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A. Video Showcase
We share a video showcasing our annotations on our web-
page: http://hd-epic.github.io containing three
parts.
start → 01:16. Annotations overview. This is a walk-
through of Fig. 1, showing our annotation hierarchy and
how annotations are linked to the 3D Digital Twin.
01:16 → 04:24. Annotation showcase on one sequence
from one kitchen. For one video, we show a walk through
of the various annotations on this same video.
04:25 → end. Annotation examples from other kitchens.
First are examples of our highly-detailed narrations, fol-
lowed by examples of hand and object segmentations. We
then present audio annotations with waveforms. Next, ex-
amples of object-fixture assignment are shown in the Digital
Twin. Finally, examples of ingredient nutrition, running to-
tal nutrition, and total nutrition for whole recipes are shown.

B. Data Collection
In this section, we provide more details of: the recruitment
and equipment used in Sec. B.1; instructions and collected
data in Sec. B.2; narrations in Sec. B.3; and Post-Processing
in Sec. B.4.
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Figure A1. Participant P04 unpacking the data recording equip-
ment.

B.1. Recruitment and Equipment
Each participant engaged in a long-time commitment (avg.
50 hours): data collection, reviewing footage, and provid-
ing detailed narrations including activities/recipe/nutrition
information. Participants signed a consent form and a data
release form after which they were rewarded monetarily. In
Fig. A1, we show the devices provided to participants for
the data collection, packaged tightly in one backpack that
the participants took home. Data collection was carried out
using Project Aria devices [72]—a multi-sensor platform,
in the form factor of a pair of glasses1, with 3 front facing
cameras (1 RGB and 2 SLAM), 7 microphones and inward
facing cameras for gaze estimation2. Due to the storage lim-
its, four devices were provided to each participant. We sup-
plied a smartphone with the Aria Mobile Companion app,
with all four devices already registered, as well as the My-
FitnessPal app [3] installed. Due to battery life limits, de-
vices were sometimes wired to a pocket-carried power bank
whilst recording long sessions. Participants also received
recording instructions and a set of digital weighing scales
for nutritional tracking. The scales’ display is clear to read,
to enable OCR readings.

B.2. Instructions and Collected Data
Participants were recruited to record their daily kitchen ac-
tivities for at least three consecutive days. All record-
ings were unscripted: participants were asked to wear the
glasses every time they walked into their kitchen, press-
ing the recording button upon entering, and stopping the
recording when they left the kitchen. Videos were recorded
between January and July 2024. The number of hours col-
lected per participant ranged from 3.5 to 7.2, with an av-

1Participants who require glasses and cannot use lenses were excluded
2We used Profile 28—1408 ⌐ 1408 resolution 30 FPS RGB footage,

60 FPS eye tracking, 30 FPS SLAM
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Figure A2. Dataset Statistics: Comparison with EPIC-Kitchens, Ego4D and Ego-Exo4D.

erage of 4.6. We collected a total of 156 videos, with an
average length of 15.9 (±14.5) mins. In total, we collected
41.3 hours (4.46M frames) of footage from 9 participants.

Following data collection, participants provided the
recipe they freely prepared. They cited the source of the
recipe (e.g. online website or cookbook) and any modifi-
cations to ingredients or steps. We collected a total of 69
recipes from the 9 participants. Our recipes cover vari-
ous cuisines including: Masala Dosa (Indian), Cacio e Pepe
(Italian), Sfesiha (Lebanese), and Banana Bread Chocolate
Chip Cookies (American) with an average (max) of 6.6 (18)
steps and 8.1 (24) ingredients per recipe. Additionally, par-
ticipants provided time segments (as start-end times) cov-
ering each step of their recipes. Recipes typically expand
over several videos, on average taking 4 hours and 48 min-
utes to complete across 2.1 videos from starting preparation
to conclusion3. Our longest captured recipe (P03 R03) took
2 days and 6 hours to complete.

We found that participants would interleave the prepara-
tion of multiple dishes, often preparing several courses si-
multaneously (e.g. salad or dessert while preparing a main).
Whilst natural in daily routines, this has not been cap-
tured in previous recordings which consist of edited online
videos [93] or short recipes captured under controlled set-
tings [29].

To track the nutrition values of prepared meals, we in-
structed participants to weigh ingredients using the digi-
tal scales and log nutrition values via the provided My-
FitnessPal app. By combining the weight and ingredi-
ent information, detailed nutrition information associated
with recipes were collected, adding an interesting dimen-
sion where we can estimate the weighed ingredients from
visual data. While spices are often included as ingredients,
we do not capture their nutrition values as they rarely al-
ter these values and are mainly included to improve the
dish’s taste. In total, participants used 558 ingredients in-
cluding: high protein ingredients such as tuna and kidney
beans, high carb such as dates and flour, and high fat such
as sour cream and pine nuts. Participants prepared both high
calorific meals such as Lazy Cake Recipe (P01 R05, 4.8K
calories) and low-calorie meals including Crispy Cucumber
Salad (P08 R09, 274 calories).

B.3. Narrations
We collect sentences detailing the actions carried out by
participants in each video. Following [18], we instruct
the participants to record spoken narrations of all actions
throughout the videos and re-purpose the web-based narra-
tor tool used in [29] for expert commentary. Using the tool,
participants pause the video and record a narration when-
ever they observe an action and provide detailed narrations
which include at least one verb and noun, and information
about what they did why and how they did it when relevant.

This results in a rich set of narrations which are
denser and more detailed than previous egocentric datasets.
Fig. A2 shows that HD-EPIC narrations are much denser
with a higher words per sentence and words per minute
than Ego-Exo4D, the next densest dataset, demonstrating
a significant increase in detail. We also see increases in the
numbers of nouns and verbs per sentence as sentences de-
scribe actions in more detail, even common actions are de-
scribed uniquely—e.g. ‘pick plate from a pile of plates us-
ing the right hand’ and ‘pick plate from a lower shelf using
the left hand’. In total, 81% of all narrations in HD-EPIC
are unique sentences, compared to only 31% in Ego-Exo4D,
22% in Ego4D, and 15% in EPIC-KITCHENS. Non-unique
narrations have recently been identified as a concern in re-
cent works [54].

B.4. Post-Processing: Multi-Video SLAM and Gaze
We make use of the Multi-Video SLAM API provided
by the Aria Machine Perception Services (MPS) [1] to
reconstruct a single point cloud from all recordings ob-
tained in a kitchen, across multiple days. It is important
to highlight that no additional scanning is used to recon-
struct the scene—it is simply reconstructed from the un-
scripted recordings. We obtain the 3D point clouds and 2D
tracked points along with camera trajectories consisting of
1kHz frequency and 6DoF, estimated using odometry, for
all videos. Out of the 156 videos, 3 videos could not be
successfully processed via SLAM API. For these videos,
we run COLMAP [65, 66] following EPIC Fields [77] pre-
processing to obtain camera poses and manually align them
to the corresponding kitchen obtained from MPS.

