
DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition
and Surface Reconstruction for Urban Driving Scenes

Supplementary Material

Figure 7. DeSiRe-GS. We present a 4D street gaussian splatting representation for self-supervised static-dynamic decomposition and
high-fidelity surface reconstruction without the requirement for extra 3D annotations such as bounding boxes.

7. Implementation Details

All experiments are conducted on NVIDIA RTX A6000.
We sample a total of 1× 106 points for initialization, with
6× 105 from LiDAR point cloud, 2× 105 near points and
2 × 105 far points depending on their distance to LiDAR
origin. In the first stage, we train for a total of 30,000 it-
erations. We do not train the uncertainty model during the
initial 6,000 iterations. After that, the uncertainty model
gradually increases its weight over a 1,800-iteration warm-
up process. In the second stage, we train a total of 50000
iterations. Cross-view consistency regularization begins af-
ter 20,000 iterations, with 102400 pixels sampled each time.
Motion masks, obtained from the trained dynamic model,
are employed after 30000 iterations to supervise the training
of velocity v and time scale β. We use Adam [17] as our
optimizer with β1 = 0.9, β2 = 0.999 and maintain simi-
lar optimization settings of [5]. For the dynamic model we
employ a learning rate of 0.001 and a dropout rate of 0.1.

Evaluation Metrics. We adopt Peak Signal-to-Noise Ratio

(PSNR), Structural Similarity Index Measure (SSIM) [34]
and Learned Perceptual Image Patch Similarity (LPIPS) [45]
as metrics for the assessment of both image reconstruction
and novel view synthesis. Following [15, 38, 39], we also
include DPSNR and DSSIM to assess the rendering quality
of dynamic objects. Specifically, these values are calculated
by projecting the 3D bounding box of moving objects onto
the camera plane and computing the PSNR and SSIM within
the projected box. Additionally, we introduce depth L1,
which measures the L1 error between the rendered depth
map and the ground truth depth map, as an evaluation metric
which is related to surface reconstruction.

Feature Extractor. DINOv2 [23] is widely used as a foun-
dation model for feature extraction and have demonstrated
potential in previous novel view synthesis works, such as
Wild-Gaussians [18]. However, we found through experi-
ments that the features extracted from DINOv2 are usually
noisy, especially on the road and in the sky, as shown in Fig.
8. The DINOv2 features cannot produce accurate motion
masks sometimes. On the other hand, FiT3D [44] fine-tunes



Figure 8. Comparison between motion masks and features extracted from DINOv2 [23] and FiT3D [44]. The ‘GT’ masks are obtained using
the GT bounding boxes and associated trajectories following EmerNeRF [39].

Figure 9. Segmentation Mask Extraction of DeSiRe-GS. We utilize the differences between the rendered image and ground truth to train a
dynamic mask decoder.

DINOv2 with gaussian splatting to improve the 3D aware-
ness of the extracted features, which is a perfect match for
our setting in the driving world. Therefore, we turn to FiT3D
as the feature extractor, producing more clean and robust
features, to measure the similarity of two images.

Motion Mask Extractor.
By introducing the learnable decoder, we are not limited

to the viewpoints where GT images are available. Instead,
given a rendered image, we can first extract the FiT3D fea-
tures, and then use our decoder to extract the motion mask,
without the requirement for ground truth images.

During training, the joint optimization of image rendering

and mask prediction will benefit from each other by using
the obtained mask M to mask out the dynamic regions. The
rendering loss is as follows:

Lmasked−render = M ⊙ ∥Î − I∥ (23)

As we mask out the dynamic regions, the reconstruction
at the regions will not be supervised. As a result, the dif-
ference between the rendered images and the ground truth
images will be become more significant, which benefits the
extraction of the desired motion masks.

We provide a few samples in Fig. 10. It can be observed
that our model can handle the dynamic objects well, even
for far-away pedestrians.



Figure 10. Extracted motion masks using FiT3D features

Temporal Geometric Constraints. Due to the sparsity
nature of views in driving scenarios, it tends to overfit to the
training views when optimizing gaussian splatting. Single-
view image loss often suffers from texture-less area in far
distance. As a result, relying on photometric consistency is
not reliable. Instead, we propose to enhance the geometric
consistency by aggregating temporal information.

Based on the assumption that depth of static regions re-
mains consistent across time from varying views, we des-
ignate a cross-view temporal spatial consistency module.
For a static pixel (ur, vr) in the reference frame, with depth
value of dr, we can project it to the nearest neighboring
view, which has the largest amount of overlap. Given the
camera intrinsics K and extrinsics Tr, Tn, we can obtain the
corresponding pixel location in the neighboring view:

[un, vn, 1]
T = KTnT

−1
r

(
dr ·K−1[ur, vr, 1]

T
)

(24)

Again, we can query the depth value dn at the position
(un, vn). When we project it back to the 3D space, the
position should be consistent with the one obtained from
back-projecting (ur, vr, dr) to the reference frame.

