
UniK3D: Universal Camera Monocular 3D Estimation

Supplementary Material

This supplementary material offers further insights into
our work. In Sec. A we describe the network architecture in
more detail, necessarily Sec. A overlaps with Sec. 3. More-
over, we analyze the complexity of UniK3D and compare it
with other methods in Sec. A.1. Also, we provide further al-
ternatives to our design choices and ablate them in Sec. A.2.
Sec. B outlines the training pipeline and hyperparameters
chosen in Sec. B.1, altogether with training and validation
data in Sec. B.2, and the camera augmentations in Sec. B.3
for completeness and reproducibility. Furthermore, Sec. C
provides a more detailed quantitative evaluation with per-
dataset evaluation in Sec. C.2 The results corresponding to
UniK3D finetuned on KITTI and NYUv2 are reported in
Sec. C.1. In Sec. D, we provide answers to possible ques-
tions that may arise. Eventually, additional visualizations
are provided in Sec. E.

A. Architecture
Encoder. Our model architecture employs a Vision Trans-
former (ViT) [13] as the encoder, demonstrating its effec-
tiveness across different scales, from Small to Large. The
ViT backbones were originally developed for classification
tasks, and as such, we modify them by removing the final
three layers: the pooling layer, the fully connected layer,
and the softmax layer. We extract feature maps and class
tokens from the last four layers of the modified ViT back-
bone. These outputs are flattened and processed using Lay-
erNorm [4] followed by a linear projection layer. The lin-
ear layer maps the features and class tokens to a common
channel dimension, which is set to 512, 384, and 256 for
Large, Base, and Small ViT variants, respectively. Impor-
tantly, the normalization and linear layer weights are dis-
tinct and are not shared between the different feature resolu-
tions and the class tokens. The dense feature maps are subse-
quently passed to the Radial Module, while the class tokens
are directed to the Angular Module.
Angular Module. The four class tokens extracted from the
encoder are first projected to dimensions of 3D, 3D, 5D,
and 7D, respectively. These are then divided into chunks
based on the channel dimension d, yielding token groups of
size 3, 3, 5, and 7. These token groups serve as the initializa-
tion for domain tokens, representing the spherical harmonics
(SH) coefficients: 1st-degree, 2nd-degree, and 3rd-degree,
respectively. In total, there are 18 tokens (T), which are pro-
cessed through two layers of a Transformer Encoder. Each
Transformer Encoder layer consists of self-attention with
eight heads and a Multi-Layer Perceptron (MLP) that has a
single hidden layer of dimension 4C and uses the Gaussian
Error Linear Unit (GELU) activation function [19]. Both

self-attention and MLP layers include residual connections
to improve learning stability. Each of the 18 tokens is then
projected to a scalar dimension. The first three tokens specifi-
cally define the domain for the spherical harmonics. The first
token determines the horizontal field of view (HFov), calcu-
lated as 2π · σ(T0), where σ denotes the sigmoid function.
The second and third tokens represent the poles of the spher-
ical harmonics, i.e. the center of projection relative to the im-
age shape, computed as cx = σ(T1)W

2 and cy = σ(T2)H
2 , re-

spectively, where H and W are the image height and width.
The vertical FoV is derived under the assumption of square
pixels: HFov × H

W . Using this domain definition, we com-
pute the spherical harmonics up to the 3rd degree, exclud-
ing the constant component, yielding 15 harmonic tensors of
size RH×W×3. The pencil of rays C is then constructed as
a linear combination of these harmonics and the correspond-
ing 15 processed tokens (T3:18).
Radial Module. The sine-encoded camera rays C are used
to condition each resolution level of the dense feature maps
F via a Transformer Decoder layer. In this setup, the dense
features F serve as the query, while the sine-encoded camera
rays provide the keys and values. The cross-attention mecha-
nism includes a residual connection without any learnable
gain factors, such as LayerScale. The conditioned features
are then refined in a Feature Pyramid Network (FPN) man-
ner: the deepest features are processed through two Resid-
ual Convolution blocks [18], followed by bilinear upsam-
pling and a projection step that halves the channel dimen-
sion. These upsampled features are then combined with the
features from the next layer, which are similarly projected to
match channel dimension and upsampled using a single 2x2
transposed convolution. This process continues until all re-
maining three feature maps are consumed. The final output
features are upsampled to the input image resolution and pro-
jected to a single-channel dimension, yielding the log-radius
Rlog. The same projection, architectural-wise but with sep-
arate weights, is used to generate the log-confidence Σlog.
The final radius and confidence values are obtained by ex-
ponentiating these tensors element-wise, transforming them
from log-space to the original space.

A.1. Complexity
We perform a detailed analysis of the computational cost of
UniK3D, presented in Table 7, and compare it to other state-
of-the-art methods. To ensure a fair and consistent compari-
son, we use input sizes that are as similar as possible across
all models. However, this approach introduces certain chal-
lenges. DepthPro, for instance, has an entangled and multi-
resolution architecture, which complicates tuning the input



Table 7. Parameters and efficiency comparison. Comparison of
performance of methods based on input size, latency, and number
of trainable parameters. Tested on RTX3090 GPU, 16-bit precision
float, and synchronized timers. The last two rows correspond to the
Angular and Radial Modules evaluated independently. All models
are based on ViT-L backbone.

