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A.1. List of Symbols
A.1.1 Mathematical Symbols

• 1U : the 0-1 indicator function of subset U
• R: the real numbers
• R: a relation
• conv: the set of convex combinations
• _: the inclusive disjunction (i.e., logical or)
• ^: the conjunction (i.e., logical and)
• �: the composition of functions, i.e. (g � f)(x) = g(f(x))
• E: the mathematical expectation

A.1.2 Symbols Related to Our Mathematical Framework

We organize these symbols according to the 6 pillars depicted in Fig. 1, which correspond to the 6 subsections of Sec. 3.

Symbols related to the 1st pillar (Sec. 3.1)
• ⌦: the sample space (universe)
• !: a sample (i.e., an element of ⌦)
• ⌃: the event space (a �-algebra on ⌦, e.g. 2⌦)
• E: an event (i.e., an element of ⌃)
• (⌦,⌃): the measurable space
• P(⌦,⌃): all performances on (⌦,⌃)
• ⇧: a set of performances (⇧ ✓ P(⌦,⌃))
• P : a performance (i.e., an element of P(⌦,⌃))

Symbols related to the 2nd pillar (Sec. 3.2)
• .: binary relation worse or equivalent on P(⌦,⌃)

• &: binary relation better or equivalent on P(⌦,⌃)

• ⇠: binary relation equivalent on P(⌦,⌃)

• >: binary relation better on P(⌦,⌃)

• <: binary relation worse on P(⌦,⌃)

• 6S: binary relation incomparable on P(⌦,⌃)

Symbols related to the 3rd pillar (Sec. 3.3)
• S: the random variable Satisfaction
• smin,⌦: the minimum satisfaction value
• smax,⌦: the maximum satisfaction value

Symbols related to the 4th pillar (Sec. 3.4)
• E: the set of entities to rank
• ✏: an entity, i.e. an element of E
• eval: the performance evaluation function
• �: some performances that are for sure achievable

Symbols related to the 5th pillar (Sec. 3.5)
• X: a score
• dom(X): the domain of the score X
• XE

V : the expected value score parameterized by the random variable V
• XP

E1|E2
: the probabilistic score parameterized by the events E1 and E2



Symbols related to the 6th pillar (Sec. 3.6)
• I: the random variable Importance

A.1.3 Symbols used for Operations on Performances

• filterI : the filtering operation

A.1.4 Symbols used in the Performance Ordering and Performance-Based Ranking Theory

• rankE: the ranking function, w.r.t. the set of entities E
• .X : the ordering induced by the score X (cf . Theorem 1)
• RI : the ranking score parameterized by the importance I
• ⌧ : the rank correlation coefficient of Kendall [13]

A.1.5 Symbols used for the Particular Case of Two-Class Crisp Classifications

Particularization of the mathematical framework
• tn: the sample true negative
• fp: the sample false positive, a.k.a. type I error
• fn: the sample false negative, a.k.a. type II error
• tp: the sample true positive

Extensions to the mathematical framework
• ROC: the Receiver Operating Characteristic space, i.e. FPR⇥ TPR
• PR: the Precision-Recall space, i.e. TPR⇥ PPV
• Y : the random variable for the ground truth
• Ŷ : the random variable for the prediction
• C: the set of classes
• c: a class (i.e., an element of C)
• c�: the negative class
• c+: the positive class

Scores
• A: the accuracy
• TNR: the true negative rate
• FPR: the false positive rate
• TPR: the true positive rate
• PPV : the positive predictive value
• F� : the F-scores
• ⇡+: the prior of the positive class
• ⇡�: the prior of the negative class



A.2. How to Use our Framework: a Little Catalog of Problems
Throughout the paper, we have exemplified our theory with the problem of two-class classification. This section aims at
showing the universality of our theory. It presents a little catalog of other problems, together with discussions on how to use
our framework for them. These discussions are introductions. As shown by Sec. 5 and two recent works [12, 21], an in-depth
analysis and particularization of our theory to the various problems (e.g., to highlight their distinctive features, to review the
current ranking practices from the literature and the consistency of popular scores, and to establish practical tools tailored to
different user needs) may require substantial work that is out of the scope of this supplementary material.

In the following, we adopt a systematic approach: for each problem, we start by specifying a thought random experiment
for the evaluation (this is an arbitrary choice since the random experiment is not unique for each problem; do not hesitate
to use a different random experiment, the important is to specify it explicitly!), then we discuss the possible choices for the
sample space ⌦ (and what the set of all performances is), for the modeling of tasks with the satisfaction S, for the modeling of
the knowledge we have about the evaluation with the function �, and for the modeling of the application-specific preferences
with the importance I .

