.76%) | 7.80 (+9.86%)  17.40 (+19.18%) 23.80 (+23.32%) 23.80 (+23.32%)
+IMPARTAIL (Ours) | 40 | 19.60 (+0.51%) 33.50 (+1.52%)  40.40 (+2.02%)  40.40 (+1.76%) 7.10 15.00 (+2.74%)  20.20 (+4.66%)  20.20 (+4.66%)
+IMPARTAIL (Ours) | 10 | 16.80 (-13.85%) 27.90 (-15.45%) 33.00 (-16.67%) 33.00 (-16.88%) | 8.60 (+21.13%) 21.30 (+45.89%) 29.30 (+51.81%) 29.30 (+51.81%)
Table 27. AGS-With Constraint-0.9 results for SGA.
7 | Method \ S \ WITH CONSTRAINT
R@10 R@20 R@50 R@100 mR@10 mR@20 mR@50 mR@100
STTran++ [30] - 24.60 39.80 42.90 42.90 9.80 20.90 23.50 23.50
+IMPARTAIL (Ours) | 70 | 25.80 (+4.88%) 40.50 (+1.76%) 43.50 (+1.40%) 43.50 (+1.40%) | 11.10 (+1327%) 2270 (+8.61%)  25.40 (+8.09%)  25.40 (+8.09%)
+IMPARTAIL (Ours) | 40 | 2470 (+0.41%)  39.50 (-0.75%)  42.50 (-0.93%)  42.50 (-0.93%) | 1230 (+25.51%) 25.50 (+22.01%) 28.20 (+20.00%) 28.20 (+20.00%)
+IMPARTAIL (Ours) | 10 | 23.60 (-4.07%)  35.60 (-10.55%) 37.90 (-11.66%) 37.90 (-11.66%) | 12.60 (+28.57%) 27.10 (+29.67%) 29.90 (+27.23%) 29.90 (+27.23%)
DSGDetr++ [30] - 24.80 37.50 39.70 39.70 9.50 17.70 19.20 19.20
+IMPARTAIL (Ours) | 70 | 2470 (-:0.40%)  37.10 (-1.07%)  39.50 (-0.50%)  39.50 (-0.50%) | 11.90 (+25.26%) 22.50 (+27.12%) 24.90 (+29.69%) 24.90 (+29.69%)
+IMPARTAIL (Ours) | 40 | 24.00 (-3.23%)  36.20 (-3.47%)  38.50 (-3.02%)  38.50 (-3.02%) | 12.40 (+30.53%) 24.80 (+40.11%) 27.00 (+40.62%) 27.00 (+40.62%)
09 | +IMPARTAIL (Ours) | 10 | 23.10 (-6.85%) 3230 (-13.87%) 33.90 (-14.61%) 33.90 (-14.61%) | 13.60 (+43.16%) 27.80 (+57.06%) 30.20 (+57.29%) 30.20 (+57.29%)
SceneSayerODE [30] - 21.00 36.00 43.20 43.20 7.00 15.60 21.00 21.00
+IMPARTAIL (Ours) | 70 | 19.50 (-7.14%)  32.80 (-8.89%)  38.70 (-10.42%) 38.80 (-10.19%) | 7.50 (+7.14%)  16.60 (+6.41%)  21.80 (+3.81%)  21.90 (+4.29%)
+IMPARTAIL (Ours) | 40 | 20.90 (-0.48%)  35.90 (-0.28%)  43.50 (+0.69%)  43.50 (+0.69%) 7.00 1520 (-2.56%)  20.60 (-1.90%)  20.60 (-1.90%)
+IMPARTAIL (Ours) | 10 | 18.40 (-12.38%) 31.50 (-12.50%) 37.30 (-13.66%) 37.30 (-13.66%) | 8.30 (+18.57%) 19.80 (+26.92%) 26.10 (+24.29%) 26.10 (+24.29%)
SceneSayerSDE [30] - 21.00 36.40 43.90 44.00 7.40 16.00 21.10 21.10
+IMPARTAIL (Ours) | 70 | 20.60 (-1.90%)  35.90 (-1.37%)  43.80 (-0.23%)  43.80 (-0.45%) | 8.20 (+10.81%) 18.90 (+18.12%) 25.60 (+21.33%) 25.60 (+21.33%)
+IMPARTAIL (Ours) | 40 | 21.20 (+0.95%)  36.60 (+0.55%) 44.40 (+1.14%)  44.50 (+1.14%) | 7.20 (-2.70%) 1640 (+2.50%)  22.10 (+4.74%)  22.10 (+4.74%)
+IMPARTAIL (Ours) | 10 | 18.70 (-10.95%) 31.50 (-13.46%) 37.60 (-14.35%) 37.60 (-14.55%) | 9.40 (+27.03%) 24.00 (+50.00%) 32.70 (+54.98%) 32.70 (+54.98%)
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6.3. Robust Video Scene Graph Generation