Method Input Size Latency (ms) Parameters (M)

ZoeDepth [7] 512× 512 144.8 345.9
DepthAnything v2 [55] 518× 518 78.1 334.7
UniDepth [42] 518× 518 146.4 347.0
Metric3Dv2 [21] 518× 518 135.6 441.9
MASt3R [21] 512× 512 154.7 668.6
DepthPro [9] 1536× 1536 808.1 952.0

UniK3D 518× 518 88.4 358.8
Radial Module - 21.9 38.2
Angular Module - 3.1 12.1

size consistently across methods. Its architectural design
does not easily allow for adjustments, making it difficult to
align with a standardized input size. Additionally, the perfor-
mance of models like DepthPro and Metric3D, as evaluated
in our main experiments in Sec. 4, shows a significant drop
when tested with image shapes that differ from those used
during training. This sensitivity highlights a fundamental
limitation: these methods are heavily optimized for specific
image resolutions, and deviations from these resolutions can
lead to substantial performance degradation. Consequently,
while we strive to measure computation under the most eq-
uitable conditions, it is essential to acknowledge that these
models are not well-suited for resolutions that differ from
their training setup. In contrast, UniK3D is designed to be
flexible w.r.t. image shape, maintaining robust performance
across different resolutions. For our experiments, we chose
the same input shape as DepthAnything v2, as it provides
a balanced trade-off between computational efficiency and
performance. Furthermore, to account for the asynchronous
nature of CUDA kernel threading, we ensure precise infer-
ence time measurements by enabling proper synchronization
and utilizing CUDA event recording. This approach guaran-
tees an accurate reflection of computational cost, avoiding
any misrepresentation caused by asynchronous operations.
As shown in Table 7, UniK3D is among the most efficient
models. The primary differences in computational cost, es-
pecially when compared to DepthAnything v2, stem from
the inclusion of our Angular Module and Scale components.
These components are essential for our model to handle ab-
solute metric depth and camera-specific adjustments, fea-
tures that relative depth estimation networks do not require.
Despite this additional complexity, our model’s efficiency re-
mains competitive, underscoring its design’s effectiveness
in addressing diverse camera geometries while maintaining
high performance.

A.2. Architectural Alternatives
Despite the camera conditioning has been proven superior
in UniDepth [42], we ablate alternative architectural choices

Table 8. Ablation on camera conditioning design. Camera Cond.
corresponds to the type of camera conditioning employed to con-
dition the depth features with camera ones. Add refers to a simple
addition in the feature space. Cat represents a simple concatena-
tion and projection from 2C to C channel dimension. Prompt is
our attention-based conditioning.

Camera Cond. S.FoV S.FoVDist L.FoV Pano
FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 Add 53.0 78.9 26.3 41.6 45.0 58.5 42.5 18.2
2 Cat 54.7 79.0 28.7 44.6 46.6 58.1 42.3 18.1
3 Prompt 57.3 79.8 44.6 59.3 53.5 64.8 58.6 26.3

Table 9. Ablation on camera tokens processing. T-Enc. indicates
if the camera tokens are processed in the Angular Module either via
the transformer encoder layer or not, in the latter case the tokens
are fed directly to the final projections.

T-Enc S.FoV S.FoVDist L.FoV Pano
FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑ FA ↑ ρA ↑

1 ✗ 55.7 77.3 43.2 56.6 50.9 63.2 54.9 20.7
2 ✓ 57.3 79.8 44.6 59.3 53.5 64.8 58.6 26.3

for both the Transformer Encoder and Decoder components.
In particular, we have chosen the most typical alternatives
for conditioning: a simple addition or concatenation in place.
While the camera tokens processing “alternative” involves
an identity that shortcuts the camera tokens to the final pro-
jection layers. Table 9 shows how the camera tokens process-
ing, via the encoder layer, does not present large changes,
showing how the class tokens from different layers are al-
ready informative. However, Table 8 clearly shows how the
simpler conditioning alternatives, such as addition or con-
catenation, underperform our attention-based conditioning.
This highlights how conditioning plays an important role in
final performance and how strongly designed conditioning
is paramount to achieving proper generalization.

B. Training Details

B.1. Hyperparameters.
The training parameters, i.e. those for optimization, schedul-
ing, and augmentations, are described in Table 10. The
losses utilized, with the input and corresponding weights,
are outlined in Table 11.

B.2. Data
Details of training and validation datasets are presented in
Table 12 and Table 13.
Training Datasets. The datasets utilized for training are a
mixture of different cameras and domains as shown in Ta-
ble 12. The sequence-based datasets are sub-sampled during
collection in a way that the interval between two consecutive
frames is not smaller than half a second. No post-processing
is applied. The total amount of training samples accounts
for more than 8M samples. The datasets are sampled in each
batch with a probability corresponding to the values in Sam-
pling column in Table 12. This probability is related to the



Table 10. Training Hyperparamters. All training hyperparame-
ters with corresponding values are presented.

Hyperparameter Value

Steps 250k
Batch Size 128
LR 5 · 10−5

LR Encoder 5 · 10−6

Optimizer AdamW [36]
(β1, β2) (0.9, 0.999)
Weight Decay 0.1
Gradient Clip Norm 1.0
Precision 16-bit Float

LR Scheduler Cosine to 0.1
start after 75k iters

EMA 0.9995
start after 75k iters

Color jitter prob 80%
Color jitter intensity [0.0, 0.5]
Gamma prob 80%
Gamma intensity [0.5, 1.5]
Horizontal flip prob 50%
Greyscale prob 20%
Gaussian blur prob 20%
Gaussian blur sigma [0.1, 2.0]
Random zoom [0.5, 2.0]
Random translation [−0.05, 0.05]

Image ratio [1 : 2, 2 : 1]

Resolution 0.28MP
[0.2MP, 0.6MP] last 50k iters

Table 11. Training Losses. Training losses with corresponding
weight and input.