A.2.1 Multi-Class Classification (with a Note on Micro- and Macro-Averaging)

Let us consider the following thought experiment to evaluate classifiers predicting classes in a finite and non-empty set C.

Random Experiment 1. (1) Draw a sample s 2 S at random from a given source S . (2) Apply the oracle O on s to obtain
the ground-truth class y(s) 2 C. (3) Apply a descriptor D on s to obtain the features (a.k.a. attributes) x(s) 2 X. (4) Feed the
classifier C with x(s) to obtain the predicted class ŷ(x(s)) 2 C. (5) Set the outcome of the experiment to the pair (y, ŷ) 2 C2.

Choice for ⌦ and P(⌦,⌃). Our theory applies with ⌦ = C2. By definition, the function eval gives, for any classifier C : X!
C (the evaluated entity, either deterministic or not), the distribution of outcomes resulting from this random experiment:
PC = eval(C). Note that it is implicit that the performances are specific for some given source S (e.g., evaluation
dataset), oracle O, and descriptor D. By convenience, one can manipulate the ground-truth and predicted classes with,
respectively, the random variables Y and Ŷ defined in such a way that ! = (Y (!), Ŷ (!)) 8! 2 ⌦.

Choice for S. Several classification tasks can be distinguished, as the following two examples show. (1) One can consider
that all erroneous classifications are unsatisfactory and that correct classifications are satisfactory. For this task, the
satisfaction is then binary and given by S = 1Y=Ŷ . The expected value of the satisfaction, which is a particular case of
ranking scores, is then equal to the multi-class accuracy. (2) One can also consider the similarity sim : C2

! R between
classes, and choose the satisfaction accordingly: S(!) = sim(Y (!); Ŷ (!)). A wide variety of tasks can be considered
by tuning sim. In general, the expected value of the satisfaction is different from the multi-class accuracy.

Choice for �. As the classifier is used once and only once during the execution of the evaluation, we know that if the
performances P1 and P2 are achievable by some classifiers C1 and C2, then any performance P = �1P1 + �2P2 (with
�1 � 0, �2 � 0, and �1 + �2 = 1) is achievable by a classifier C obtained by a non-deterministic combination of C1
and C2 that chooses them with respective probabilities �1 and �2. Thus, � = conv makes sense, and all ranking scores
can be used to rank classifiers. However, it would be possible to go further, by considering other functions � that would
include the knowledge that we can predict the performance achievable by composing the classifier with any of the |C||C|
functions f : C! C. This would lead to other performance orderings suitable for ranking classifiers.

Choice for I . When � = conv, we have demonstrated that all rankings induced by the ranking scores RI satisfy all our three
axioms. This leaves a great flexibility for the users to fine-tune the ranking w.r.t. their application-specific preferences
through the random variable I . As we have seen, the only constraints are that I 6= 0 and I(!) � 0 8! 2 ⌦.

Note on micro- and macro-averaging. Micro- and macro-averaging are commonly used techniques to build scores for
multi-class classification from scores for two-class classification [22]. We warn that they have pitfalls. In general,
micro- and macro-averaging scores suitable for ranking two-class classifiers do not lead to scores suitable for ranking
multi-class classifiers. The accuracy put aside, the performance orderings induced from the micro-averaged versions
of the scores put in green in Tab. 1 are incompatible with S = 1Y=Ŷ : our 2nd axiom is not satisfied. Moreover, the
accuracy put again aside, the performance orderings induced from the macro-averaged versions of the scores put in
green in Tab. 1 are incompatible with � = conv: our 3rd axiom is not satisfied. A solution consists in using directly
ranking scores defined for multi-class classification.



A.2.2 Regression (with a Note on the Mean Squared Error and the Mean Absolute Error)

Let us consider the following thought experiment to evaluate regressors.

Random Experiment 2. (1) Draw a sample s 2 S at random from a given source S . (2) Apply the oracle O on s to obtain
the ground-truth value y(s) 2 R. (3) Apply a descriptor D on s to obtain the features (a.k.a. attributes) x(s) 2 X. (4) Feed
the regressor R with x(s) to obtain the predicted value ŷ(x(s)) 2 R. (5) Set the outcome of the experiment to the pair
(y, ŷ) 2 R2.