6.3.1. Findings

Table 28, Table 29 present the Robustness Evaluation Results for SGCLS and PREDCLS for Scene Graph Generation
(SGG) under various corruption scenarios. These experiments assess how well models, with and without IMPARTAIL,
handle different levels of data corruption. The settings include 15 corruption types and three graph-building strategies (With
Cosntraint, No Constraint, Semi Constraint). Results highlight the impact of IMPARTAIL in improving robustness across these
scenarios. IMPARTAIL performs best against Fog, Brightness, Saturate and moderate gains under Defocus blur, Gaussian Blur.

362

363 6.3.2. Results

Table 28. Robustness Evaluation Results for SGG.

IMPARTAIL shows an average of 25% gains for With Constraint mR@50, 10% gains for No Constraint mR @50.

Severity | Mode ‘ Corruption

‘ Method

‘With Constraint

No Constraint

Semi Constraint

| | | | mre1o mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50

Gaussian Nopse | DSODetr 9] | 96 103 103 209 254 268 157 194 234 114 153 157
> ’ +IMPARTAIL (Ours) 137 (+42.7%) 149 (+44.7%) 150 (+45.6%) | 210 +0.5%) 273 (+7.5%) 300 (+123%) 208 (+325%) 254 (+30.9%) 29.1 (424.4%) | 15.6 (+36.8%) 215 (+40.5%) 22.2 (+41.4%)

Shot Noise DSGDetr [9] | 100 108 108 219 266 28.1 166 204 265 121 163 16.6
’ +IMPARTAIL (Ours) 150 (+50.0%) 165 (+52.8%) 16.5 (+52.8%) | 22.6 (+32%) 29.4 (+10.5%) 32.6 (+16.0%) 22.4 (+34.9%) 273 (+33.8%) 310 (+17.0%) | 17.2(+42.1%) 233 (+42.9%) 24.2 (+45.8%)

Jmnulse Nojse | PSGDeIr 9] | 8.7 9.4 9.5 192 234 247 144 17.7 234 104 142 146
P +IMPARTAIL (Ours) 124 (+42.5%) 137 (+45.7%) 137 (+44.2%) | 194 (+1.0%) 253 (+48.1%) 27.9 (+13.0%) 185 (+28.5%) 228 (+28.8%) 262 (+12.0%) | 139 (+33.7%) 19.2(+35.2%) 20.1 (+37.7%)

Sheckle Nojse | PSGDeIr 9] | 126 137 137 262 322 342 203 250 322 150 207 212
pe +IMPARTAIL (Ours) 176 (439.7%) 193 (+409%) 193 (+40.9%) | 264 (+0.8%) 345(+7.1%) 384 (+123%) 27.1(+33.5%) 326 (+304%) 373 (+158%) | 204 (+36.0%) 27.8 (+34.3%) 28.9 (+36.3%)

Gaussian Blur | PSGDetr 9] | am 28 28 437 533 56.5 334 410 523 246 332 340
+IMPARTAIL (Ours) 261 (+23.7%) 287 (+25.9%) 28.8(+263%) | 39.4(9.8%)  520(-24%)  57.8(+23%) 395(+183%) d8.8(+19.0%) S582(+11.3%) | 294 (+19.5%) 40.8(+22.9%) 425 (+25.0%)

Defocus Biur | PSGPer 9] | 209 26 26 432 528 559 327 404 517 243 327 35

efocus

+IMPARTAIL (Ours) 25,6 (+22.5%)  28.1 (+24.3%) 281 (+243%) | 39.0(:97%)  514(27%)  57.3(+25%) 38.6(+18.0%) 477 (+18.1%) 57.0(+103%) | 287 (+18.1%) 400 (+22.3%) 417 (+24.5%)