We also use the MPS services to obtain yaw and pitch

3In contrast, Ego-Exo4D recipes are 8.5 mins on average.
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Dataset Val&Test Action Unscripted Free Recipe Nutrition Gaze Audio Object Hand 3D object Labelled 3D Camera Fully
Hours Segments Setting Labels over time environment pose annotated

CMU-MMAC [20] 16.6 ✁ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
ADL [55] 5.8 ✁ ✁ ✁ ✂ ✂ ✂ ✂ B-Box ✂ ✂ ✂ ✂ ✁
UTE [41] 16.9 ✂ ✁ ✁ ✂ ✂ ✂ ✂ Polygon ✂ ✂ ✂ ✂ ✁
KrishnaCam [71] 14.0 ✂ ✁ ✁ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✁

Charades-EGO [69] 6.71 ✁ ✂ ✁ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✁
EGO-CH [61] 26.5 ✁ ✁ ✂ ✂ ✂ ✂ ✂ B-Box ✂ ✂ ✂ ✂ ✂
MECCANO [62] 3.0 ✁ ✂ ✂ ✂ ✂ ✁ ✂ B-Box B-Box ✂ ✂ ✂ ✁
EGTEA Gaze+ [45] 19.1 ✁ ✂ ✂ ✂ ✂ ✁ ✂ ✂ Mask ✂ ✂ ✂ ✁
HOI4D [46] 11.4 ✁ ✂ ✂ ✂ ✂ ✂ ✂ Mask Mask ✁ ✁ ✂ ✁

Assembly101 [68] 66.81 ✁ ✂ ✂ ✂ ✂ ✂ ✂ ✂ 3D pose ✂ ✂ ✂ ✁
EPIC-KITCHENS-100 [18] 25.3 ✁ ✁ ✁ ✂ ✂ ✂ ✁ Mask Mask ✁ ✂ ✁ ✂

Ego4D [28] 288.72 ✁ ✁ ✁ ✂ ✂ ✂ ✂ B-Box B-Box ✂ ✂ ✂ ✂
HoloAssist [80] 49.8 ✁ ✂ ✂ ✂ ✂ ✁ ✂ ✂ 3D pose ✂ ✂ ✁ ✁
Aria Digital Twin [50] 8.1 ✂ ✂ ✂ ✂ ✂ ✁ ✂ Mask ✂ ✁ ✁ ✁ ✁
Aria Everyday Activities [47] 7.3 ✂ ✂ ✁ ✂ ✂ ✁ ✂ ✂ ✂ ✂ ✂ ✁ ✂
Aria Everyday Objects [74] 0.4 ✂ ✁ ✁ ✂ ✂ ✂ ✂ B-Box ✂ ✁ ✂ ✁ ✁
IndustReal [67] 3.5 ✁ ✂ ✂ ✂ ✂ ✁ ✂ ✂ 3D pose ✂ ✂ ✂ ✁
IT3DEgo [91] 4.6 ✂ ✁ ✁ ✂ ✂ ✂ ✂ B-Box ✂ ✁ ✂ ✁ ✁

CaptainCook4D [52] 42.5 ✁
3

✂ ✂ ✁
4

✂ ✂ ✂ ✂ 3D pose ✂ ✂ ✁ ✂

Ego-Exo4D [29] 85.1 ✂ ✁ ✁ ✁
3

✂ ✁ ✂ Mask 3D pose ✂ ✂ ✁ ✂

HD-EPIC 41.3 ✁ ✁ ✁ ✁ ✁ ✁ ✁ Mask Mask ✁ ✁ ✁ ✁

Table A1. Comparing egocentric video datasets. 1Subset of egocentric videos. 2Episodic Memory, Hands+Object and Forecasting bench-
marks. 3Only key steps annotated.

angle for eye gaze and obtain a unit vector along the gaze
direction by anchoring it to the central pupil frame. The
depth of the gaze vector is estimated by projecting it into
the world frame and obtaining its first intersection with any
surface on the 3D space. We then use the device calibra-
tion and project the ray to obtain 2D location on the image
frame. After gaze is calculated, we remove the gaze camera
input from all VRS files for anonymity.

We also provide additional information on the anonymi-
sation process for videos. To ensure the privacy of the par-
ticipants, faces were anonymised in the rare case where they
are visible due to reflections or accidental capture. Partici-
pants were asked to view their videos and notify us of cases
where faces or identifiable information was present, we also
anonymised videos which we found to need anonymisation.
We then used black boxes to mask these faces/identifiable
information to avoid potential regeneration. In total 8
videos were marked for anonymisation (6% of our 156
videos)—we redacted a total of 2774 frames. Correspond-
ingly, we manually marked and anonymised these frames in
the two gray-scaled SLAM cameras stored in the VRS files.

We separately post-process the VRS files to convert them
to mp4. For the audio, we select channels 5 and 6 to get
a binaural audio out of the 7 audio channels in the input
recording. We select these channels as they are closer to the
ears and remove other audio channels to mitigate breathing
noises. We then extract the frames from VRS matching the
audio timestamp. Finally, we obtain a video with 30 FPS
and binaural audio with 48 kHz sampling rate. These videos
are used in all follow-up annotations and benchmarking.

C. Annotation Pipeline
C.1. Annotating Recipe Steps and Ingredients
We match the annotated start-end times to recipes steps to
automatically compile ‘recipe videos’, which we use for
annotating recipe steps and ingredients. We further link
recipes, steps, and ingredients by annotating time segments
where ingredients are added to the recipe. For each ingre-
dient, we temporally annotate the weighing and adding ac-
tions. The weighing segments allow tracking the amount
of each ingredient from zero to the total used in the dish
whereas the adding segments mark when an ingredient is
incorporated in the recipe. When weighing is performed
with the scales, we obtain automatic OCR readings of the
scales which are manually verified and checked to ensure
the full amount matches the quantity in the nutrition infor-
mation provided by the partcipant. Fig. A3 visualises the
annotations per ingredient.

C.2. Fine-Grained Actions
C.2.1 Transcriptions

The audio narrations, provided by the participants are first
converted into timestamped transcriptions. We use an en-
semble of audio transcription models, namely Whisper [60],
Qwen-Audio [14] and Nemo [38], to improve the quality of
transcriptions. We find that each of these models makes a
different set of errors in understanding the diverse spoken
accent of participants, so we opt for the consensus of mod-
els along with manual checks. For each narration, we select
a transcription from one of these models based on a num-
ber of checks. Transcriptions with spelling errors or words
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Figure A3. Per ingredient, we temporally label weighing (if present) and adding to recipe. Weighing is OCRed and manually verified.

not in a whitelisted kitchen vocabulary, which we populate
during transcription cleaning, are excluded. If there is more
than one unique transcription, we select the highest model
confidence. If all transcriptions are excluded by the spelling
or whitelist checks, but multiple models have produced the
same transcription, then we select this transcription. Other-
wise the Whisper transcription is selected as a default. We
then manually check all candidate transcriptions using ded-
icated human checkers, who listen to the audio and verify
or correct the transcription. We then fix typos and obtain a
set of cleaned detailed transcriptions.

C.2.2 Action Annotations

For each narration, we label the precise time segment
bounded by when the action in the narration starts and con-
cludes, using AMT workers. We divide the video into HITs
of 10 consecutive narrations. Multiple annotators (Ka ≜ 3)
are tasked to annotate both start and end times of the seg-
ment containing the narrated action, primed by the times-
tamp, denoted by Ai = [tsi , tei]. The option to skip an
action is also provided to the annotators if they are unable
to find it in the video; accounting for rare cases when the
action occurs off-camera. The interface used to annotate
action boundaries is shown in Fig. A4. We ensure we have
sufficient inter-annotator agreements between at least three
annotators, adding annotators until satisfied.