Loss Inputs Weight Parameters

L1 Radius (log) 2.0 (η) -
L1-asymmetric Polar 0.75 α = 0.7
L1 Azimuth 0.25 -

L1 Confidence (log), 0.1 (γ) -Radius error (detached)

number of scenes present in each dataset. However, prob-
abilities are changed based on a simple qualitative data in-
spection, such that the most diverse datasets are sampled
more. Most of the datasets involve pinhole images or recti-
fied cameras, e.g. MegaDepth [31] or NianticMapFree [3],
other datasets provide only the pinhole calibration despite
being clearly distorted, i.e. Mapillary [1], there the entire
samples are masked out in the camera loss computation.

Validation Datasets. Table 13 presents all the validation
datasets and splits them into 3 groups: small FoV, large
FoV, and Panoramic. As per standard practice, KITTI Eigen-
split corresponds to the corrected and accumulated GT depth

Table 12. Training Datasets. List of the validation datasets: num-
ber of images, scene type, acquisition method, and sampling fre-
quency are reported. SfM: Structure-from-Motion. MVS: Multi-
View Stereo. Syn: Synthetic. Rec: Mesh reconstruction. KB:
Kannala-Brandt [22]. Equi: Equirectangular

Dataset Images Scene Acquisition Camera Sampling

A2D2 [17] 78k Outdoor LiDAR Pinhole 2.5%
aiMotive [37] 178k Outdoor LiDAR Mei [38] 0.3%
Argoverse2 [51] 403k Outdoor LiDAR Pinhole 7.6%
ARKit-Scenes [5] 1.75M Indoor LiDAR Pinhole 1.3%
ASE [14] 2.72M Indoor Syn Fisheye624 10.1%
BEDLAM [8] 24k Various Syn Pinhole 2.0%
BlendedMVS [56] 114k Outdoor MVS Pinhole 2.5%
DL3DV [34] 306k Outdoor SfM KB [22] 4.7%
DrivingStereo [53] 63k Outdoor MVS Pinhole 2.5%
DynamicReplica [23] 120k Indoor Syn Pinhole 1.3%
EDEN [27] 368k Outdoor Syn Pinhole 2.5%
FutureHouse [32] 28.3 Indoor Syn Equi 2.5%
HOI4D [35] 59k Egocentric RGB-D KB [22] 1.7%
HM3D [43] 540k Indoor Rec Pinhole 5.2%
Matterport3D [11] 10.8k Indoor Rec Equi 2.0%
Mapillary PSD [1] 742k Outdoor SfM Pinhole 2.0%
MatrixCity [30] 190k Outdoor Syn Pinhole 5.0%
MegaDepth [31] 273k Outdoor SfM Pinhole 8.0%
NianticMapFree [3] 25k Outdoor SfM Pinhole 2.0%
PointOdyssey [61] 33k Various Syn Pinhole 1.7%
ScanNet [12] 83k Indoor RGB-D Pinhole 5.0%
ScanNet++ [57] 39k Indoor Rec Pinhole 3.0%
TartanAir [50] 306k Various Syn Pinhole 5.5%
Taskonomy [60] 1.94M Indoor RGB-D Pinhole 6.0%
Waymo [46] 223k Outdoor LiDAR Pinhole 7.5%
WildRGBD [52] 1.35M Indoor RGB-D Pinhole 7.5%

Table 13. Validation Datasets. List of the validation datasets: num-
ber of images, scene type, acquisition method, and max evaluation
distance are reported. 1st group: small FoV, 2nd group: large FoV,
3rd: Panoramic. Rec: Mesh reconstruction.

Dataset Images Scene Acquisition Max Distance

KITTI [16] 652 Outdoor LiDAR 80.0
NYU [39] 654 Indoor RGB-D 10.0
IBims-1 [25] 100 Indoor RGB-D 25.0
Diode [48] 325 Indoor LiDAR 25.0
ETH3D [44] 454 Outdoor RGB-D 50.0
NuScenes [10] 3.6k Outdoor LiDAR 80.0

ScanNet++ [57] 779 Indoor Rec 10.0
ADT [40] 469 Indoor Rec 20.0
KITTI360 [33] 527 Outdoor LiDAR 80.0

Stanford-2D3D [2] 1413 Indoor Rec 10.0

maps with 45 images with inaccurate GT discarded from
the original 697 images. The small FoV with distortion
presented in Sec. 3 and used for evaluation is obtained
based on synthesized cameras from ETH3D, Diode (Indoor),
and IBims-1, all distorted images and cameras are manually
checked for realism, after being generated with the pipeline
presented in Sec. B.3.

B.3. Camera Augmentations

To address the limited diversity of distorted camera data,
we augment images captured with pinhole cameras by ar-
tificially deforming them, thereby simulating images from
distorted camera models, e.g. Fisheye624 or radial Kannala-
Brandt [22]. The augmentation process involves two main
steps. First, we compute a deformation field. This starts
with unprojecting the 2D depth map obtained from a pin-



Table 14. Camera Sampling for S.FoVDist generation. The pa-
rameters to generate S.FoVDist images are listed. We employed dif-
ferent camera models with different parameter ranges. The sam-
pling is uniform sampling within the ranges. The seed is 13.

