
SharpDepth: Sharpening Metric Depth Predictions Using Diffusion Distillation

Supplementary Material

In this supplementary material, we provide additional
datasets details in Sec. 1. We then provide additional re-
sults in Sec. 2. Finally, we demonstrate the effectiveness
of our estimated depths in a downstream application imple-
menting metric SLAM in Sec. 3.

Limitations: SharpDepth relies on the pre-trained metric
depth estimator for both conditioning input and supervi-
sion, so its accuracy is tied to the metric estimator’s per-
formance. As our training pipeline distills details from a
diffusion-based estimator, the sharpness of SharpDepth is
limited by the diffusion model’s quality. We anticipate that
advancements in these areas will enhance our approach.

1. Dataset Details
As described in the main paper, we train SharpDepth us-
ing approximately 1% of the data from six real datasets and
evaluate it on seven real datasets (for metric depth accuracy)
and three synthetic datasets (for metric depth boundary de-
tail). This approach guarantees a diverse training dataset ca-
pable of encompassing various camera configurations. De-
tails of the training and test sets are provided in Tab. 1.

Dataset Images Scene Acquisition

Tr
ai

ni
ng

Se
t Argoverse2 [21] 15k Outdoor LiDAR

Waymo [18] 12k Outdoor LiDAR
PandaSet [23] 12k Outdoor LiDAR
ARKit [1] 16k Indoor RGB-D
ScanNet [4] 11k Indoor RGB-D
Taskonomy [25] 30k Indoor RGB-D

Te
st

Se
t

KITTI [5] 652 Outdoor LiDAR
NYU [16] 654 Indoor RGB-D
ETH3D [] 454 Outdoor RGB-D
Diode [20] 325 Indoor LiDAR
Booster [15] 456 Indoor RGB-D
NuScenes [3] 1000 Outdoor LiDAR
IBims-1 [10] 100 Indoor RGB-D
Sintel [22] 1065 Synthetic -
UnrealStereo4K [19] 200 Synthetic -
Spring [13] 1016 Synthetic -

Table 1. Datasets. List of the training and test datasets along with
their number of images, scene type, and acquisition method.

2. Additional Results

In-the-wild image samples. We evaluate the robustness
of our method on a diverse set of “in-the-wild” images.
Qualitative results for Internet-sourced images are shown in
Fig. 1, while results from handheld mobile device captures

Method PSNR↑ SSIM↑ LPIPS↓
MonoGS + UniDepth 18.472 0.718 0.305
MonoGS + Ours 18.857 0.735 0.289

Table 2. Performance of SharpDepth on the fr1/desk sequence of
TUM RGB-D dataset [17].

are presented in Fig. 2. Our approach consistently gener-
ates accurate metric depth maps, exhibiting improved depth
discontinuities and overall structural coherence. Notably,
it excels at capturing thin structures, comparable to affine-
invariant diffusion depth models [7, 9], while preserving the
precision of metric depth.

Generalization to another metric depth estimator. To
show our method’s generalization capabilities, we evaluate
SharpDepth on Metric3Dv2 [8], a recent versatile metric
depth estimation model. In this experiment, we leverage our
previously trained model on UniDepth, and no further re-
training is performed. We directly apply our model trained
on UniDepth to Metric3Dv2 depths during test time. We
provide the qualitative results in Fig. 3. As can be seen,
our method generalizes well to metric depths produced by
Metric3Dv2.

More depth metrics on test datasets. We provide an ex-
tended version of zero-shot metric accuracy on 6 zero-shot
datasets in Tab. 4. We report absolute mean relative error
(A.Rel), root mean square error (RMSE), scale-invariant er-
ror in log scale (SIlog) and the percentage of inlier pixel (δ1).
As shown in Tab. 4, SharpDepth achieves competitive met-
ric accuracy compared to UniDepth and other metric depth
models. Moreover, our method consistently outperforms
other metric refinement techniques, such as PatchRefiner.
This highlights the effectiveness of our approach in enhanc-
ing high-frequency details in depth maps while maintain-
ing robust zero-shot performance. We further report the
Pseudo Depth Boundary Error (PDBE), including the ac-
curacy ϵacc

PDBE and completion ϵcompl
PDBE, along with visual sam-

ples in Fig. 4 and Fig. 5. The results demonstrate that both
the accuracy and completion rates effectively capture the
boundary details of the depth map.

Training and Inference costs. We show the train and in-
ference costs compared to DepthAnythingV2-Metric [24],
PatchRefiner [11], and BetterDepth [27] in Tab. 3 (using an
A100 40GB GPU on the KITTI dataset). Compared with
DepthAnythingV2, our training cost is 427 times lower.
Compared with other refiners, we have better inference time
compared to PatchRefiner and have a similar training cost



Methods DAv2 PatchRefiner BetterDepth SharpDepth

Train samples 62M 21K 74K 93K
GPU hours 30720 N/A 36 72

Inf. time (ms) 334.9 1642.9 N/A 551.1
FLOPs (G) 4056.5 12534.0 N/A 7989.5

Table 3. Training and inference cost analysis.

to BetterDepth, while not needing ground-truth depth for
supervision.