We select the best annotation by measuring inter-
annotator agreement. For narration i, let Ai(j) rep-
resent the annotation from annotator j. The agree-
ment score for annotator j on narration i is ωi(j) =
1
Ka

⨅Ka

k=1 IOU(Ai(j), Ai(k)), where IOU is temporal
intersection-over-union. The average agreement score
across the HIT is ω(j) = 1

NH

⨅NH

i=1 ωi(j), with NH ac-

tions per HIT. We select the best annotator ĵ as the one with
the highest average agreement on their three lowest-scoring
actions and similarly find k̂ as the second-best annotator.

The ground-truth action segment Ai is then found as:

Ai = ⌊Union(Ai(ĵ), Ai(k̂)), if IoU(Ai(ĵ), Ai(k̂)) > 0.5

Ai(ĵ), otherwise
(1)

where we choose to merge annotations from the two best
annotators for an action segment if they have a strong agree-
ment, which helps to avoid overly tight segments [17].

To ensure annotation quality, we require minimum an-
notator agreement min(ω(j)) ≜ 0.3 for each HIT. Failed
HITs are re-attempted with up to 3 new annotators, then
manually annotated if still below threshold. We also per-
form quality checks on randomly sampled action segments.

C.2.3 Parsing and Clustering

We next parse the open vocabulary narrations so they can
be used for tasks that expect a closed vocabulary, such as
action recognition. Additionally, we wish to identify the
parts of the narration where the participant is detailing the
manner in which the action was carried out and the goal
achieved by carrying out the action. We achieve these by
parsing these open vocabulary narrations as follows. As
a result of the fine-grained nature of the collected narra-
tions, it was expected that LLMs with their impressive per-
formance in NLP tasks would provide better results com-
pared to smaller language models. To that end different
open source LLMs were tested for the task of extracting the
pairs of nouns and verbs and identifying the main action.
Initial testing showed mixed results with hallucinations be-
ing a major issue. Even though a combination of different
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Figure A4. Interface for annotating action boundaries

prompting techniques such as few-shot prompting improved
the results, given the number of narrations, the results were
too unpredictable.

Each narration transcription is parsed into nouns, verbs,
and any noted hands (Left/Right/Both) using spaCy’s Part-
of-Speech tagging [30]. To better identify compound nouns,
we supplement spaCy’s noun chunks with Constituency
Parsing [37], and use pattern matching to filter out irrele-
vant parts, such as articles. For pronouns (e.g. ‘it’s’), we
use the co-reference resolution within the spaCy pipeline
along with heuristics to replace these with corresponding
nouns, selecting from the directly preceding narration. We
also identify the primary verb-noun pairs, as the ‘ROOT’
verb in spaCy with its corresponding noun, to form the main
action. To enhance accuracy, we also apply heuristics to
de-prioritize some verbs (e.g. “use something”) from being
considered the main action. We show some parsing exam-
ples in Table A2.

Similar to the POS tagging, clustering nouns and verbs
using LLMs was too noisy and inconsistent. The clusters
from [18] were used in addition to a combination of heuris-
tics, word embeddings, and manual assignment to assign
any new verbs or nouns to these clusters. We assigned
1, 172 new verbs (such as brew, simmer, burn) and 16, 812
new nouns (e.g. mortar, nutmeg, glue) to the clusters. We
additionally added 9 new verb clusters and 3 new noun clus-

ters which did not fit in the clusters from [18].

C.2.4 Sound Annotations

We follow a procedure similar to [31] to collect audio an-
notations. First, we only use a stereo 2-channel audio, ex-
tracted from the 5th and 7th microphones. These offer the
closest audio input to the two ears and in our experience de-
creases the presence of breathing sounds in the audio signal,
thus better allowing annotators to focus on the sound event.
We divide the untrimmed audio, for one video, into chunks
based on a silence threshold to provide manageable project
sizes to the annotators, whilst avoiding splitting an ongoing
sound.

We use a modified version of the VIA Interface [22].
Annotators were tasked with listening to the audio and la-
belling the start and end times of any distinct audio event
they heard. They selected labels from the classes from [31],
though annotators could still provide a free-form text de-
scription. We post-process the annotations, typo-correcting
free-form text descriptions and grouping into the classes
from [31]. We did not find a sufficient number of new free-
form text descriptions to warrant additional classes, hence
the classes match that of [31].

To reduce label noise, we used a customised version of
the LISA [4] interface. Here, the annotators were provided
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Narration Verbs Nouns Hands Main Action How Why

Transferring the plate stack to my right hand
so that I can turn off the tap with my left
hand.

transfer plate stack, tap right hand,
left hand

transfer plate
stack

- so that I can turn off the tap with
left hand

Push the bag of potatoes along the bottom
shelf of the fridge so that I can close the
fridge.

push bag of potatoes,
bottom shelf of
fridge, fridge

- push bag of
potatoes

- so that I can close the fridge

Pick up the two chopped lemon pieces using
both hands so as to weigh them.

pick up two chopped
lemon pieces

both hands pick up two
chopped lemon
pieces

using both hands to weigh them

Brush bit of onion skin off the chopping
board using the knife in my right hand be-
cause I don’t want to accidentally eat it.

brush bit of onion
skin, chopping
board, knife

right hand brush bit of
onion skin

using the knife in my right hand because I don’t want to acciden-
tally eat it

Shake the foil wrapping to make sure it is
empty.

shake foil wrapping - shake foil wrap-
ping

- to make sure it is empty

Turn on the gas burner by twisting the dial
in the right hand and pressing down the ig-
nition switch in the left hand.

turn on,
twist,
press

gas burner, dial,
ignition switch

right hand,
left hand

turn on gas
burner

by twisting the dial in the right
hand and pressing down the ig-
nition switch in the left hand

-

I open the washing up liquid bottle by flick-
ing the bottle lid up with my right hand.

open, flick
up

washing up liq-
uid bottle, bottle
lid

right hand open washing
up liquid bottle

by flicking the bottle lid up with
right hand

-

Wipe down the countertop using the wet
kitchen roll in the right hand, pushing the
food and sugar into the food bin that’s held
next to the countertop using the left hand.

wipe
down,
push

countertop, wet
kitchen roll,
food, sugar,
food bin

right hand,
left hand

wipe down
countertop

using the wet kitchen roll in
the right hand, pushing the food
and sugar into the food bin held
next to the countertop using the
left hand

-

Put the knife in the drawer by putting it ver-
tically in a slot.

put knife, drawer,
slot

- put knife by putting it vertically in a slot -

Open the semolina flour bag by unrolling
the top part of the plastic bag.

open, un-
roll

semolina flour
bag, top part of
plastic bag

- open semolina
flour bag

by unrolling the top part of the
plastic bag

-

Table A2. Parsing Examples

Figure A5. All kitchens with their fixture annotations (coloured randomly).

Figure A6. Distribution of all audio-classes in HD-EPIC Sounds

the audio-visual stream of each sound annotation and asked
to signify if the current label was correct. If the annotator
deemed the current label incorrect, we asked for a proposed
correction.

We show the distribution of audio-classes in Fig. A6.

C.3. Digital Twin

Environments. Fig. A5 shows all kitchens used, along with
their annotated fixtures.
Moving objects in 2D. For annotating the object mov-
ing segments, we used the VIA [22] interface as shown in
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Figure A7. The VIA interface used for annotations object move-
ments in 2D.

Figure A8. Interface for reviewing object/fixture assignments.