Model Probability Parameter Range

EUCM 0.1 α [0, 1]
β [0.25, 4]

Fisheye624 0.35
{ki}6i=1 [0.6, 0.8]
{ti}2i=1 [−0.01, 0.01]
{si}4i=1 [−0.01, 0.01]

Fisheye624 0.35
{ki}6i=1 [−0.6,−0.4]
{ti}2i=1 [−0.01, 0.01]
{si}4i=1 [−0.01, 0.01]

Fisheye624 0.2
{ki}6i=1 [−0.2, 0.2]
{ti}2i=1 [−0.05, 0.05]
{si}4i=1 [−0.05, 0.05]

Table 15. Camera Sampling for Camera Augmentation. The
parameters to generate an augmented camera during training images
are listed. We employed different camera models with different
parameter ranges. The sampling is uniform sampling within the
ranges. When some parameters are not listed, e.g. {ki}6i=4 for
Kannala-Brandt model, they are set to 0.

Model Probability Parameter Range

EUCM 0.1 α [0, 1]
β [0.25, 4]

Fisheye624 0.15
{ki}6i=1 [0.1, 0.5]
{ti}2i=1 [−0.005, 0.005]
{si}4i=1 [−0.01, 0.01]

Fisheye624 0.15
{ki}6i=1 [−0.5,−0.1]
{ti}2i=1 [−0.005, 0.005]
{si}4i=1 [−0.01, 0.01]

Kannala-Brandt 0.2 {ki}3i=1 [−0.05, 0.05]
{ti}2i=1 [−0.02, 0.02]

Kannala-Brandt 0.4 {ki}3i=1 [−0.5, 0.5]
{ti}2i=1 [−0.001, 0.001]

hole camera into a 3D point cloud. We then project these 3D
points onto the image plane of a randomly sampled distorted
camera model to obtain the new 2D coordinates. The defor-
mation field is defined as the distance between the original
2D image coordinates and the newly projected 2D coordi-
nates. This flow indicates how the original image should be
warped to mimic the appearance of a distorted camera view.
Next, we warp the image using softmax-based splatting [45],
a technique that projects pixels based on the computed defor-
mation field while preserving image details. To ensure the
warping process does not create artifacts like holes, we use
an “importance” metric, which is the inverse of the depth
value for each pixel. This metric prioritizes closer points, en-
suring that details and correct parallax are maintained during

Table 16. Comparison on NYU validation set. All models are
trained on NYU. The first four are trained only on NYU. The last
four are fine-tuned on NYU.

Method δ1 δ2 δ3 A.Rel RMS Log10
Higher is better Lower is better

BTS [28] 88.5 97.8 99.4 10.9 0.391 0.046
AdaBins [6] 90.1 98.3 99.6 10.3 0.365 0.044
NeWCRF [59] 92.1 99.1 99.8 9.56 0.333 0.040
iDisc [41] 93.8 99.2 99.8 8.61 0.313 0.037
ZoeDepth [7] 95.2 99.5 99.8 7.70 0.278 0.033
Metric3Dv2 [21] 98.9 99.8 100 4.70 0.183 0.020
DepthAnythingv2 [55] 98.4 99.8 100 5.60 0.206 0.024

UniK3D 98.9 99.8 100 4.43 0.173 0.019

Table 17. Comparison on KITTI Eigen-split validation set. All
models are trained on KITTI E-ign-split training and tested on the
corresponding validator split. The first are trained only on KITTI.
The last 4 are fine-tuned on KITTI.

Method δ1 δ2 δ3 A.Rel RMS RMSlog
Higher is better Lower is better

BTS [28] 96.2 99.4 99.8 5.63 2.43 0.089
AdaBins [6] 96.3 99.5 99.8 5.85 2.38 0.089
NeWCRF [59] 97.5 99.7 99.9 5.20 2.07 0.078
iDisc [41] 97.5 99.7 99.9 5.09 2.07 0.077
ZoeDepth [7] 96.5 99.1 99.4 5.76 2.39 0.089
Metric3Dv2 [58] 98.5 99.8 100 4.40 1.99 0.064
DepthAnythingv2 [55] 98.3 99.8 100 4.50 1.86 0.067

UniK3D 99.0 99.8 99.9 3.69 1.68 0.060

the warping. For non-synthetic images, where ground-truth
depth maps are unavailable, we generate depth predictions
in an inference-only mode to compute the deformation. To
ensure these predictions are accurate enough to create realis-
tic deformations, we apply this augmentation only after the
model has been trained for 10,000 steps. By this point, the
model has learned a decently reliable (scale-invariant) depth
representation. The specific camera parameters used to sam-
ple the new random camera are listed in Table 15.

Validation datasets generation. Generating validation
datasets for testing models on distorted images with reduced
fields of view presents an additional challenge, as most dis-
tortions are typically associated with large fields of view. To
simulate this, we use synthetic camera parameters to deform
RGB images from datasets such as ETH3D [44], IBims-
1 [25], and Diode (Indoor) [48]. These datasets are chosen
because they provide nearly complete ground-truth depth
maps, making the deformation process well-posed and real-
istic. Any small gaps or holes in the depth maps are filled
using inpainting. Importantly, the 3D ground-truth data re-
mains unchanged, as it is invariant to the camera model used.
To ensure realism, we manually validate each deformed im-
age and will release both the code for data generation and
the resulting validation data.