More visual results. We present additional qualitative re-
sults on our test datasets in Fig. 6, Fig. 7, and Fig. 8. These
figures show predictions from UniDepth, UniDepth-aligned
Lotus, and our method. As observed, our approach gener-
ates depth maps with more detailed representations of fine
structures.

3. Applications
In this section, we demonstrate that our predicted sharper
depth maps can significantly benefit downstream 3D recon-
struction tasks, such as Visual SLAM [6] and Volumetric
TSDF Fusion [26]. By providing more detailed and accu-
rate depth information, our method enhances the quality and
reliability of these reconstruction pipelines.

3.1. Visual SLAM
Dense visual SLAM focuses on reconstructing detailed 3D
maps, which are crucial for applications in AR and robotics.
In this work, we demonstrate that high-frequency depth
maps can significantly improve the performance of SLAM
methods in reconstructing the scene. We conduct exper-
iments using a Gaussian Splatting-based SLAM method,
i.e., MonoGS [12], on the fr1/desk sequence of TUM
RGBD dataset [17], using the depth maps from UniDepth
and SharpDepth as inputs to the system. Quantitative results
are provided in Tab. 2, where our method consistently out-
performs UniDepth in terms of photometric errors, show-
casing its potential to enhance SLAM performance. Addi-
tionally, we present qualitative results in Fig. 9. As shown,
our method better captures the underlying geometry of the
scene, leading to improved novel view renderings.

3.2. Volumetric TSDF Fusion
Existing 3D reconstruction pipelines rely on multiple pairs
of RGB-D inputs that are multi-view consistent. To achieve
high-quality point clouds, it is crucial to have accurate met-
ric depth predictions with sharp details. In this section, we
demonstrate that our predicted depth maps can be used with
TSDF Fusion [26], to further enhance their reconstruction
quality.

As can be seen in Fig. 10, SharpDepth can render less
distorted point clouds compared to those produced by the
UniDepth [14] approach.



Dataset Method A.Rel ↓ RMSE ↓ SIlog ↓ δ1 ↑

KITTI

Marigold [9] 0.095 3.221 13.240 92.284
Lotus [7] 0.113 3.538 18.383 87.703

UniDepth [14] 0.051 2.236 7.078 97.921
ZoeDepth [2] 0.057 2.390 7.470 96.500
Metric3Dv2 [8] 0.053 2.481 7.449 97.589
PatchRefiner [11] 0.158 6.043 13.061 79.245
DAv2-Metric (Indoor) [24] 0.552 12.783 14.649 1.000
DAv2-Metric (Outdoor) [24] 0.124 3.924 13.843 85.312
UniDepth-aligned Lotus 0.130 3.935 16.077 83.633

SharpDepth (Ours) 0.059 2.374 8.100 97.315

NYUv2

Marigold [9] 0.055 0.224 8.114 96.384
Lotus [7] 0.054 0.222 7.993 96.612

UniDepth [14] 0.055 0.200 5.367 98.417
ZoeDepth [2] 0.077 0.278 7.190 95.200
Metric3Dv2 [8] 0.066 0.254 7.498 97.391
PatchRefiner [11] 2.482 5.900 19.089 1.000
DAv2-Metric (Indoor) [24] 0.205 0.594 8.229 69.613
DAv2-Metric (Outdoor) [24] 2.798 6.328 22.333 1.000
UniDepth-aligned Lotus 0.087 0.281 8.916 93.921

SharpDepth (Ours) 0.064 0.228 6.179 96.949

ETH3D

Marigold [9] 0.064 0.616 9.217 95.956
Lotus [7] 0.062 0.581 9.266 96.001

UniDepth [14] 0.456 3.008 7.728 25.308
ZoeDepth [2] 0.567 3.272 13.015 34.210
Metric3Dv2 [8] 0.138 0.903 6.081 82.420
PatchRefiner [11] 1.781 8.830 11.715 4.974
DAv2-Metric (Indoor) [24] 0.346 2.230 8.064 39.336
DAv2-Metric (Outdoor) [24] 2.089 9.473 11.269 3.564
UniDepth-aligned Lotus 0.493 3.267 13.092 20.347

SharpDepth (Ours) 0.474 3.092 12.119 22.606

Diode

Marigold [9] 0.307 3.755 29.230 76.685
Lotus [7] 0.330 3.877 30.999 73.751

UniDepth [14] 0.265 4.216 23.370 66.031
ZoeDepth [2] 0.484 6.637 29.374 30.195
Metric3Dv2 [8] 0.158 2.552 19.455 88.765
PatchRefiner [11] 1.264 7.064 29.563 25.031
DAv2-Metric (Indoor) [24] 0.432 7.691 27.315 24.845
DAv2-Metric (Outdoor) [24] 1.502 7.543 30.240 22.045
UniDepth-aligned Lotus 0.357 5.321 30.671 55.876