Fig. A7. In addition to the start and end timestamps of the
object motion, we ask the annotators to provide bounding
boxes around the object at the onset and end of the motion.
Object/fixture review. Fig. A8 shows the interface for
manually reviewing object/fixture assignments. Reviewers
were asked to verify whether the 3D location and assigned
fixture look correct. This process was repeated - after each
iteration corrections to the Fixture annotations (e.g. includ-
ing missing bins, hooks etc.) were made in Blender, as well
as adding heuristics to the assignment process.
Fixture transitions. Frequent transitions are cross-fixtures
(i.e. excluding objects picked up and placed down on the
same fixture), sink→counter and counter→cupboard. Fig.
A9 shows common transitions and locations where the 20
most common objects are placed on/in, normalised per ob-
ject. Again, counters are the most used fixtures.
Long Term Object Tracking. We link object movements
over time to provide long term tracking for all objects, i.e.
object itineraries. These capture sequences of an object’s

Figure A9. Left: Common source→destination object movements.
Right: Common take/put locations of the top-20 moving objects.

movement throughout the video. Fig. A10 shows the ob-
ject associations interface used to connect objects through-
out the video. It utilises our lifted 3D locations to speed up
the annotation process. For each track, the annotation in-
terface re-orders objects based on the comparison between
the query track’s initial 3D location (pick up) and previous
tracks’ final 3D location (put down). This approach was
used in [56] for egocentric tracking, and we use it as an ini-
tial step in our interface. Around 12% of the objects moved
at least 5 times in the video making it suitable for long-term
tracking. On average, an object moves 2.4 (± 2.6) times in
HD-EPIC.
Hand and Object Segmentations To improve perfor-
mance, we first manually annotate a small set of images
from each video (5-10 frames) for both left and right
hands. To cover the diverse locations and lighting condi-
tions, we use the camera pose estimates to identify clusters
of hotspots and select a set of images that represent hands in
action at various locations. This is sent to dedicated annota-
tors who manually segment these. We follow the same ap-
proach in [19], where hands and arms are segmented jointly
to avoid the ad hoc decision of the hand boundary. We use
the TORAS [33] annotation tool for all our manual segmen-
tation. We manually annotate 768 frames across 156 videos,
which accounts for roughly 0.02% of the total frames.

For each video, we utilise SAM2 [64] to predict 2D hand
masks for every frame. The manually annotated frames are
placed in the conditional memory (roughly 5 frames per
video) whilst the previous 6 predictions are used in the non-
conditional memory in order to improve temporal consis-
tency. We notice that SAM2, like most Video Object Seg-
mentation (VOS) models, suffers from identifying the hand
late when it enters the scene. In order to address this, we run
the aforementioned process both forwards and backwards
through the video.
Correcting Noisy Hand Segmentations. We devise a sim-
ple, non-learned procedure to automatically detect noisy
masks based on the rate of change of the mask’s area over
consecutive frames. A major change in size often indicates
noise. If the previous frame has no mask and the current
mask is large, then it is likely that a frame has missed a
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Figure A10. Object associations interface. For each query track, a set of possible object names extracted from the narrations is suggested,
we provide these names as an additional annotations. Importantly, all previous tracks are sorted by their distance. It is trivial for the
annotator to confirm that the track on the left, matches the box of chicken on the right, which has been positioned in exactly the same
location (0.0m). By clicking ‘Add’, this track is corerctly associated connecting the object movement over time.

mask or under-segmented. We flag frames for noise cor-
rection. Additionally, if the previous mask is reasonable
but the current mask is much larger or smaller, then this is
another indication of errors. We use a dynamic threshold
which catches when masks expand or contract too quickly
based on the area of the previous mask.

Once we have flagged noisy frames, we sample from
these frames for manual annotations. In order to propa-
gate the new knowledge from the manual correction phase,
we re-run the SAM2 procedure within a small window of
frames around the original error, with the newly corrected
frame in the memory (alongside the original 5 ground-truth
images). The idea here is to correct frames around the orig-
inal noise with the new manually annotated frame as a con-
ditioning frame. In total, this correction procedure produces
roughly 7.5k right hand masks and roughly 7k left hand
masks for manual correction (0.19% of total hand masks).
As this is still a rather large amount of annotation to con-
duct, we further reduce this by uniform temporal sampling,
achieving an average of roughly 20 hand side masks per
video to be corrected. In total, we manually clean and an-
notate a further 5163 right hand masks and 4332 left hand
masks (0.12% of total hand masks).

Annotation Type Total annotations Annotations/min

Narrations 59,454 24.0
Parsing (Verbs + Nouns
+ Hands + How + Why) 303,968 122.7

Recipes (Preps + Steps) 4,052 1.6
Sound 50,968 20.6

Action boundaries 59,454 24.0
Object Motion (Pick up + Put down

+ Fixtures + Bboxes + Masks) 153,480 62.0

Object Itinerary 4,881 2.0
Object Priming (Starts + Ends) 18,264 7.4

Total 263.2

Table A3. HD-EPIC annotations per minute

C.4. Density of Our Annotations

On average, we have 263 annotations per minute of the
dataset. Here in Tab. A3, we show the breakdown of this
number. Note that this excludes the hand masks that we
generate at 30 fps.

D. Benchmark and Results
We first detail how each of the question prototypes in the
VQA benchmark are formed in Sec. D.1. We then provide
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additional experiments for the VQA demonstrating an ab-
lation of the inputs and the prediction bias of models in
Sec. D.2. Sec. D.3 gives additional details of the models
used in the VQA benchmark. Finally, we provide additional
details of the long-term VOS benchmark and recognition
benchmark in Sec. D.4 and Sec. D.5.

D.1. VQA Benchmark Details
In this section, we detail how all question prototypes are
formed and sampled.

D.1.1 Recipes

These questions test the ability to understand, retrieve, lo-
calize, and recognize recipes and their steps.
Recipe Recognition. To test a model’s ability to recog-
nise entire recipes from long-term video, we formulated
the question prototype “Which of these recipes were car-
ried out by the participant?” As input, the model receives
every video recorded by a given participant, concatenated
chronologically. The positive answer is the name of one
of the recipes prepared in these videos. To sample difficult
negative answers, we generated recipe names similar to the
positive recipe via ChatGPT [5], with the prompt “You are a
professional chef. Your goal is to identify 4 similar recipes
for each line of the text file. These recipes must technically
be different dishes, they should not be different names for
the same meal. The recipes can make use of the same in-
gredients or new ones.” The results were manually edited
to ensure validity, which allowed us to create more difficult
negatives than were otherwise present in the dataset.
Multi-Recipe Recognition. Extending this, the question
prototype “Which of these recipes were carried out in this
video?” tests a model’s ability to recognise every recipe
occurring within a video. As input, the model now receives
an entire video containing one or more recipes. The positive
answer is the names of all recipes occurring in the video,
with the negatives being generated in the same way as in
Recipe Recognition above.
Multi-Step Localisation. With the question prototype
“In this video, when did the participant perform each of
the following <recipe name> recipe steps: “<recipe
step a>”, “<recipe step b>”, “<recipe step
c>”?”, we then test a model’s ability to localise a subset of
time segments of 3 steps of a recipe in a video. One video
is supplied as input and in the question text we supply the
text for 3 recipe steps selected in a random order. The pos-
itive answer is a list of the largest segment start and end
times for the 3 steps from a given recipe that occur within
the video. To generate negative answers, we first collect
all the time segments for recipe steps that don’t correspond
to the recipe in the question text (if any exist). Then we
concatenate these with all the time segments for recipe prep