[unr, vnr, 1]
T = KTrT

−1
n

(
dn ·K−1[un, vn, 1]

T
)

(25)

We apply geometric loss to optimize the Gaussians to
produce cross-view consistent depth as follows:

Luv = ∥(ur, vr)− (unr, vnr)∥2 (26)

8. Baselines
• StreetSurf [13] is an implicit neural rendering method for

both geometry and appearance reconstruction in street

views. The whole scene is divided in to close-range,
distant-view and sky parts according to the distance of ob-
jects. A cuboid close-range hash grid and a hyper-cuboid
distant-view model are employed to tackle long and nar-
row observation space in most street scenes, showcasing
good performance in unbounded scenes captured by long
camera trajectories.

• NSG [24] enables efficient rendering of novel arrange-
ments and views by encoding object transformations and
radiance within a learnable scene graph representation. It
contains a background node approximating all static parts,
several dynamic nodes representing rigidly moving indi-
viduals, and edges representing transformations. NSG[24]
also combines implicitly encoded scenes with a jointly
learned latent representation to describe objects in a single
implicit function.

• SUDS [31] is a NeRF-based method for dynamic large
urban scene reconstruction. It proposed using 2D optical
flow to model scene dynamics, avoiding additional bound-
ing box annotations. SUDS develops a three-branch hash
table representation for 4D scene representation, enabling
a variety of downstream tasks.

• StreetGS [38] models dynamic driving scenes using 3D
Gaussian splatting. It represents the components in the
scene separately, with a background model for static part
and an object model for foreground moving objects. To
capture dynamic features, the position and rotation of
gaussians are defined in an object local coordinate system,
which relies on bounding boxes predicted by an off-the-
shelf model.

• HUGS [46] is a 3DGS-based method addressing the prob-
lem of urban scene reconstruction and understanding. It as-



Figure 11. Qualitative Comparison.

sumes that the scene is composed of static rigions and mov-
ing vehicles with rigid motions, using a unicycle model to
model vehicles’ states. HUGS also extends original 3DGS
to model additional modalities, including optical flow and
semantic information, achieving good performance in both
scene reconstruction and semantic reconstruction. Bound-
ing boxes are also required in this process.

• EmerNeRF [39] is a NeRF-based method for constructing
4D neural scene representations in urban driving scenes.
It decomposes dynamic scenes into a static field and a
dynamic field, both parameterized by hash grids. Then an
emergent scene flow field is introduced to represent ex-
plicit correspondences between moving objects and aggre-
gate temporally-displaced features. Remarkably, EmerN-
eRF finishes these tasks all through self-supervision.

• S3Gaussian [15] is a self-supervised approach that de-
composes static and dynamic 3D gaussians in driving
scenes. It aggregates 4D gaussian representations in a
spatial-temporal field network with a multi-resolution hex-
plane encoder, where the dynamic objects are visible only
within spatial-temporal plane while static objects within
spatial-only plane. Then S3Gaussian utilizes a multi-head
decoder to capture the deformation of 3D Gaussians in a
canonical space for decomposition.

• Omnire [6] successfully models urban dynamic scenes us-
ing Gaussian Scene Graphs, with different types of nodes

tackling sky, background, rigidly moving objects and non-
rigidly moving objects. It introduces rigid nodes for ve-
hicles, where the Gaussians will not change over time,
and non-rigid nodes for human-ralated dynamics, where
local deformations will be taken into consideration. Om-
niRe additionally employs a Skinned Multi-Person Linear
(SMPL) model to parameterize human body model, show-
casing good results in reconstructing in-the-wild humans.
Notably, Omnire also requires accurate instance bounding
boxes for dynamic modeling.

• PVG [5] is a self-supervised gaussian splatting approach
that reconstructs dynamic urban scenes and isolates dy-
namic parts from static background. Refer to Sec. 2 for
more details about PVG.

In the approaches mentioned above, StreetSurf[13],
Mars[36],SUDS[31] and EmerNeRF[39] are based upon
NeRF, while others are based upon 3DGS. Notably, among
the 3DGS-based approaches, HUGS[46], StreetGS[38] and
OmniRe[6] all rely on instance-level bounding boxes for
moving objects, which are sometimes difficult to obtain.
PVG[5] and S3Gaussian[15] are most closely related to our
work, both of which are self-supervised Gaussian Splatting
method without reliance on extra annotations.