Choice for ⌦ and P(⌦,⌃). Our theory applies with ⌦ = R2. By definition, the function eval gives, for any regressor R : X!
R (the evaluated entity, either deterministic or not), the distribution of outcomes resulting from this random experiment.
It is the performance PR = eval(R) of R. By convenience, one can manipulate the ground-truth and predicted values
with, respectively, the random variables Y and Ŷ defined in such a way that ! = (Y (!), Ŷ (!)) 8! 2 ⌦.

Choice for S. Clearly, it is not a good idea to choose S = 1Y=Ŷ , similarly as one can do in classification. In practice, a
regressor as no chance to predict the same value as the oracle, so this unfortunate choice for S would lead to perfor-
mances P such that P (S = 0) = 1. In other words, all performances observed about real regressors would belong to
the set of the worst performances (see Corollary 2), and their ranking would be of little interest (see Corollary 1). A
better option consists in specifying a tolerance ✏ > 0 and choosing S = 1|Y�Ŷ |✏. An even more flexible option, which
takes advantage of the fact that satisfaction values do not necessarily have to be positive, is to choose S = f(|Y � Ŷ |)
with any arbitrarily chosen monotonically decreasing function f . The plethora of choices that can be made for S makes
it clear that there is an infinity of tasks related to the regression problem.

Choice for �. As the regressor is used once and only once during the execution of the evaluation, we know that if the
performances P1 and P2 are achievable by some regressors R1 and R2, then any performance P = �1P1 + �2P2 (with
�1 � 0, �2 � 0, and �1 + �2 = 1) is achievable by a regressor R obtained by a non-deterministic combination of R1

and R2 that chooses them with respective probabilities �1 and �2. Thus, � = conv makes sense, and all ranking scores
can be used to rank regressors. However, it would be possible to go further, by considering other functions � that would
include the knowledge that we can predict the performance achievable by adding noise, or applying a transformation on
the output of the regressor. This would lead to other performance orderings suitable for ranking regressors.

Choice for I . When � = conv, we have demonstrated that all rankings induced by the ranking scores RI satisfy all our three
axioms. This leaves a great flexibility for the users to fine-tune the ranking w.r.t. their application-specific preferences
through the random variable I . As we have seen, the only constraints are that I 6= 0 and I(!) � 0 8! 2 ⌦.

Note on the mean squared error and the mean absolute error. If we choose S = �|Y � Ŷ |
2, the ranking score RI cor-

responding to uniform importance values, i.e., the expected satisfaction XE
S , yields a ranking that minimizes the mean

squared error (MSE). If we choose S = �|Y � Ŷ |, the ranking score RI corresponding to uniform importance values,
i.e., the expected satisfaction XE

S , yields a ranking that minimizes the mean absolute error (MAE).

A.2.3 Information Retrieval

Let us consider the following thought experiment to evaluate information retrieval systems. We denote by Q the set of all
possible queries.

Random Experiment 3. (1) Draw a query q 2 Q at random from a given source S . (2) Apply the oracle O on q to obtain
the ground-truth set of results Y. (3) Apply the evaluated information retrieval system S on q to obtain the predicted set of
results Ŷ. (4) If Y = ; and Ŷ = ;, restart the experiment, otherwise draw a result r at random in Y [ Ŷ. (5) Choose the
outcome as follows: fp if r /2 Y and r 2 Ŷ, fn if r 2 Y and r /2 Ŷ, and tp if r 2 Y and r 2 Ŷ.

Choice for ⌦ and P(⌦,⌃). Our theory applies with ⌦ = {fp, fn, tp}. By definition, the function eval gives, for any retrieval
system S defined on Q (the evaluated entity, either deterministic or not), the distribution of outcomes resulting from this
random experiment: PS = eval(S).

Choice for S. Intuitively, everyone certainly agrees that S(fp) < S(tp) and S(fn) < S(tp). But we expect different
opinions regarding whether the outcome (sample) fp gives less, equal, or more satisfaction than fn.



Choice for �. This random experiment is very interesting as, during its execution, the evaluated entity (the information
retrieval system S) can be used multiple times. In such a case, we have to discuss whether � = conv is adequate. Let
us consider two systems S1, S2 and their respective performances P1 = eval(S1), P2 = eval(S2). It is possible to show
that the performance of a retrieval system S obtained by a non-deterministic combination of S1 and S2, that chooses
them with respective probabilities �1 and �2, is some interpolated performance P = µ1P1 + µ2P2 (with µ1 � 0,
µ2 � 0, and µ1+µ2 = 1). Unless being in very particular cases, µ 6= �. In other words, we know that the performances
that are convex combinations of achievable performances are also achievable (for any �, there exists µ), but we do not
know in general how to achieve them (for most µ it is not possible to determine �). This contrasts with the other kinds of
problems discussed in this catalog. In fact, the question we raise here is not specific to the information retrieval problem:
it is peculiar to the random experiment that we have chosen for it. By slightly modifying the thought experiment, the
question vanishes: instead of restarting the experiment when Y [ Ŷ = ;, one could yield a fourth outcome (and add it
to the sample space ⌦). By doing so, the evaluated entity S is used only once and � = conv makes sense for sure.