occurring in the video. Finally, for each negative answer we
randomly sample 3 segments.
Step Localisation. Similarly, the question prototype
“When did the participant perform step <recipe step>
from recipe <recipe name>?” assesses a model’s abil-
ity to localise all major segments corresponding to a recipe
step. Again, the input is one video which must contain ≜ 5
unique recipe steps. The positive answer is the list of all
annotated start and end times for a randomly chosen recipe
step. In the question text, the name of the recipe and the
recipe step text is provided. To form negative answers, we
randomly sample other recipe steps from the same video
and use the start and end times of the corresponding time
segments.
Prep Localisation. Likewise, the question prototype
“When did the participant perform prep for <recipe
step> from recipe <recipe name>?” assesses a
model’s ability to localise all major segments correspond-
ing to prep for a given recipe step. Again, the input is one
video which must contain ≜ 5 unique recipe steps. The pos-
itive answer is the list of all annotated start and end times
for the prep relating to a randomly chosen recipe step. In the
question text, the name of the recipe and the recipe step text
is provided. To form negative answers, we randomly sam-
ple other recipe steps from the same video and use the start
and end times of the corresponding prep time segments.
Step Recognition. As recipes are comprised of many high-
level steps, the question prototype “What step did the par-
ticipant do between <TIME HH:SS:MM video 1> and
<TIME HH:SS:MM video 1> in this video?” tests a
model’s ability to recognise these long activities. One video
is supplied as input, which must contain at least 5 unique
recipe steps. The positive answer is randomly sampled from
the steps occurring in the video. In the question text, the
provided start time is the start of longest segment relating to
the positive step and the end time is the end of the longest
segment. To form negatives, we randomly sample recipe
steps from the same video as the positive answer.
Rough Step Localisation. Where the prior question pro-
totypes consider the localisation of all segments of a recipe
step/prep, “Which of these time segments belongs to the
<recipe name> recipe step <recipe step> in this
video?” tests whether a model can localise recipe steps from
a subset of the possible time segments. Again, the input is
one video with ≜ 5 unique recipe steps. Here, the positive
answer is the start and end time of the longest time segment
relating to the recipe step. The negative answers are formed
by randomly sampling recipe steps from the same video and
using their corresponding start and end times of the longest
segment.
Following Activity Recognition. Finally, we test a
model’s ability to recognise high-level activities that follow
recipe steps with the question prototype “Which high-level
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activity did the participant do while completing recipe step
<recipe step> in this video?” As input, the model re-
ceives one video and the recipe step text in the question.
The positive answer is determined by finding the high-level
activity that occurs while the given recipe step is conclud-
ing. Negative answers are sampled from other activities oc-
curring in the video that do not overlap with the end time of
the given step.

All of these question prototypes were sampled uniformly
at random from the space of possible positive answers.
However, as some simpler recipes occur more frequently
than others, these were excluded from the recipe recogni-
tion and step localisation tasks.

D.1.2 Ingredients

The ingredient questions assess a model’s ability to under-
stand and identify the ingredients used, their exact amounts
and in what order they are added.
Ingredient Retrieval. We test a model’s ability to
recognise added ingredients, with the question prototype
“Between <TIME HH:SS:MM video 1> and <TIME
HH:SS:MM video 1>, which of these ingredients were
added to the dish being prepared?” One video is used as
input, with the start and end time of an ingredient-adding
segment supplied in the question text. Instead of using the
exact annotated times, we pad the start and end times by
adding 5 seconds to either side of the segment. If the new
times overlap with the adding of a new ingredient, we in-
stead add the smallest possible time that avoids the intro-
duction of a new ingredient to the segment. The positive an-
swer is randomly selected from the ingredients added in the
video. We generate negatives by randomly selecting from
ingredients that are added in the video and do not overlap
with the positive answer.
Ingredient Weight. This question tests the ability to iden-
tify ingredient weight with the prototype “How much did
the participant weigh of <ingredient> in this video?”.
The input is a video segment annotated as the weighing se-
quence for a given ingredient and the positive is the correct
weight of this ingredient. It should be noted that humans
can trivially perform this task by reading the scale while
current models struggle. The negatives are generated by
sampling a random multiplier between (0.5, 5) for the posi-
tive answer.
Ingredient Order. This question tests the ability to iden-
tify the order in which ingredients are added with the pro-
totype “What is the order of ingredients added to the dish
in this video?”. The input is a video segment where at least
three ingredients were added to the dish and the positive an-
swer is the list of the added ingredients in the correct order.
For recipes with more than five ingredients, a subset of five
consecutive ingredients was sampled randomly. The nega-

tives are random permutations of the positive order.
Ingredient Adding Localisation. We assess the abil-
ity to temporally localise when ingredients are added with
“When was ingredient <ingredient> added to recipe
<recipe name>?”. The input is an untrimmed video
and positive is the start and end time of the annotated adding
segment. Negative answers are the start and end time of
action segments from the input video where the narration
mentions the ingredient. Action segments overlapping with
the adding time segment are discarded. If less than 4 ac-
tion segments include the ingredient, we use action seg-
ments containing similar ingredients. Similarity is calcu-
lated using cosine distance > 0.5 of spaCy [30] (model
en core web lg) word embeddings.
Ingredient Recognition This tests the ability to identify the
ingredients used with “Which of these ingredients is used
in <recipe name>?”. The input is all videos of one
participant, with one of the completed recipes selected as
<recipe name>. Only recipes with at least four ingre-
dients were considered. The positive answer is obtained by
randomly sampling a single ingredient from the ingredients
used. The negatives were generated using an LLM which
is asked to provide potential ingredients for a given recipe
that do not include the ingredients used in the dish. This
was done to ensure more challenging negatives than those
sampled from other recipes in the dataset. We also created a
negative version of this question: “Which of these ingredi-
ents is not used in <recipe name>?” was also created.
Here, the input video selection is the same and positive and
negative selection strategies are swapped.
Exact Ingredient Recognition This question tests the abil-
ity of a model to identify the exact quantity of an ingredi-
ent with “What was the exact quantity of <ingredient>
used in <recipe name>?”. For this question, the input
is all videos relating to a randomly selected recipe. The
positive answer is randomly selected from the used ingre-
dients while excluding ingredients used in the Ingredient
Weight question. The negatives are generated by sampling
a random multiplier between (0.5, 5) applied to the positive
answer.

To select final questions for our benchmark we uniformly
sample over participants.

D.1.3 Nutrition

The nutrition questions assess a model’s ability to under-
stand the nutritional values of ingredients used in the videos.
Image Nutrition Estimation. Our first question
is “Which of the ingredients in these images showcase
higher <nutrition>?”, where <nutrition> is one
of “calories”, “fat”, “carbs” or “protein”. The input is 5
video frames showing different ingredients. To obtain these
we manually label a frame clearly showing the ingredient.
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We search this frame within the ingredient-adding sequence
as this allows a clear view of the correct quantity of the in-
gredient. In total we annotate 200 frames/ingredients, from
which we generate 834 questions. The positive is a ran-
domly selected ingredient. To sample the 4 negatives and
their corresponding frame, we first calculate the value-to-
amount ratio of each ingredient, e.g. if we have 30g of pro-
tein in a 100g ingredient, the ratio is 0.3. For a nutritional
value we form negatives by finding ingredients that have
a higher value-to-amount ratio but a lower nutritional value
compared to the positive answer. This strategy samples hard
negatives that are not answerable by text alone. To ensure
a reasonable separation between positive and negative an-
swers, the difference in nutritional value is at least 20% of
the positive answer’s value.
Nutrition Change. We use “From <TIME HH:SS:MM
video 1> to <TIME HH:SS:MM video 1>, what
changed in the nutrition values of the dish with recipe
<recipe name>?”. The input is a video containing
a recipe (<recipe name>) and one or more adding
segments. <TIME HH:SS:MM video 1> placehold-
ers are replaced with the annotated start-end times of an
ingredient-adding segment. Answers are in the format
“calories changed by <a>, fat changed by <b>, carbs
changed by <c>, protein changed by <d>”. For the pos-
itive <a/b/c/d> are replaced with the correct ingredient
nutritional values. For the negatives, the placeholders are
multiples of the correct nutritional value. The random mul-
tiplier is sampled within (0.10, 0.75) or (1.25, 1.75).
Video Nutrition Estimation. Finally, we also use
the prototype “What is the ingredient with the highest
<nutrition> in this recipe?”, where <nutrition>
is the same as above. For this question, the input is
an untrimmed video containing one recipe. The pos-
itive answer is the ingredient with the highest calo-
ries/fat/carbs/protein in the recipe. Negative answers are
sampled from ingredients that have a value-to-amount ra-
tio similar to the positive. At least 2 negative answers in-
gredients come from the same recipe, while the rest can be
sampled from other recipes when it is not possible to obtain
enough negative answers from a single recipe.