Foe DSGDetr [9] | 226 249 249 478 584 620 355 434 54.6 266 36.1 372
s s | +IMPARTAIL (Ours) 283 (+252%) 318 (+27.7%) 319 (+28.1%) | 42.6 -109%) 560 (-4.1%) 621 (+0.2%) 438 (+234%) 530 (+22.1%) 617 (+13.0%) | 318 (+19.5%) 457 (+26.6%) 48.2(+29.6%)

Frost DSGDetr [9] | 167 185 18.5 345 43 451 2638 330 40.1 196 268 277
SIMPARTAIL (Ours) 224 (+34.1%) 250 (+35.1%) 25.1(+35.7%) | 31.9(-75%)  420(0.7%) 471 (+44%) 349 (+302%) 423 (+282%) 48.2(+202%) | 259 (+32.1%) 36.5(+36.2%) 384 (+38.6%)

Soatter DSGDetr [9] | 18.6 203 203 414 510 543 200 36.5 48.0 217 293 301
o +IMPARTAIL (Ours) 247 (+32.8%) 274 (+35.0%) 271.5(+355%) | 38.6 (:68%) 506 (08%)  56.1(+33%) 37.4(+20.0%) 461 (+263%) 558 (+162%) | 27.9 (+28.6%) 39.3(+34.1%) 414 (+37.5%)

Contast DSGDetr [9] | 200 218 218 424 522 55.5 313 386 488 236 319 329
) +IMPARTAIL (Ours) 249 (4245%) 277 (+27.1%) 278 (+27.5%) | 369 (-13.0%) 49.0(-6.1%) 546 (-1.6%) 379 (+2L.1%) 460 (+192%) 543 (+11.3%) | 27.5(+165%) 38.6 (+21.0%) 40.6 (+23.4%)

Brightness DSGDetr [9] | 236 25.7 257 508 619 65.5 36.8 454 575 276 375 386
S +IMPARTAIL (Ours) 298 (+263%) 332 (+29.2%) 33.2(+29.2%) | 455 (-104%) 599 (-32%) 661 (+0.9%) 45.0 (+223%) 55.4(+22.0%) 653 (+13.6%) | 337 (+22.1%) 48.1(+28.3%) 50.6 (+31.1%)

Pixelate DSGDetr [9] | 26 233 233 48.1 59.7 638 335 426 569 254 337 346
+IMPARTAIL (Ours) ~ 27.7 (+282%)  30.5(+309%) 30.5(+30.9%) | 438 (-89%)  57.7(-34%) 641 (+0.5%) 42.5(+269%) 528 (+239%) 63.1(+109%) | 314 (+23.6%) 44.5(+32.0%) 46.7 (+35.0%)

Compression | PSGDetr 9] | 19.9 215 216 450 557 595 313 40.1 524 234 312 32.1
P +IMPARTAIL (Ours) 266 (+33.7%) 293 (+363%) 294 (+36.1%) | 419 (69%)  55.1(-L1%)  6L5(+34%) 408 (+30.4%) 505 (+259%) 60.2(+14.9%) | 29.8 (+27.4%) 421 (+34.9%) 44.0 (+37.1%)

Sun Glare DSGDetr [9] | 12.1 132 132 263 325 347 193 244 30.2 142 192 196
y +IMPARTAIL (Ours) 173 (+43.0%) 194 (+47.0%) 194 (+47.0%) | 258 (-19%)  343(+5.5%) 385 (+11.0%) 26.6 (+37.8%) 322(+32.0%) 373 (+23.5%) | 194 (+36.6%) 27.6 (+43.7%) 29.0 (+48.0%)

Dust DSGDetr [9] | 132 145 146 285 354 377 215 268 342 154 2038 214
+IMPARTAIL (Ours) 16,6 (+25.8%) 18,6 (+283%)  18.6(+27.4%) | 25.1 -11.9%)  329(7.1%)  368(-24%) 259 (+205%) 3L0(+157%) 37.0(+82%) | 19.1(+24.0%) 263 (+264%) 27.4 (+28.0%)

Saturate DSGDetr [9] | 259 284 284 54.6 66.2 69.9 407 49.3 624 306 417 429
) +IMPARTAIL (Ours)  3L5 (+21.6%) 351 (+23.6%) 35.2(+23.9%) | 48.8 -10.6%) 638 (:3.6%) 704 (+0.7%) 474 (+165%) 584 (+185%) 68.8(+103%) | 357 (+167%) 510(+22.3%) 535 (+24.7%)
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Table 29. Robustness Evaluation Results for SGG.

