
DualTalk: Dual-Speaker Interaction for 3D Talking Head Conversations

Supplementary Material

In this supplementary material, we provide additional
details on DualTalk. Section 1 covers the implementation
details, including network architecture and loss functions.
Section 2 describes the dataset collection and processing
methods. Section 3 outlines the evaluation metrics used to
assess performance. Section 4 discusses ethical considera-
tions, and Section 5 addresses limitations and future work.

1. Implementation Details
1.1. Network Architecture

In this section, we provide comprehensive implementation
details of our DualTalk framework. The framework con-
sists of four main components: Dual-Speaker Joint En-
coder, Cross-Modal Temporal Enhancer, Dual-Speaker In-
teraction Module, and Expressive Synthesis Module.

The Dual-Speaker Joint Encoder processes both audio
and visual inputs through parallel branches. For audio pro-
cessing, we utilize a pre-trained Wav2Vec 2.0 [1] model to
encode the raw audio waveforms (sampled at 16kHz) into
high-dimensional feature representations. The audio en-
coder consists of 12 transformer [10] layers with a hidden
dimension of 1024, followed by a linear projection layer
that maps the features to a 256-dimensional space. This
projection is essential for aligning the audio features with
the visual representation space. The visual branch pro-
cesses blendshape coefficients through a two-layer MLP
with ReLU activations, where the first layer maps the 56
blendshape parameters to 128 dimensions, and the sec-
ond layer further projects these features to match the 256-
dimensional audio features.

The Cross-Modal Temporal Enhancer is designed to en-
sure temporal coherence and modal alignment. At its core
is a multimodal cross-attention mechanism with 4 attention
heads. This mechanism allows the model to establish con-
nections between audio and visual features across different
temporal positions. Following the cross-attention layer, we
employ a bidirectional LSTM [5] with 512 hidden units and
2 layers to capture long-term dependencies in both forward
and backward directions. The LSTM incorporates a dropout
of 0.1 between layers to prevent overfitting.

For the Dual-Speaker Interaction Module, we imple-
ment a transformer-based architecture consisting of an en-
coder and decoder, each with 3 layers. The encoder em-
ploys 4-head self-attention mechanisms with a hidden di-
mension of 256 and a feed-forward network dimension of
512. The Modal Alignment Attention layer, inspired by
FaceFormer [3], uses a custom attention mask to ensure
causal relationships in the temporal domain. The decoder

follows a similar structure but includes additional cross-
attention layers to integrate information from both speakers.

The Expressive Synthesis Module utilizes an adaptive
expression modulation mechanism implemented as a two-
layer MLP. The first layer expands the 256-dimensional fea-
tures to 512 dimensions, followed by layer normalization
and ReLU activation. The second layer then projects back
to 256 dimensions before the final blendshape prediction
layer, which outputs 56 blendshape parameters normalized
through a sigmoid activation.

1.2. Loss Functions

Our training objective incorporates multiple loss terms to
ensure both accurate blendshape prediction and smooth
temporal dynamics. The total loss function consists of two
primary components: a direct blendshape reconstruction
loss and a velocity loss that enforces temporal consistency.

The blendshape reconstruction loss (Lbs) is computed as
the Mean Squared Error (MSE) between the predicted head
motion blendshape parameters (M̂ ) and the ground truth
blendshapes (M ):

Lbs = MSE(M̂,M) =
1

N

N∑
i=1

(M̂i −Mi)
2 (1)

To ensure smooth and natural facial movements, we in-
troduce a velocity loss term that penalizes sudden changes
in blendshape parameters between consecutive frames. The
velocity is computed as the first-order temporal difference
of blendshape parameters. Specifically, for both predicted
and ground truth sequences, we calculate the frame-to-
frame differences:

Vgt = Mt+1 −Mt (2)

V̂ = M̂t+1 − M̂t (3)

where t represents the frame index. The velocity loss
(Lvel) is then computed as the MSE between the predicted
and ground truth velocities:

Lvel = MSE(V̂ , Vgt) =
1

N − 1

N−1∑
t=1

(V̂t − Vgt,t)
2 (4)

The final loss is the mean of these two components:

Ltotal = Lbs + Lvel (5)



This combined loss function effectively balances be-
tween accurate facial expression reproduction and tempo-
ral smoothness. The blendshape reconstruction loss ensures
that the predicted facial expressions match the ground truth
at each frame, while the velocity loss prevents unrealistic,
jittery movements by encouraging smooth transitions be-
tween consecutive frames. During training, we use equally
weighting these two terms (with an implicit weight of 1.0
for each).

1.3. Training Details

During training, we optimize our model using the Adam [6]
optimizer with an initial learning rate of 1e-4. We train the
model for 200 epochs using a batch size of 32 on a NVIDIA
A6000 GPU with 48GB memory each. The complete train-
ing process takes approximately 48 hours to converge.

2. Dataset Details
Our dataset collection and processing pipeline is designed
to create a comprehensive and high-quality dataset for dual-
speaker interaction modeling. Here, we provide detailed in-
formation about our data collection, processing procedures,
and dataset statistics.

The raw data is collected from YouTube interviews, with
a wide variety of natural face-to-face interactions. We
specifically focus on videos featuring clear facial visibil-
ity of both speakers, high-quality audio, and natural con-
versational dynamics. All videos are in 1920×1080 resolu-
tion recorded at 25 frames per second, with audio sampled
at 16kHz. The collected videos span different languages,
speaking styles, and environmental conditions to ensure ro-
bustness and generalization of our model.