Final benchmark questions are randomly sampled from
the set of possible questions uniformly across all partici-
pants to ensure diversity.

D.1.4 Fine-Grained Action

With these questions, we assess a model’s ability to under-
stand detailed fine-grained actions as described by the par-
ticipants in our ground-truth narrations.
Action Recognition. We first formulate the question pro-
totype “Which of these sentences best describe the ongoing
action(s) in the video 1?”. The input is a short video clip

containing 1-3 actions. Positives contain the correct 1-3
action descriptions obtained from the narration transcrip-
tions. We sample negatives by selecting other sequences of
the same number of actions from other video clips in the
dataset. We ensure difficult narrations by requiring nega-
tives to have at least one verb and noun in common with the
positive and prioritise those with more common verbs and
nouns.
How Recognition. To assess the model’s ability to under-
stand how fine-grained actions are performed, we use the
prototype “What is the best description for how the person
carried out the action <verb noun> in this video seg-
ment?”. We randomly sample a narration annotated with
start and end times. The input is a video clip of this ac-
tion as given by the start-end time annotations and <verb
noun> in the question is the main action extracted from
the narration by our parsing. The positive answer is the
manner of the target action as provided by the ground-truth
narration also extracted by the parsing. To sample negative
answers, we first identify other narrations that share both
the same verb and noun cluster (see Sec. B.3) with the main
action of the target narration. We then extract ‘how’ from
these narrations using our parsing. To avoid false positives,
we filter out any ‘how’ with verb and noun clusters which
are subsets or supersets of the positive answer and manually
filter the remaining questions.
Why Recognition. To assess the model’s ability to un-
derstand why fine-grained actions are performed, we use
“What is the best description for why the person performed
the action <verb noun> in video 1?”. The input is a
video clip for a randomly sampled narration and <verb
noun> is the main action parsed from the narration. The
positive answer contains the reason for performing the tar-
get action as extracted from the narration by our parsing. To
sample negatives, we use ‘whys’ extracted from other nar-
rations with the same main action for at least 2 negatives.
When there are not enough of these negatives we add whys
from actions that share the same verb. To avoid false pos-
itives, we remove any negative ‘why’ with verb and noun
clusters which are subsets or supersets of the positive an-
swer and manually filter the remaining questions.
Action Localisation. To assess ability to localize fine-
grained actions, we created the question prototype “When
did the action <verb noun> happen in the video 1 ?”.
The input is a 30 second to 15 minute video clip. Answers
are in time period format (e.g., <TIME HH:MM:SS.MS>
to <TIME HH:MM:SS.MS>). The positive answer corre-
sponds to the time period when a randomly sampled target
action occurs, while the negative answers are time periods
when different actions occur. To make the questions chal-
lenging, at least two of the negative timestamps are from
actions that share the same noun as the target action but dif-
fer in the verb. To ensure 4 negatives we add timestamps for
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actions that share the same verb but have a different noun,
or those that share either noun or verb cluster.

D.1.5 3D Perception

The 3D perception questions assess the model’s capability
to understand 3D environment or 3D movements from only
video.
Fixture Location. These questions test the ability to
understand a fixture’s relative location in 3D. We use
the fixture mesh annotations for each kitchen to gener-
ate questions of type “Given the direction I am looking at
<TIME HH:MM:SS video 1>, where is the <query
fixture> located?” We select the <query fixture>
as one of the unique fixtures in the kitchen e.g. fridge, hob,
sink, microwave. For the positive answer, we calculate the
angle between the direction where the camera is pointed and
the direction of the <query fixture> from the camera
location. We represent this angle as position of the hour
hand on the clock e.g. 2 o’clock, 7 o’clock. For the nega-
tives, we randomly sample from other possible positions of
the hour hand on the clock. We don’t choose negatives with
an absolute ∈ 1 o’clock difference to the positive, in case
it might lead to confusion, e.g. if the positive is 2 ’o clock,
then the negatives can be sampled from 4 ’o clock to 12 ’o
clock. For the timestamp in the question, we ignore frames
that have a tilt greater than 45⨼ in the camera because it
would lead to incorrect calculation of the positive.
Object Location. Here we test the model’s ability to un-
derstand object location as objects move with the prototype
“Where did I take/put the object identified by <BBOX Y1
X1 Y2 X2> at <TIME HH:MM:SS video 1> from
before/after putting/taking it at <TIME HH:MM:SS>?”
The bounding box and timestamp in the question is di-
rectly taken from the annotations of moving objects in 2D
(Sec. C.3). If the question asks where the object is put
down, the bounding box and timestamp are when the ob-
ject is picked up before that. If the question asks where the
object is taken from, the box and timestamp are from when
the object is put down after that. For the positives, we use
the name of the correct fixture associated with the object
bounding boxes at the time of pick up/put down. For the
negatives, we sample different fixtures that other moving
objects have been associated with in the video. We use rel-
ative location to another unique fixture e.g. sink to identify
fixtures without a unique name e.g. the cupboard top left of
the sink.
Object Contents Retrieval. Here we test the model’s abil-
ity to understand 3D locations of fixtures as well as recog-
nise objects that were put/taken from the fixture. We use
the fixture meshes to generate questions of type “Which of
these objects did the person take/put from/in/on the item
indicated by bounding box <BBOX Y1 X1 Y2 X2> in

<TIME HH:MM:SS video 1>?” We randomly sample
a fixture in the kitchen and project the 3D vertices of its
mesh onto the image plane. We use the maximum and
minimum of the projected vertices to find the 2D bounding
box. We repeat this for all frames in the video and search
for frames where the sampled fixture is occluded less than
30% and the projected bounding box lies fully within the
image. We then choose one of the identified frames and
the corresponding bounding box for the question. We use
the long-term object track and fixture transition annotations
Appendix C.3 to identify objects that were either taken from
or put on/in the fixture in question. We treat these objects
as positive objects and sample few of them as our positive
answer. For negatives, we sample objects that were taken
from or put on the same fixture in different videos but do
not overlap with the positives. We also sample objects that
were assigned to other fixtures as negatives.
Fixture Interaction Counting. Here we assess the model’s
ability to remember the interactions between participants
and fixtures with the question “How many times did I
open/close the item indicated by bounding box <BBOX Y1
X1 Y2 X2> at <TIME HH:MM:SS video 1>?” The
timestamp and bounding box for the query fixture is ob-
tained following the same procedure as for Object Re-
trieval questions. For the positive, we use the correct num-
ber of times the fixture was opened or closed. We obtain
this by first using the parsed narrations to identify phrases
relevant to fixture interactions, i.e. where the verb includes
‘open’ or ‘close’ and the noun includes one of the fixtures.
For relevant narrations, we use a 1s temporal window before
the corresponding narration timestamp to find the fixture
with the highest cumulative gaze intersection. This iden-
tifies the exact fixture that is being interacted with at that
time. The negatives are sampled randomly from ±4 of the
positive.