SharpDepth (Ours) 0.297 4.644 25.340 61.486

Booster

Marigold [9] 0.049 0.074 6.392 97.384
Lotus [7] 0.041 0.063 5.333 98.779

UniDepth [14] 0.492 0.532 7.686 28.041
ZoeDepth [2] 0.642 0.674 10.563 20.855
Metric3Dv2 [8] 0.668 0.720 5.795 15.490
PatchRefiner [11] 5.551 5.994 18.136 1.000
DAv2-Metric (Indoor) 0.311 0.352 7.327 57.284
DAv2-Metric (Outdoor) 7.075 7.646 15.536 1.000
UniDepth-aligned Lotus 0.494 0.519 6.382 26.429

SharpDepth (Ours) 0.491 0.528 7.089 27.717

nuScenes

Marigold [9] 0.267 6.158 35.628 65.881
Lotus [7] 0.363 7.263 49.047 50.911

UniDepth [14] 0.144 4.771 21.959 83.861
ZoeDepth [2] 0.587 8.155 33.076 21.838
Metric3Dv2 [8] 0.199 7.371 28.267 84.215
PatchRefiner [11] 0.582 10.589 30.193 31.726
DAv2-Metric (Indoor) [24] 0.411 11.489 30.750 14.828
DAv2-Metric (Outdoor) [24] 0.588 8.573 30.260 19.100
UniDepth-aligned Lotus 0.432 7.850 49.524 41.243

SharpDepth (Ours) 0.184 5.208 25.584 78.479

Table 4. Detailed results on different datasets. We ranked methods that do not require GT alignment as best , second-best , and
third-best . Gray indicates the method that has been trained on the training set.



Figure 1. In-the-wild depth estimation from Internet images. Red indicates the close plane and blue means the far plane.



Figure 2. In-the-wild depth estimation from images captured by a mobile phone. Red indicates the close plane and blue means the far
plane.



(a) KITTI dataset
Image/Ground-Truth UniDepth Metric3Dv2 SharpDepth* (Ours)

(b) NYUv2 dataset
Image/Ground-Truth UniDepth Metric3Dv2 SharpDepth* (Ours)

Figure 3. Qualitative results on KITTI and NYUv2. SharpDepth* denotes our method when using depth by Metric3Dv2 as input. The
last column represents the colormap ranges for depth (spectral) and AbsRel error (coolwarm).



Figure 4. Illustration of the depth boundary metrics on the Spring dataset. We show the depth maps and extracted boundaries for each
prediction. Compared to UniDepth, our method extracts more edges due to better depth discontinuities. Compared to Lotus, our method
can capture more precise edges, due to the global prior from pre-trained UniDepth.



Figure 5. Illustration of the depth boundary on the Sintel dataset. We show the depth maps and extracted boundaries for each prediction.



(a) KITTI dataset

Image/Ground-Truth UniDepth-aligned Lotus UniDepth SharpDepth (Ours)

(b) NYUv2 dataset

Image/Ground-Truth UniDepth-aligned Lotus UniDepth SharpDepth (Ours)

Figure 6. Qualitative comparisons on different datasets (1/3). The last column represents the colormap ranges for depth (spectral) and
AbsRel error (coolwarm).



(a) ETH3D dataset
Image/Ground-Truth UniDepth-aligned Lotus UniDepth SharpDepth (Ours)

(b) Diode dataset

Image/Ground-Truth UniDepth-aligned Lotus UniDepth SharpDepth (Ours)

Figure 7. Qualitative comparisons on different datasets (2/3). The last column represents the colormap ranges for depth (spectral) and
AbsRel error (coolwarm).



(a) Booster dataset

Image/Ground-Truth UniDepth-aligned Lotus UniDepth SharpDepth (Ours)

(b) nuScenes dataset
Image/Ground-Truth UniDepth-aligned Lotus UniDepth SharpDepth (Ours)

Figure 8. Qualitative comparisons on different datasets (3/3). The last column represents the colormap ranges for depth (spectral) and
AbsRel error (coolwarm).



Unidepth SharpDepth GT

Figure 9. Rendering comparison on TUM fr1/desk sequence. For each method, we show the novel view rendering. Compared to
UniDepth (leftmost column), using SharpDepth (middle column) can result in finer details of objects, such as the books in the first row and
the game console in the second row.



Figure 10. Multi-view scene reconstruction on KITTI dataset. We predict depth maps using UniDepth and SharpDepth for each frame
and use TSDF-Fusion to generate the point cloud. SharpDepth’s point cloud achieves less shape distortion in vehicles.
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