C. Additional Quantitative Results

C.1. Fine-tuning

We evaluate the fine-tuning capability of UniK3D by resum-
ing training with either KITTI or NYU as the sole training
dataset. The fine-tuning process starts from the weights and
optimizer states obtained after the large-scale pretraining
phase, ensuring a fair and consistent initialization. The stan-
dard SILog loss is used as the training objective, with a batch
size of 16, and the model is trained for an additional 40,000
steps. To focus the evaluation on the impact of in-domain
data, we disable all augmentations except for horizontal flip-
ping and omit the asymmetric component of the angular loss
during fine-tuning. For evaluation, we adhere to the standard
practices for both datasets to ensure comparability with prior
work. KITTI results are reported using the Garg [15] evalu-
ation crop, and the maximum evaluation depths for KITTI
and NYU are set to 80 and 10 meters, respectively mpor-
tantly, we do not apply any test-time augmentations or tun-
ing, such as varying the input size, to maintain consistency
and avoid introducing additional confounding factors. Our
results demonstrate that UniK3D benefits significantly from
in-domain fine-tuning. Table 17 highlights the model’s abil-
ity to perform exceptionally well on highly structured and
calibrated datasets like KITTI, even though UniK3D is in-
herently designed for flexibility and cross-domain general-
ization. This suggests that the model can effectively adapt to
well-structured data when fine-tuned. This fine-tuning analy-
sis highlights the adaptability of UniK3D to diverse settings
while maintaining its primary design focus on flexibility.
Similarly, Table 16 shows that UniK3D remains competitive
when fine-tuned on less structured domains like NYU, which
represent typical indoor environments. These results rein-
force the importance of in-domain data for achieving optimal
performance, particularly on datasets with distinct properties
or domain-specific challenges. In addition, the results under-
line the robustness of our model, as it achieves strong perfor-
mance across significantly different dataset characteristics.

Table 18. Comparison on zero-shot evaluation for NYUv2. Miss-
ing values (-) indicate the model’s inability to produce the respective
output. †: ground-truth camera for 3D reconstruction. ‡: ground-
truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 97.8 - -
DepthAnythingv2 [55] - - - 97.7 - -
Metric3D†‡ [58] 68.1 44.2 1.23 89.0 - -
Metric3Dv2†‡ [21] 93.4 9.1 0.399 98.1 - -
ZoeDepth† [7] 94.2 8.2 0.305 98.0 - -
UniDepth [42] 98.0 7.3 0.230 99.0 83.1 99.2
MASt3R [29] 83.9 13.0 0.435 94.8 69.6 90.7
DepthPro [9] 92.2 10.1 0.357 97.2 73.0 93.1

UniK3D-Small 90.4 11.2 0.351 97.4 69.1 83.0
UniK3D-Base 93.1 10.3 0.325 97.9 75.4 89.1
UniK3D-Large 96.5 7.4 0.259 98.2 82.5 91.2

Table 19. Comparison on zero-shot evaluation for KITTI. Miss-
ing values (-) indicate the model’s inability to produce the respective
output. †: ground-truth camera for 3D reconstruction. ‡: ground-
truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 88.5 - -
DepthAnythingv2 [55] - - - 88.4 - -
Metric3D†‡ [58] 3.3 49.8 10.35 97.0 - -
Metric3Dv2†‡ [21] 2.3 56.3 12.81 96.7 - -
ZoeDepth† [7] 93.6 8.2 3.24 96.7 - -
UniDepth [42] 98.0 4.8 2.14 98.3 85.8 97.5
MASt3R [29] 2.8 58.2 11.88 90.9 10.9 77.7
DepthPro [9] 78.2 17.2 5.27 94.8 62.4 80.9

UniK3D-Small 92.1 11.6 3.76 96.4 77.7 85.6
UniK3D-Base 93.1 12.6 3.84 97.3 76.6 82.7
UniK3D-Large 81.2 17.4 4.77 96.8 71.4 79.3

Table 20. Comparison on zero-shot evaluation for IBims-1.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 97.0 - -
DepthAnythingv2 [55] - - - 98.0 - -
Metric3D†‡ [58] 75.1 19.3 0.633 96.2 - -
Metric3Dv2†‡ [21] 68.4 20.7 0.700 98.8 - -
ZoeDepth† [7] 49.8 21.5 0.989 95.8 - -
UniDepth [42] 15.7 41.0 1.25 98.1 30.3 76.6
MASt3R [29] 61.0 19.7 0.883 95.1 55.7 76.0
DepthPro [9] 82.3 17.0 0.573 98.0 62.8 75.9

UniK3D-Small 87.7 13.0 0.484 97.7 67.3 74.6
UniK3D-Base 87.6 12.5 0.452 98.0 67.5 73.4
UniK3D-Large 91.9 10.4 0.406 98.5 69.8 75.4

Table 21. Comparison on zero-shot evaluation for ETH3D.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 93.2 - -
DepthAnythingv2 [55] - - - 93.3 - -
Metric3D†‡ [58] 19.7 136.8 10.45 81.1 - -
Metric3Dv2†‡ [21] 90.0 12.7 1.85 89.7 - -
ZoeDepth† [7] 33.8 54.7 3.45 86.1 - -
UniDepth [42] 18.5 53.3 3.50 93.9 27.6 42.6
MASt3R [29] 21.4 45.3 4.43 91.3 28.4 92.2
DepthPro [9] 39.7 65.2 36.31 81.1 41.2 77.4

UniK3D-Small 53.6 60.0 4.89 94.2 44.3 80.7
UniK3D-Base 68.4 28.5 3.77 95.8 53.8 82.0
UniK3D-Large 68.7 23.6 2.63 95.9 53.6 81.3

