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This supplementary material is organized into three main sections. First, we present a detailed derivation of the definition
introduced in the main paper (Sec. A). Second, we provide additional qualitative results to further demonstrate the contri-
butions of our H-CLIP (Sec. B). Finally, we provide detailed descriptions of the open-vocabulary segmentation datasets in
Section C.

A. Derivation of the Definition
In this section, we provide a derivation of definition in the main paper. Definition 4.1(3-order T-product) For A ∈
Rn1×n2×n3 and B ∈ Rn2×l×n3 , the 3-order T-product C ∈ Rn1×l××n3 = A ∗ B is defined as:

C = A ∗ B = fold(circ(A) · unfold(B)), (S-1)

where “·” represents standard matrix product.
Definition 4.2(Higher-order T-product) For A ∈ Rn1×n2×n3···×np and B ∈ Rn2×l×n3×···×np , the High-order T-product

C ∈ Rn1×l×n3···×np = A ∗ B is defined as:

C = A ∗ B = fold(circ(A) ∗ unfold(B)). (S-2)

Derivation. According to [3], if A is n1 × n2 × n3, A can be block diagonalized by using Discrete Fourier Transformer
(DFT) matrix Fn3

∈ Rn3×n3 as:

(Fn3
⊗ In1

) · circ(unfold(A)) · (F∗
n3

⊗ In2
) = D =

D1

. . .
Dn3

 ∈ Rn1n3×n2n3 , (S-3)

where “⊗” denotes the Kernecker product, “F∗
n3

” denotes the conjugate transpose of Fn3
, “·” means standard matrix product

and D is a block diagonal matrix. In fact, the i-th block matrix Di of D can be computed by applying DFT of A along 3-rd
dimension. The 3-order T-product in Eq. (S-1) can be computed as:

(F∗
n3

⊗ In1
) · ((Fn3

⊗ In1
) · circ(unfold(A)) · (F∗

n3
⊗ In2

)) · (Fn3
⊗ In2

) · unfold(B). (S-4)

It is readily shown that (Fn3 ⊗ In2)unfold can be computed by applying DFT of B along 3-rd dimension: the result called B̄.
Thus, Eq. (S-4) remains to multiply each block matrix Di of D with each block matrix Bi of B̄, then take an inverse DFT
along the 3-rd dimension of the result. Hence, the 3-order T-product in Eq. (S-1) can be re-formulated as:

C = DFT−1
3 (DFT3(A)⊙ DFT3(B)) = DFT−1

3 (Ā ⊙ B̄) = DFT−1
3 (C̄), (S-5)

where DFT3(·) is DFT along 3-rd dimension and DFT−1
3 (·) is the inverse DFT along 3-rd dimension. In mathematics, the

DFT of A along 3-rd dimension is formulated as:

Ā = DFT3(A) = A×3 Fn3
. (S-6)
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Similarly, the inverse DFT of Ā along 3-rd dimension is derived as:

A = DFT−1
3 (Ā) = Ā ×3 F

−1
n3

. (S-7)

By the detailed theoretical analysis in [4], the DFT has been extended to a general invertible transform S with an invertible
transform matrix S. In mathematics, the invertible transform of A along 3-rd dimension is formulated as:

Ā = S3(A) = A×3 Sn3
. (S-8)

Similarly, the inverse transform of Ā along 3-rd dimension is derived as:

A = S−1
3 (Ā) = Ā ×3 S

−1
n3

. (S-9)

Similarly, if A ∈ Rn1×n2×···×np , A can be block diagonalized by using a sequence of DFT matrices Fni ∈ Rni×ni , i =
3, 4, ·, p as:

(Fnp
⊗ Fnp−1

⊗ · · · ⊗ Fn3
⊗ In1

) · Ã · (F∗
np

⊗ F∗
np−1

⊗ · · · ⊗ F∗
n3

⊗ In2
) = D, (S-10)

where Ã = circ(unfold(A)) ∈ Rn1n3n4···np×n2n3···np . Since the matrix D is block diagonal with n3n4 · · ·np blocks each of
size n1 × n2, the Higher-order T-product in Eq. (S-2) can be computed as:

(F̃∗ ⊗ In1) · ((F̃⊗ In1) · Ã · (F̃∗ ⊗ In2)) · (F̃n3 ⊗ In2) · B̃, (S-11)

where F̃ = Fnp ⊗ Fnp−1 ⊗ · · · ⊗ Fn3 . Using the DEF, it is straightforward to show that the block diagonal matrix D in
Eq. (S-10) can be obtained by repeated DFTs of A along each dimension expect for 1-st and 2-nd dimension. Similarly, by
using a sequence invertible transform Sj(·), i = 3, 4, ·, p with invertible transform matrix Si, the Higher-order T-product
in Eq. (S-2) can be re-formulated as:

C = S̃−1(S̃(A)⊙ S̃(B)) = S̃−1(Ā ⊙ B̄) = S̃−1(C̄), (S-12)

where S̃(A) = Sp(Sp−1(· · ·S3(A) · · · )), C̄ = Ā ⊙ B̄ denotes the frontal-slice-wise product C̄(; , ; , i) = Ā(; , ; , i) ·
B̄(; , ; , i), i = 1, 2, · · · , n3n4 · · ·np and S̃−1(·) is the inverse transform of S̃(·). The inverse transform S̃(·) is formulated as:

Ā = S̃(A) = A×3 S3 ×4 S4 · · · ×p Sp, (S-13)

and its inverse transform is derived as:

A = S̃−1(Ā) = Ā ×3 S
−1
3 ×4 S

−1
4 · · · ×p S

−1
p . (S-14)
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B. Extension Visualization

We present more visualization to illustrate how the misalignment problem impacts segmentation performance, as shown in
Figs. S-1 and S-2. These results validate the effectiveness of alignment. In addition, we visualize the training accuracy curve
in Fig. S-3, further demonstrating the advantage of the symmetric fine-tuning solution.

Image Baseline w/o alignment Ours Ground truth

Figure S-1. Comparison of qualitative results on VOC2010 with 59 categories.

Image Baseline w/o alignment Ours Ground truth

Figure S-2. Comparison of qualitative results on ADE20K with 150 categories.
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Figure S-3. Training accuracy curves. The comparison is conducted between symmetric fine-tuning (Ours) and asymmetric fine-tuning
(text encoder only or image encoder only).

C. Dataset Descriptions
Here, we present detailed descriptions of three datasets we used in open-vocabulary semantic segmentation.
• ADE20K [6] is a classical semantic segmentation dataset comprising around 20,000 training images and 2,000 validation

images. Besides, it includes two different test sets: A-150 and A-847. The test set A-150 has 150 common categories,
while the test set A-847 has 847 categories.

• PASCAL VOC [2] is a small dataset for semantic segmentation, which includes 1464 training images and 1449 validation
images. The dataset contains 20 different foreground categories. We name it as PAS-20. In line with [1], we also report a
score on PAS-20b, which involves “background” as the 21st category.

• PASCAL-Context [5] is upgraded from the original PASCAL VOC dataset. It includes two different test sets: PC-59 and
PC-459 for evaluation. The test set PC-59 has 59 categories, while the test set PC-459 has 459 categories.
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