D.1.6 Object Motion

Here, we test the model’s ability to correctly reason over
various moving objects given a full video as input. We use
the long-term object tracking annotations mentioned in Sec.
C.3 for questions in this category.
Object Movement Itinerary. We design the question
as “Where was the object <BBOX X1 Y1 X2 Y2> seen
at time <TIME HH:MM:SS video 1> moved from/to
throughout the video?”. We provide bounding boxes around
the object instead of giving the object name as text. As pos-
itives, we selected the correct order of the fixture names
involved as either source or destination in all trajectories of
the highlighted object in the query video e.g. “from fridge to
sink, then from sink to microwave”. As negatives, we select
the fixtures associated with the itineraries of other objects
that are moving in the video. For fixtures that do not have
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a unique name e.g. cupboards, we follow the same proce-
dure as Object Location and generate descriptions of the
relative position.

Object Movement Counting. We begin by testing the abil-
ity to count how many times an object moves with the pro-
totype “How many times did the object <BBOX Y1 X1
Y2 X2> seen at <TIME HH:MM:SS video 1> change
locations in the video?” The input is the full video, and
the object is specified by its bounding box at a particu-
lar timestamp from the moving objects in 2D annotations
(Sec. C.3). Positive answers are derived by counting dis-
tinct movements using the long-term object tracking anno-
tations in Sec. C.3. To mitigate rapid movements and er-
roneous annotations, we retain only objects satisfying two
criteria: (1) consecutive tracks must be separated by at least
1.1 seconds, and (2) the spatial displacement between the
end of one track and the start of the next must not exceed
20 cm. For negative answers, we randomly sample values
around the positive answer. To avoid text-based shortcuts,
the sampling window is varied randomly from [1,8], and
the maximum negative value is restricted to 8. We addition-
ally enforce that the negative values for cases having more
than 2 movements should be at least ±2 value apart from
the ground truth answer.

Stationary Object Localization. Here, we evaluate the ca-
pability to perform the reverse task: determining when an
object remains static in the video. The question is: ”Af-
ter the object <BBOX Y1 X1 Y2 X2> seen at <TIME
HH:MM:SS video 1> is first moved, from which of the
following starting times does the object remain static for
more than <X> seconds?”. Similar to the previous task, the
input is the entire video, and the object is specified by its
bounding box at a given timestamp. The static duration
is determined using long-term object tracking annotations
(Sec. C.3). We find t1 and t2, the two longest static dura-
tions of an object. A value is then randomly sampled from
the range (t2 + 5, t1) to fill the placeholder <X>, which
specifies the required static duration for the question. We
also use the criteria mentioned in the previous question to
filter objects with rapid movements and spatial inconsis-
tency across tasks. For the positive answer, a timestamp
is randomly selected from the interval starting at the begin-
ning of the maximum static duration and ending at a point
determined by subtracting the previously chosen static du-
ration from its endpoint. Negative answers are randomly
sampled from the video from the start of the video to the
last movement of the object, ensuring no overlap with the
positive. All answers are provided as timestamps formatted
as <TIME HH:MM:SS video 1>.

Input Recipe Ingredient Nutrition Action 3D Motion Gaze Avg.

Llama 3.2
A only 26.8 23.8 14.0 20.2 14.9 15.4 17.8 19.0
Q + A 33.5 25.0 36.7 23.3 22.3 25.3 19.5 26.5
GT Narrations + Q + A 70.8 46.3 34.0 62.5 42.9 28.7 29.4 45.0
Gemini Pro
A only 29.6 21.0 17.7 19.2 18.9 16.3 18.0 20.1
Q + A 38.0 26.8 30.0 22.1 21.5 27.7 20.5 26.7
GT Actions + Q + A 79.0 54.8 36.3 31.3 42.5 32.8 25.5 43.2
GT Narrations + Q + A 82.6 57.5 36.7 63.6 47.6 38.5 29.0 50.8
Video + Q + A 60.5 46.2 34.7 39.6 32.5 20.8 28.7 38.5

Table A4. VQA Input Ablation Our benchmark cannot be solved
by analysing Q+A pairs or external knowledge and is a challenge
for state-of-the-art closed and open source video VLM models.

D.1.7 Gaze

The Gaze questions evaluate the model’s ability to under-
stand the subject of the camera wearer’s visual attention,
which can also be a signifier for future interactions.
Gaze Estimation. We assess the model’s capabilities to
understand where the camera wearer is fixating their gaze
within a given video clip. We formulate this question as
“What is the person looking at in this video segment?”. The
input is a trimmed video clip where the camera wearer fix-
ates on some large object, i.e. a landmark, for at least 0.5
seconds. Positives are the name of the landmark being fix-
ated on, negatives were randomly sampled from all other
landmarks visible in the video segment. To determine if a
landmark is visible, we consider all 8 vertices of the 3D
bounding box, as well as the centre of the object. An object
is considered visible if, in any frame, 5 of the 9 points pass
three checks: 1) the point projects onto the camera plane, 2)
the point is in front of the camera and 3) the ray from the
point to the camera centre does not intersect with another
landmark’s bounding box i.e. it is not occluded. Common
objects are given unique names according to relative posi-
tions similar to Object Location. Overall, there are 1220
possible questions, of which we randomly sample 1000.
Interaction Anticipation. We also evaluate how effectively
a model can anticipate the next object to be interacted with.
We format the question as “What object will the person in-
teract with next, ignoring ongoing interactions?” and pro-
vide a 10 second video segment, concluding 0.3 seconds
after an object is primed for pick-up using eye gaze. For
these questions, the positive answer is the object which has
just been primed, whilst the negatives are randomly sam-
pled from all other objects that have been moved within the
2 minute video segment. We generate 1110 total questions
and randomly select 1000.

D.2. Additional VQA Experiments

VQA Input Ablation. To explore how much information
is contained in different inputs (video, ground-truth narra-
tions, questions and answers) we ablate them in Tab. A4.
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Figure A11. Prediction Bias of Models. Most models have a bias in answer, although it is different for each model.

For both Llama and Gemini, providing only the possible
answers gives random performance. Recipe and ingredient
prototypes are the exception, likely due to textual recipes
within the training data. Giving the question improves
performance slightly as question contain contextual infor-
mation, e.g. Why Recognition provides the action corre-
sponding to the possible reasons why.

Making predictions from the full ground-truth (GT) nar-
rations is better than using GT action clusters for all cat-
egories demonstrating the benefit of more detailed short-
term understanding. Using GT narrations instead of visual
input gives better performance for all question categories,
highlighting the challenge of visual understanding in HD-
EPIC. Having GT narrations helps most with recipe and
fine-grained action and object motion questions but far from
solves these categories e.g. fine-grained action is 63.6%.
Regardless, nutrition, 3D perception, object motion, and
gaze still have low performance with GT narrations demon-
strating their difficulty.
Prediction Bias of Models. Fig. A11 shows the distribu-
tion of output predictions for the 5 models tested. All mod-
els were able constrain their answers to the 5 options in al-
most all cases. Some models have clear significant bias (e.g.
Llama 3.2 for option B and LongVA for option A).
Per Prototype Results In Table A6 we show the numerical
values for the per-prototype results shown in Fig. 11.