C.2. Per-dataset Evaluation
We present results for each of the validation datasets in-
dependently in Table 18 (NYUv2), Table 19 (KITTI), Ta-
ble 20 (IBims-1), Table 21 (ETH3D), Table 22 (Diode In-
door), Table 23 (nuScenes), Table 24 (IBims-1Dist), Table 25



Table 22. Comparison on zero-shot evaluation for Diode (In-
door). Missing values (-) indicate the model’s inability to produce
the respective output. †: ground-truth camera for 3D reconstruc-
tion. ‡: ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 97.5 - -
DepthAnythingv2 [55] - - - 97.6 - -
Metric3D†‡ [58] 40.4 61.1 2.34 91.3 - -
Metric3Dv2†‡ [21] 94.0 9.3 0.399 98.5 - -
ZoeDepth† [7] 34.9 33.6 2.07 91.8 - -
UniDepth [42] 76.2 17.2 0.954 97.2 63.0 96.1
MASt3R [29] 52.6 27.9 1.68 92.3 48.8 70.2
DepthPro [9] 67.1 19.9 0.900 93.9 50.3 71.5

UniK3D-Small 57.2 21.4 0.968 96.1 49.3 92.5
UniK3D-Base 55.1 19.6 0.859 97.4 50.1 91.2
UniK3D-Large 71.3 16.1 0.767 97.9 53.8 79.5

Table 23. Comparison on zero-shot evaluation for nuScenes.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 79.0 - -
DepthAnythingv2 [55] - - - 79.4 - -
Metric3D†‡ [58] 75.4 23.7 8.94 64.0 - -
Metric3Dv2†‡ [21] 84.1 23.6 9.40 64.8 - -
ZoeDepth† [7] 33.8 42.0 7.41 64.8 - -
UniDepth [42] 84.6 12.7 4.56 83.1 64.4 97.7
MASt3R [29] 2.7 65.6 13.76 63.5 13.6 78.3
DepthPro [9] 56.6 28.7 11.29 59.1 46.5 79.1

UniK3D-Small 80.9 18.9 8.43 83.8 59.4 95.8
UniK3D-Base 84.9 16.7 9.15 86.7 65.5 97.8
UniK3D-Large 84.0 18.9 10.83 87.0 60.3 86.9

Table 24. Comparison on zero-shot evaluation for IBims-1Dist.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 97.1 - -
DepthAnythingv2 [55] - - - 93.4 - -
Metric3D†‡ [58] 56.8 26.5 0.947 93.3 - -
Metric3Dv2†‡ [21] 61.3 22.1 0.940 93.3 - -
ZoeDepth† [7] 30.0 28.0 1.28 94.5 - -
UniDepth [42] 48.7 23.0 0.966 97.2 53.3 69.3
MASt3R [29] 31.8 31.9 1.30 92.8 44.1 69.7
DepthPro [9] 27.2 47.6 1.86 83.0 32.4 69.5

UniK3D-Small 67.2 17.1 0.726 97.6 62.6 71.5
UniK3D-Base 66.0 17.9 0.695 98.3 59.8 72.7
UniK3D-Large 70.9 15.0 0.615 98.6 67.9 77.3

(ETH3DDist), Table 26 (Diode IndoorDist), Table 27 (Scan-
Net++ DSLR), Table 28 (ADT), and Table 29 (KITTI360).
Note that we do not report results for the “Pano” group, as
it only consists of a single dataset, Stanford-2D3D. Our re-
sults show that performance on pinhole camera models has
reached a saturation point, yet UniK3D achieves the high-
est average metric overall, even though it does not always
rank first on every individual dataset. This demonstrates the
strong generalization ability of UniK3D, attributed to its flex-

Table 25. Comparison on zero-shot evaluation for ETH3DDist.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 91.8 - -
DepthAnythingv2 [55] - - - 83.9 - -
Metric3D†‡ [58] 19.6 123.6 11.05 80.9 - -
Metric3Dv2†‡ [21] 42.8 104.3 9.87 83.5 - -
ZoeDepth† [7] 25.4 45.9 4.12 86.1 - -
UniDepth [42] 27.6 43.8 4.69 90.1 38.5 67.5
MASt3R [29] 14.6 51.8 5.37 87.7 32.0 78.5
DepthPro [9] 16.1 72.8 18.77 72.7 29.1 69.9

UniK3D-Small 42.1 125.3 12.14 92.9 49.9 68.4
UniK3D-Base 47.9 36.5 3.54 95.1 53.5 67.1
UniK3D-Large 67.0 22.1 2.75 95.5 63.6 83.1

Table 26. Comparison on zero-shot evaluation for DiodeDist (In-
door). Missing values (-) indicate the model’s inability to produce
the respective output. †: ground-truth camera for 3D reconstruc-
tion. ‡: ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 94.2 - -
DepthAnythingv2 [55] - - - 89.3 - -
Metric3D†‡ [58] 26.4 124.0 4.08 89.7 - -
Metric3Dv2†‡ [21] 34.1 35.2 1.61 91.6 - -
ZoeDepth† [7] 24.0 39.8 2.32 90.1 - -
UniDepth [42] 30.2 34.8 1.85 94.7 37.2 74.8
MASt3R [29] 20.6 46.0 2.41 89.3 29.5 83.0
DepthPro [9] 24.7 56.5 2.31 86.0 26.5 75.7