‘ Method

With Constraint

No Constraint

Semi Constraint

Severity Mtode | Corruption
| | | mR@10 mR@20 mR@50 R@10 R@20 R@50 mR@10 mR@20 mR@50 mR@10 mR@20 mR@50
Gaussian Noise | STTEn 3] 200 23 24 642 87.6 99.0 314 525 79.7 26.0 366 385
: +IMPARTAIL (Ours) | 37.6 (+88.0%) 43.8(+96.4%) d3.9 (496.0%) | 62.5(2.6%) 84.6(-34%) 99.0(0.0%) 57.5(+83.1%) 777 (+48.0%) 927 (+163%) | 42.2(+62.3%) 60.0 (+63.9%) 629 (+63.4%)
Shot Noise STTran [5] 203 28 229 64.6 88.0 99.0 321 534 79.9 26.4 371 39.0
+IMPARTAIL (Ours) | 37.5(+84.7%) 437 (+91.7%) 438 (+91.3%) | 624 (34%) 84.6(:3.9%) 99.0(0.0%) 57.1(+77.9%) 719 (+45.9%) 928 (+16.1%) | 422 (+39.8%) 60.5(+63.1%)  63.6 (+63.1%)
Imoulse Nojse | STTFan 5] 203 238 229 64.6 88.0 99.0 319 529 79.8 263 372 39.1
puise Now +IMPARTAIL (Ours) | 37.7 (485.7%) 438 (+92.1%) 439 (491.7%) | 624 (3.4%) 847(-38%) 99.0(0.0%) 574 (+79.9%) 717 (+46.9%) 92.6 (+16.0%) | 42.0 (+59.7%) 60.1 (+61.6%) 63.1 (+61.4%)
Sheckle Nojse | STTER 131 2.1 26.1 26.2 668 89.6 99.1 371 578 80.3 302 431 453
P +IMPARTAIL (Ours) | 38.8 (+68.0%) 45.5(+74.3%) d5.5(+73.7%) | 60.2(-9.9%) 829 (-7.5%) 98.4(-0.7%) 59.4 (+60.1%) 778 (+34.6%) 92.5 (+15.2%) | 43.6(+44.4%) 60.7 (+40.8%) 63.1(+39.3%)
Gaussian Bar | STTR 151 253 285 286 67.9 892 99.0 382 57.6 79.9 306 43.1 449
+IMPARTAIL (Ours) | 387 (+53.0%) 45.7 (+60.4%) 459 (+60.5%) | 65.0 (43%) 85.7(-39%) 99.0(0.0%) 59.5(+55.8%) 78.1(+35.6%) 92.5 (+15.8%) | 43.0 (+40.5%) 62.0 (+43.9%) 645 (+43.7%)
Defocus Blur | STTFan 5] 258 292 293 68.4 89.6 99.1 39.0 58.1 802 314 44.1 46.0
’ +IMPARTAIL (Ours) | 389 (+50.8%) 46.0 (+57.5%) 462 (+57.7%) | 65.2(-4.7%) 86.0(-4.0%) 99.0(-0.1%) 60.0 (+53.8%) 785 (+35.1%) 928 (+15.7%) | 43.6(+38.9%) 63.2(+433%) 659 (+43.3%)
Fo STTran [5] 265 302 303 702 911 99.1 416 61.0 805 332 46.8 487
5 predels e +IMPARTAIL (Ours) | 42.6 (+60.8%) 509 (+68.5%) 5L1(+68.6%) | 64.8(-7.7%) 863 (-53%) 98.8(:03%) 63.8(+53.4%) 80.2(+315%) 92.7 (+152%) | 462(+39.2%) 65.5 (+40.0%) 68.2 (+40.0%)
Frost STTran [5] 256 292 292 69.4 90.7 99.1 410 60.9 805 327 46.1 48.0
) +IMPARTAIL (Ours) | 410 (+602%) 49.0 (+67.8%) 49.2 (+68.5%) | 62.2(-104%) 843 (-7.1%) 98.5(-0.6%) 625 (+52.4%) 78.6(+29.1%) 927 (+15.2%) | 45.1(+37.9%) 62.9 (+36.4%) 65.1 (+35.6%)
Soatter STTran [5] 257 292 293 69.5 9L1 99.2 40.0 60.0 803 320 45.0 47.0