The resulting dataset comprises 50 hours of processed
conversation data, featuring 1,052 unique identities across
5,858 video clips. Each clip contains an average of 2.5
conversation rounds, where speakers naturally alternate be-
tween speaking and listening roles. The dataset is carefully
split into training (4,935 clips), testing (539 clips), and out-
of-distribution (OOD) validation sets (384 clips). The OOD
set specifically includes speakers and conversation scenar-
ios not present in the training data to evaluate generalization
capability.

To construct this dataset, we sourced two-person conver-
sational videos from YouTube and RealTalk [4] raw videos.
Videos are segmented using TransNet V2 [9] for shot tran-
sition detection, retaining only segments longer than 5 sec-
onds to capture meaningful interactions. Visual-guided
speech separation is performed with IIANet [7], producing
isolated audio streams for each speaker—a critical feature
for accurate lip synchronization and expression modeling.

To ensure speaker-specific frame isolation, we use Me-
diaPipe [8] for face detection and tracking. High-resolution
3D facial meshes are extracted using Spectre, and samples

with abnormal coefficients are filtered out. For speaker sep-
aration, Pyannote [2] is employed, allowing the identifica-
tion of multi-round conversations and distinct speaker turns
to facilitate the extraction of back-and-forth dialogues. To
ensure annotation stability, a minimum speech duration of
2 seconds is set.

3. Evaluation Metrics
In this section, we provide detailed descriptions of the eval-
uation metrics used to assess the performance of our Du-
alTalk framework. These metrics are carefully selected to
comprehensively evaluate different aspects of the generated
conversational animations, including motion realism, tem-
poral synchronization, and interaction dynamics.

Fréchet Distance (FD): The FD serves as our primary
metric for evaluating motion realism. It computes the distri-
butional distance between generated and ground-truth mo-
tions in the feature space. Specifically, we extract deep fea-
tures from both the predicted and actual motion sequences
using a pre-trained motion encoder, modeling them as mul-
tivariate Gaussian distributions. The FD effectively cap-
tures the statistical similarity between the generated and real
motion distributions, where a lower score indicates better
motion realism.

Paired Fréchet Distance (P-FD): To evaluate the qual-
ity of dual-speaker interactions, we introduce the P-FD met-
ric, which extends the traditional FD by considering the
joint distribution of dual-speaker pairs. By concatenating
the generated Speaker-B’s motions with the correspond-
ing Speaker-A’s motions along the feature dimension, we
compute the FD between these paired representations and
their ground-truth counterparts. This approach captures the
synchronization and coherence between the two speakers’
movements, providing insights into the quality of interac-
tive dynamics.

Mean Squared Error (MSE): For direct motion accu-
racy assessment, we employ the MSE between generated
and ground-truth motions. This metric is computed across
all blendshape parameters and temporal dimensions, pro-
viding a straightforward measure of prediction accuracy.
The MSE helps us understand how closely the generated an-
imations match the ground truth at a frame-by-frame level.

SI for Diversity (SID): To evaluate the diversity of gen-
erated animations, we use the SID metric. This approach
applies k-means clustering (k=40) to the motion sequences
in the feature space and quantifies diversity by calculating
the entropy of the cluster assignment histogram. A higher
SID value indicates more diverse and varied motion patterns
in the generated animations, which is crucial for producing
natural and non-repetitive conversational behaviors.

Residual Pearson Correlation Coefficient (rPCC): To
assess the temporal correlation between Speaker-A and
Speaker-B movements, we introduce the rPCC metric.



It computes the frame-wise Pearson correlation between
Speaker-A and Speaker-B motions and then measures the
L1 distance between the correlation patterns of generated
and ground-truth sequences. The rPCC is particularly use-
ful for evaluating how well the model captures the subtle
interactive dynamics between Speaker-A and Speaker-B in
conversation.

These metrics collectively provide a comprehensive
evaluation framework for assessing the quality, realism, and
interactive dynamics of our dual-speaker animation system.
Each metric focuses on a specific aspect of the generated
animations, enabling detailed analysis of the model’s per-
formance across different dimensions. Through this multi-
faceted evaluation approach, we can thoroughly validate the
effectiveness of our proposed method in generating realistic
and interactive conversational animations.

4. Ethics Considerations
The development of DualTalk raises important ethical con-
siderations, particularly regarding privacy, misuse, and po-
tential societal impacts. The DualTalk dataset includes ex-
tensive conversational data, and while publicly available
sources were used, ensuring compliance with data privacy
laws and ethical guidelines remains a priority. Steps have
been taken to anonymize and process data responsibly, but
future work will aim to establish more robust safeguards to
prevent inadvertent exposure of personal information.

Another key concern is the potential misuse of DualTalk
for deceptive purposes, such as creating realistic yet fabri-
cated conversations or impersonating individuals. To miti-
gate this, strict usage policies and watermarking techniques
can be implemented to differentiate generated content from
real-world interactions. Open-sourcing the technology will
be accompanied by clear guidelines to discourage unethical
applications.

5. Limitations and Future Works
The limitations of DualTalk primarily lie in its current fo-
cus on dyadic interactions and the lack of precise emotional
controllability in generated animations. While DualTalk ex-
cels in creating synchronized and natural two-speaker con-
versations, it cannot yet handle multi-party interactions,
which are common in real-world applications. Additionally,
while the Expressive Synthesis Module generates nuanced
facial expressions, the model lacks the ability to precisely
control the emotional tone of its outputs, limiting its adapt-
ability to specific scenarios or user preferences.

Future work will focus on extending DualTalk to multi-
party interactions, enabling the model to handle dynamic
role transitions and conversational flows in group settings.
Additionally, efforts will be directed toward generating con-
trollable emotions, allowing the system to adapt its re-

sponses to specific emotional tones or user preferences, fur-
ther enhancing the naturalness and versatility of 3D talking
head animations.
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