UniK3D-Small 27.6 33.4 1.48 95.0 33.0 82.6
UniK3D-Base 31.6 30.0 1.35 96.1 37.0 85.1
UniK3D-Large 26.9 30.0 1.33 97.5 36.1 85.4

Table 27. Comparison on zero-shot evaluation for ScanNet++
(DSLR). Missing values (-) indicate the model’s inability to pro-
duce the respective output. †: ground-truth camera for 3D recon-
struction. ‡: ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 51.4 - -
DepthAnythingv2 [55] - - - 52.3 - -
Metric3D†‡ [58] 16.5 180.5 1.83 51.2 - -
Metric3Dv2†‡ [21] 5.2 237.0 2.51 71.3 - -
ZoeDepth† [7] 2.0 158.5 1.45 71.2 - -
UniDepth [42] 0.6 162.9 1.59 71.0 9.1 20.2
MASt3R [29] 5.8 114.8 1.07 73.0 21.0 16.6
DepthPro [9] 9.6 95.8 0.928 74.1 24.4 30.9

UniK3D-Small 6.2 92.8 0.931 78.1 23.5 35.1
UniK3D-Base 55.4 33.1 0.340 86.6 53.9 65.1
UniK3D-Large 65.1 25.3 0.285 90.8 59.1 70.0

ible design and large-scale training, which enables robust
performance across diverse domains without overfitting to
any specific one. We report additional and more typical met-
rics such as absolute relative error as A.Rel as a percentage
and root-means-squared error RSME using meter as unit.



Table 28. Comparison on zero-shot evaluation for ADT. Missing
values (-) indicate the model’s inability to produce the respective
output. †: ground-truth camera for 3D reconstruction. ‡: ground-
truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 81.7 - -
DepthAnythingv2 [55] - - - 82.6 - -
Metric3D†‡ [58] 72.5 26.2 0.560 85.3 - -
Metric3Dv2†‡ [21] 75.6 21.9 0.433 92.4 - -
ZoeDepth† [7] 11.0 81.4 1.36 83.5 - -
UniDepth [42] 13.3 76.0 1.37 90.8 27.1 32.1
MASt3R [29] 44.8 40.1 0.717 86.7 52.5 51.4
DepthPro [9] 33.6 45.1 0.902 81.3 47.9 48.0

UniK3D-Small 89.8 13.4 0.323 93.8 82.9 92.2
UniK3D-Base 93.5 10.3 0.288 95.0 88.1 93.8
UniK3D-Large 94.6 9.3 0.275 95.6 89.5 93.7

Table 29. Comparison on zero-shot evaluation for KITTI360.
Missing values (-) indicate the model’s inability to produce the
respective output. †: ground-truth camera for 3D reconstruction. ‡:
ground-truth camera for 2D depth map inference.

Method δ1 ↑ A.Rel ↓ RMSE ↓ δSSI1 ↑ FA ↑ ρA ↑
DepthAnything [54] - - - 9.5 - -
DepthAnythingv2 [55] - - - 11.3 - -
Metric3D†‡ [58] 0.2 1366.2 34.78 39.7 - -
Metric3Dv2†‡ [21] 0.1 1655.3 40.32 43.9 - -
ZoeDepth† [7] 0.7 1200.2 24.71 41.2 - -
UniDepth [42] 29.4 152.2 4.23 44.0 14.6 7.1
MASt3R [29] 16.5 312.8 7.17 41.7 15.7 7.4
DepthPro [9] 5.5 103.8 7.35 38.0 5.9 17.5

UniK3D-Small 74.9 39.8 2.58 81.6 59.5 82.8
UniK3D-Base 73.3 33.8 2.62 80.8 61.2 80.9
UniK3D-Large 81.7 24.4 2.40 85.3 66.4 82.5

Table 30. Comparison with UniDepth. All models use ViT-S
backbone and the same training data. Test set grouping as in the
main paper. Best viewed on a screen and zoomed in.

Method Small FoV Small FoVDist Large FoV Panoramic
δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑ δSSI1 ↑ FA ↑ ρA ↑

UniDepth [42] 89.0 54.7 77.8 92.7 35.4 45.6 71.8 41.9 48.8 34.9 1.5 1.2
UniK3D 89.1 57.3 79.8 93.1 44.6 59.3 79.8 53.5 64.8 64.3 58.6 26.3

D. Q&A
Here we list possible questions that might arise after reading
the paper. We structure the section in a discursive question-
and-answer fashion.
• What is the importance of data for generalization w.r.t.

scene scale?
Data diversity is crucial for generalizing depth estimation,
especially for monocular methods that heavily rely on se-
mantic cues and are sensitive to domain gaps. Scale predic-
tion in monocular metric depth estimation is inherently ill-
posed, making it highly dependent on the training domain
and its distribution coverage. Excessive diversity can hurt
performance in narrow, specialized domains like KITTI,
where models trained on large, diverse datasets often un-
derperform compared to those trained on domain-specific
data. Conversely, these models perform better in broader
domains like NYU. Scale prediction is typically noisy and
sensitive to domain shifts, but this issue can be mitigated

through in-domain fine-tuning. For example, a few hun-
dred optimization steps can largely resolve the “scale gap”
when fine-tuning on KITTI.