P +IMPARTAIL (Ours) | 413 (+60.7%) 488 (+67.1%) d8.9 (+66.9%) | 58.8 (-154%) 823(-9.7%) 98.0(-1.2%) 620 (+55.0%) 78.6(+31.0%) 92.5 (+15.2%) | 44.6(+39.4%) 62.0 (+37.8%) 643 (+36.8%)
Contrast STTran [5] 205 29 230 64.9 87.9 99.0 324 530 796 2.5 36.9 38.5
+IMPARTALL (Ours) | 37.7 (+83.9%) 442 (+93.0%) 44.3 (+92.6%) | 633 (-25%) 85.0(:33%) 99.0 (0.0%) 564 (+74.1%) 760 (+43.4%) 920 (+15.6%) | 412 (+555%) 57.6(+56.1%) 59.6 (+54.8%)
Brighiness STTran [5] 282 320 321 713 9L6 99.2 428 62.0 804 345 49.0 512
€ +IMPARTAIL (Ours) | 423 (+50.0%) 504 (+57.5%) 50.5(+57.3%) | 659 (716%) 872 (-4.8%) 98.9(-03%) 64.0(+49.5%) 80.8(+303%) 928 (+154%) | 469 (+359%) 67.8(+38.4%) 710 (+38.7%)
Pixelate STTran [5] 24.9 27.9 279 673 89.4 99.1 375 575 80.0 305 429 4.9
+IMPARTAIL (Ours) | 38.4 (+54.2%) 45.5(+63.1%) d5.7 (+63.8%) | 63.3(-59%) 849 (-50%) 989 (-0.2%) 59.6 (+58.9%) 783 (+362%) 92.5(+15.6%) | 43.6(+43.0%) 619 (+443%) 643 (+43.2%)
Compression | STTran 131 230 258 258 66.0 88.0 99.0 350 54.6 79.8 278 389 40.6
P +IMPARTALL (Ours) | 364 (+583%) 422 (+63.6%) 423 (+64.0%) | 63.8(-33%) 85.1(:33%) 99.0(0.0%) 549 (+56.9%) 758 (+38.8%) 92.4 (+15.8%) | 410 (+47.5%) 58.6 (+50.6%) 617 (+52.0%)
Sun Glare STTran [5] 25 25.1 252 66.7 89.9 99.1 367 56.7 80.0 289 40.5 423
o +IMPARTAIL (Ours) | 402 (+78.7%) 47.5 (+89.2%) 47.7 (+893%) | 579 -132%) 817(-9.1%) 98.0(-L1%) 60.3 (+643%) 715 (+36.7%) 927 (+15.9%) | 433 (+49.8%) 59.3 (+464%) 610 (+44.2%)
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6.4. Robust Scene Graph Anticipation

6.4.1. Findings

Table 30, present the Robustness Evaluation Results for SGCLS for methods STTran+, DSGDetr+, STTran++, DSGDetr++ for
Scene Graph Anticipation under various corruption scenarios. The results measure mR@ 10, mR @20, and mR @50, focusing
on the impact of IMPARTAIL across different noise types. For Gaussian Noise, STTran++, mR @ 10 improves from 5.9 to 9.4
(+59.3%); for DSGDet++, mR @20 improves from 5.7 to 8.8 (+44.4%). However, for STTran+ IMPARTAIL underperforms
for all metrics. The same can be observed for Dust, Spatter, Frost and Impulse noises; for all other corruptions, IMPARTAIL
outperforms existing methods with the highest increments seen for STTran++ with an average of 40% higher metrics.

6.4.2. Results

Table 30.

Robustness Evaluation Results for SGA.
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