Method
Dynamic-32 Split Static-32 Split

Image reconstruction Novel view synthesis Image reconstruction Novel view synthesis
PSNR ↑ DPSNR ↑ L1↓ PSNR ↑ DPSNR ↑ L1↓ PSNR ↑ L1↓ PSNR ↑ L1↓

3DGS [16] 28.47 23.26 - 25.14 20.48 - 29.42 - 26.82 -
Mars [36] 28.24 23.37 - 26.61 22.21 - 28.31 - 27.63 -
EmerNeRF [39] 28.16 24.32 3.12 25.14 23.49 4.33 30.00 2.84 28.89 3.89
S3Gaussian [15] 31.35 26.02 5.31 27.44 22.92 6.18 30.73 5.84 27.05 6.53
PVG [5] 33.14 31.79 3.33 29.77 27.19 4.84 32.84 3.75 29.12 5.07

Ours 34.56 32.63 2.96 30.45 28.66 4.17 34.57 2.89 31.78 3.93

Table 4. Comparison of methods on the Waymo NOTR Dataset from EmerNeRF.

Segment Name seg104554 seg125050 seg169514 seg584622 seg776165 seg138251 seg448767 seg965324

Scene Index 23 114 327 621 703 172 552 788

Table 5. Segment Names and Scene IDs of 8 scenes used in OmniRe[6].

Segment Name seg102319 seg103913 seg109636 seg117188

Scene Index 17 22 50 81

Table 6. Segment Names and Scene IDs of 4 scenes used in PVG[5].

9. Data

We conduct our experiments on the Waymo Open Dataset
[28] and the KITTI Dataset [11], both consisting of real-
world autonomous driving scenarios.

9.1. Waymo Open Dataset

NOTR from EmerNeRF. NOTR is a subset consisting of
diverse and balance sequences derived from Waymo Open
Dataset introduced by [39]. It includes 120 distinct driving
sequences, categorized into 32 static, 32 dynamic, and 56
diverse scenes covering various challenging driving condi-
tions. Following [15], we incorporate the 32 dynamic scenes
and 32 static scenes from NOTR into our testing set. Refer
to EmerNeRF[39] for NOTR dataset details.

OmniRe subset. OmniRe[6] selects eight highly complex
dynamic driving sequences from Waymo Open Dataset, each
including dynamic classes such as vehicles and pedestrains.
The Segment IDs of selected scenes are shown in Tab.5.

PVG subset. PVG [5] provides four sequences randomly
selected from Waymo Open Dataset, which are also included
in our experiments. The Segment IDs are shown in Tab.6.

For the sequences in the Waymo dataset, we follow the
same setup as [39]. Camera images are captured from
three frontal cameras—FRONT LEFT, FRONT, and FRONT
RIGHT—and then resized to a resolution of 640×960. Only
the first return of the LiDAR point cloud data is considered.

We select the first 50 frames from each dataset for our exper-
iments, and then scale the time range to [0,1].

9.2. KITTI Dataset
For KITTI Dataset, we only test DeSiRe-GS on the subset

provided by PVG[5]. Different from the Waymo dataset,
we only use the left and right cameras for evaluation on
KITTI dataset. The resolution of images from each camera
is 375× 1242. Similar to Waymo Dataset preprocessing, we
randomly choose 50 frames from the whole sequence from
each KITTI dataset and rescale time duration to [0,1] with a
frame interval of 0.02 seconds.

9.3. Data Source
For Tab. 1, the results of the baselines are taken from

PVG [5], since we are using the same dataset and evaluated
on the devices. The results of Tab. 2 are sourced from
OmniRe [6].

10. Additional Results
10.1. Additional quantitative results

We conducted experiments on the NOTR dataset, and the
results are listed in Tab. 4. Following PVG [5], we scaled
the camera pose and point clouds during pre-processing. For
a fair comparison of depth errors with other methods, we
re-map the depth back to the original scale and calculate the
depth L1 error. The results in Tab. 3 for ablation studies are
without the rescaling.

10.2. Analysis
We compare the rendered depth of various methods in

Fig. 11. S3Gaussian [15] fails to predict accurate depth map,
because they use only LiDAR point clouds for initialization,



where there are no points at the upper part. Other than the
LiDAR points, PVG [5] and DeSiRe-GS randomly sample
points, enabling us to render much better depth map.

GS-based methods, such as PVG [5] and S3Gaussian [15]
generally outperform NeRF-based methods like EmerNeRF
[39] in terms of image rendering. However, the explicit GS
methods tend to overfit to the images, thereby performing
poorly on depth rendering. With the proposed cross-view
consistency, our model can successfully solve the over-fitting
problem, achieving satisfactory rendering quality both in
image and depth.