• The camera representation is superior to pinhole or
fully non-parametric camera model, but you did not
compare it to some common camera models, why so?
We initially experimented with explicit parametric cam-
era models but encountered significant drawbacks. Most
standard camera models rely on backprojection operations
which are not differentiable and, thus cannot be used in
a standard deep learning pipeline. Addressing this lim-
itation requires either (i) using differentiable parametric
models, such as EUCM [24] or DoubleSphere [47], (ii)
approximating polynomial inversions with differentiable
functions, or (iii) supervising only the model parameters
without direct camera supervision. All these approaches
suffer from the inherent instability of parametric models,
where parameter variations need to be considered jointly
on their actual output, namely the pencil of rays. This com-
pounding effect, where small compounded changes lead
to large output variations, often leads to unstable optimiza-
tion. Furthermore, parametric models limit the expressive-
ness of the backprojection operation and constrain appli-
cability to only those cameras the model can represent. In
contrast, our representation avoids these limitations and
provides greater flexibility and stability.

• DUSt3R / MASt3R architecture directly predicts point
maps, are they unable to work with generic cameras?
While DUSt3R and MASt3R networks can theoretically
represent any camera model, our studies revealed that fully
non-parametric approaches struggle when trained on di-
verse datasets and tested on edge cases or distribution tails.
Additionally, the test-time point cloud global alignment
technique used in DUSt3R [49] and MASt3R [29] explic-
itly requires a pinhole camera, further limiting their appli-
cability to generic cameras.

• What is the role of the confidence prediction?
Confidence prediction is included primarily for its utility
in downstream tasks and also for legacy reasons. It is
worth noting that, like most regression tasks, confidence
prediction is vulnerable to domain gaps, which can render
it unreliable in strong out-of-domain scenarios.

• What is the rationale of camera augmentations?
Camera augmentations were employed to address the lack
of diverse real-camera data. While our simple augmen-
tation pipeline resulted in minor improvements, we ob-
served that many generated cameras are unrealistic and
fall outside the distribution of real-world cameras. How-
ever, softmax-based warping proved effective in creating
realistic images. We hypothesize that a more sophisticated
camera sampling procedure, considering the realism of the
output rays instead of the singled-out parameters, could



significantly enhance the robustness and generalization
across real and practical camera models.

• What are the differences with UniDepth?
UniDepth [42] and UniK3D differ in camera modeling
and 3D representation, both ablated in Tabs. 3, 4, and 5.
UniDepth relies on the pinhole model by predicting the
calibration matrix (cf. [60, Sec. 3.2]), thus not being able
to predict any camera. In addition, [42] represents the
3rd dimension as depth (z) [60, Sec. 3.1]. These two as-
pects force [42] to model only pinhole and to output FoV
< 180◦. In contrast, UniK3D uses spherical harmonics
(SH) to approximate any camera model and it exploits
radial distance (r) as 3rd dimension. UniDepth projects
the predicted pinhole ray map [60, Sec. 3.1] onto a high-
dimensional space E using SH, whereas UniK3D directly
predicts the SH coefficient used to generate the ray map C
via inverse transform (L230-262). This key methodolog-
ical difference leads to modeling any camera. Table 30
(row 1 vs. row 3) shows its impact, as UniK3D consistently
outperforms [42] also when trained on identical data.

• Has someone done something similar before?
Yes, there are a few works [20, 26] which tried to remove
the pinhole assumption for depth estimation. However,
they are different for two important reasons: (i) those
works focused on single-domain scenarios, leading to a
simpler setting and (ii) the task is self-supervised depth es-
timation, where the camera is needed to define the warping-
based photometric loss, inherently needing the camera,
rather than supervised large-scale monocular 3D estima-
tion.

• We provide here the δSSI1 scores of row 3 and 4 of Tab. 5:
92.1 and 92.2, respectively. This score similarity, along
with FA and ρA drops (Tab. 5), spotlights angular module’s
role. In fact, radial- and SH-based model (row 4) overes-
timates FoV of images with lens distortions. Retraining
with stronger distortion augmentation for small FoV leads
to (FA, ρA) = (43.1, 62.3), validating our assumption.

E. Additional Qualitative Results
We provide here more qualitative comparisons, in particular
from validation domains not presented in the main paper and
with distorted cameras, namely ScanNet++ (DSLR), IBims-
1Dist, and DiodeDist (Indoor), in Fig. 5. In addition, we test
our model on complete in-the-wild scenarios, for instance,
frames from movies, TV series, YouTube, or animes. All im-
ages depicted in Fig. 6 and Fig. 7 present deformed cameras
or unusual points of view. The visualization here presented,
both from the validation sets and the in-the-wild ones are ca-
sually selected and not cherry-picked.
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and the 2D error map, color-coded with the coolwarm colormap based on absolute relative error with blue corresponding to 0% error and red
to 25%. To ensure a fair comparison, errors are calculated on GT-based shifted and scaled outputs for all models. Each even row shows the
ground truth and predictions of the 3D point cloud. All samples are randomly selected and not picked. †: GT-camera unprojection.
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Figure 6. Qualitative in-the-wild 3D results.UniK3D is fed solely each single image in the left column and it outputs the corresponding
point cloud in the right column, the point of view is slightly tilted to better appreciate the 3D. The images are video frames respectively from
Poor Things (movie), The Revenant (movie), Eminem (music video), and YouTube (egocentric GoPro). The frames present a variety of
camera types and unusual viewpoints.



Figure 7. Qualitative in-the-wild 3D results. UniK3D is fed solely each single image in the left column and it outputs the corresponding
point cloud in the right column, the point of view is slightly tilted to better appreciate the 3D. The images are video frames respectively from
Trainspotting (movie), YouTube (doorbell camera), Naruto (anime), and Breaking Bad (TV series). The frames present a variety of camera
types and unusual viewpoints.
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