D.3. VQA Model Details
Gemini Pro [75]. Version “gemini-1.5-pro-001” was used
as it is the latest version which supports context caching -
necessary for asking repeated questions about long videos
to keep costs tractable. Gemini processes all videos at 1fps
regardless of length, so we passed all videos at 768 x 768
at their default speed up to 6000s long, after which we re-
encoded the videos at a higher speed to fit in the model’s
2M context window. In these cases we scaled all times-
tamps in questions to match this new speed to maintain the
1fps/time dependency noted in the documentation. The fol-

lowing prompt was used:
You are an expert video analyzer, and your job is to an-

swer the multiple choice question by giving only the letter
identifying the answer. Do not give any other information.
For example, acceptable answers are ‘A’ or ‘B’ or ‘C’ etc.
You must give an answer, even if you are not sure. Bounding
boxes are in the format (ymin, xmin, ymax, xmax) relative
to an image size of 1000x1000.

0.2% of questions were blocked/refused by the API due
to safety reasons. These were counted as failure cases.
Llama. We used version “Llama-3.2-90B-Vision-Instruct”
due to it being the largest and most up-to-date model we
could run inference on. The model could run a majority of
the questions, though occasionally when including the nar-
rations, we had to evenly sample the input to be a maximum
of 120K input tokens. The system prompt matched Gemini
Pro.
LongVA [89]. Version “LongVA-7B-DPO” was used. We
used the default resolution of 384x284. Videos were pro-
cessed at 8fps up to a maximum context window of 400
frames (as large as would fit in VRAM with the model). Af-
ter this, frames were uniformly sampled. The same prompt
was used as for Gemini Pro.
VideoLLaMA 2 [13]. Version “VideoLLaMA2-7B-16F”
was used. Videos were processed at 336x336 resolution
with timestamps scaled similarly to Gemini Pro, and with
the maximum supported context window of 16 frames. The
same prompt was used as for Gemini Pro. In the case of
multi-video input, if input exceeded the frame limit and one
or more videos were not used, the prompt included: N input
videos have been concatenated together and the remaining
videos have been truncated due to input length limit.
LLaVA-Video [90]. Version “LLaVA-Video-7B-Qwen2”
was used. Videos were processed the same as LongVA, but
with the maximum number frames set to 128.
Sample Human Baseline. We also provide a sample hu-
man baseline to further assess the gap in understanding be-
tween humans and SOTA video-language models. For this
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Dataset Sequences Avg. Total Objs/Seq Annotated
Duration Duration Frames

DAVIS [57] 30 2.8s 83.3s 2.0 1,999
YouTube-VOS [84] 507 21.9s 11,097.0s 2.1 13,710
Ours 1000 561.0s 561,034.1s 6.3 20,548

Table A5. Our HD-EPIC long term VOS benchmark compared to
the validation sets of DAVIS and YouTubeVOS, where duration is
measured in seconds and calculated using the first and last frame
indices of the annotated frames.

we sampled 20 questions per question prototype, 600 ques-
tions in total, split between 3 participants.

D.4. Long-Term VOS Benchmark
The details of our long-term VOS benchmark are com-
pared against the validation sets of two popular VOS bench-
marks, DAVIS 2017 [57] and YouTube-VOS 2019 [84]. Our
benchmark includes 1000 sequences, with an average dura-
tion of 561.0 seconds. This is calculated using the first and
last frame indices of the annotated frames. When calculat-
ing durations for the DAVIS and YouTube-VOS we assume
FPS values of 24 and 6, respectively, as stated in the origi-
nal papers [53, 83]. It is clear that our benchmark provides
a much longer temporal duration for video object segmen-
tation evaluation. Furthermore, the table shows that the av-
erage number of objects in each sequence is nearly tripled
compared to the prior benchmarks.

We evaluate three models on our long-term VOS bench-
mark (Static, SAM2 [64] and Cutie [12]) and describe the
results in the table of Fig. 14. For SAM2 and Cutie, we
insert each object’s first appearance frame into the work-
ing memory of the model and use the remaining frames as
evaluation frames. For the method labelled Static, we copy
the mask from the first appearance to all evaluation frames,
to act as a naive baseline. Following [53], we use jaccard
index J , contour accuracy F and their average J&F .

Due to the large number of frames in our dataset, we only
pass the memory and evaluation frames into the model. We
acknowledge that this is limited and the results could be
improved further by sampling more frames.

D.5. Recognition Benchmarks
Both action and sound recognition remain fundamental
downstream tasks for video models. We thus evaluate
strong video models for both tasks in this section. their
performance in the following. Note that for all works we
follow the data (frames/audio) preprocessing as described
in the original papers.
Action Recognition. We assess 5 action recognition meth-
ods [9, 24, 26, 51, 76], using publicly available weights fine-
tuned on EPIC-KITCHENS-100. We detail the models and
For VideoMAE-L, we used the finetuned model from [9].
As customary, we perform test augmentations over 10 clips

during inference. The exception of this is TIM which also
includes the audio modality, and averages the predictions
are averaged across all context windows in which the ac-
tion appears. We also include a chance baseline, where we
randomly shuffle the ground-truth labels and compute the
accuracy, giving a lower-bound for the action recognition
challenge.
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Blind - Language Only
Llama 3.2 38.0 24.0 44.0 16.0 23.0 23.0 22.0 78.0 18.0 12.0 32.0 28.0 40.0 20.0 22.0 20.0 68.0 20.1 30.8 21.8 20.6 21.4 25.4 11.5 31.0 8.6 35.5 32.5 17.3 21.7
Gemini Pro 54.0 54.0 42.0 20.0 21.0 15.0 22.0 76.0 18.0 28.0 38.0 21.0 28.0 28.0 26.0 14.0 50.0 21.3 24.6 21.6 20.7 20.4 33.4 9.0 23.0 31.2 18.5 33.5 21.2 19.8
Video-Language
VideoLlama 2 22.0 52.0 18.0 38.0 13.0 18.0 21.0 64.0 19.0 30.0 20.0 27.0 26.0 32.0 24.0 20.0 54.0 30.9 25.2 32.2 20.7 18.8 31.0 35.5 17.7 11.0 44.0 30.5 30.0 12.4
LongVA 14.0 44.0 36.0 18.0 18.0 26.0 19.0 62.0 25.0 24.0 44.0 42.0 30.0 20.0 25.0 22.0 54.0 36.9 28.4 37.0 20.5 26.6 41.2 31.5 32.3 10.2 34.5 23.5 36.0 13.0
LLaVA-Video 28.0 68.0 44.0 20.0 21.0 23.0 24.0 62.0 22.0 36.0 38.0 41.0 36.0 28.0 28.0 26.0 62.0 58.6 41.4 51.2 20.9 21.8 30.6 40.5 16.3 9.8 20.0 27.0 47.5 11.1
Gemini Pro 42.0 76.0 88.0 70.0 35.0 45.0 74.0 54.0 49.0 46.0 56.0 62.0 36.0 28.0 26.0 16.0 62.0 49.3 35.6 43.2 30.3 20.8 32.4 41.5 35.3 18.0 13.0 31.5 36.5 20.8

Table A6. Model results per question prototype