Choice for I . If � = conv is considered as adequate, then we have demonstrated that all rankings induced by the ranking
scores RI satisfy all our three axioms. This leaves a great flexibility for the users to fine-tune the ranking w.r.t. their
application-specific preferences through the random variable I . As we have seen, the only constraints are that I 6= 0
and I(!) � 0 8! 2 ⌦.

A.2.4 Detection (with a Note about the Intersection-over-Union and the F-Score)

Different types of detections are present in the literature. An example of spatial detection aims at predicting the axis-aligned
bounding boxes around all the objects that match some given properties (i.e., a semantic class) in input images. Examples of
temporal detections include the detection of events in video streams and in audio recordings. By definition, such detection
problems are called action spotting when the temporal window is small, and activity detection otherwise. Let us consider the
following, generic, thought experiment to evaluate detectors.

Random Experiment 4. (1) Draw an input at random from a given source S (e.g., dataset). (2) Apply the oracle O on it to
obtain a set Y of ground-truth detections. (3) Also apply the detector D on it to obtain a set Ŷ of predicted detections. (4) If
Y = ; and Ŷ = ;, then end the experiment with the outcome �. Otherwise: (5) Apply a matching criterion between Y and
Ŷ such that to any detection in Y should be associated at most a detection in Ŷ and vice versa. (6) Draw a detection d at
random in Y [ Ŷ. (7) Give as outcome fp, fn or tp depending on whether d is a prediction, a ground truth, or both (i.e., a
match).

Choice for ⌦ and P(⌦,⌃). Our theory applies with ⌦ = {�, fp, fn, tp}. By definition, the function eval gives, for any
detector (the evaluated entity), the distribution of outcomes resulting from this random experiment. It is the performance
PD = eval(D) of D.

Choice for S. Intuitively, everyone certainly agrees that � and tp give entire satisfaction. Moreover, we expect agreement
on S(fp) < S(tp) and S(fn) < S(tp). But we expect different opinions regarding whether fp gives less, equal, or
more satisfaction than fn.

Choice for �. As the detector is used once and only once during the execution of the evaluation, we know that if the perfor-
mances P1 and P2 are achievable by some detectors D1 and D2, then any performance P = �1P1+�2P2 (with �1 � 0,
�2 � 0, and �1 +�2 = 1) is achievable by a detector D obtained by a non-deterministic combination of D1 and D2 that
chooses them with respective probabilities �1 and �2. Thus, � = conv makes sense, and all ranking scores can be used
to rank detectors.

Choice for I . If � = conv is considered as adequate, then we have demonstrated that all rankings induced by the ranking
scores RI satisfy all our three axioms. This leaves a great flexibility for the users to fine-tune the ranking w.r.t. their
application-specific preferences through the random variable I . As we have seen, the only constraints are that I 6= 0
and I(!) � 0 8! 2 ⌦.

Note about the Intersection-over-Union and the F-score. Traditionally, in the literature, as soon as one has symbols fp,
fn, and tp, regardless of their very fine meaning, one defines quantities IoU = P (tp)

P (fp)+P (fn)+P (tp) and F1 =
2P (tp)

P (fp)+P (fn)+2P (tp) , and name them Intersection-over-Union (or Jaccard) and F-one, respectively. The exact meaning



of these quantities is not well standardized. In particular, the random experiment supporting the evaluation, if it exists,
is rarely specified explicitly. For this reason, we cannot give the guarantee that these quantities are suitable to rank
detectors in all works in which they have been used. However, with the random experiment given here-above, with
� = conv, and with S = 1{�,tp}, we can guarantee that IoU and F1 are suitable to rank detectors because they are
equal to the ranking scores with, respectively, I = 1{fp,fn,tp} and I = 1{fp,tp} + 1{fn,tp}. Thus, the performance
orderings induced by them fulfill our three axioms.

A.2.5 Clustering (with a Note about Fowlkes-Mallows Index)

Let us consider the following thought experiment to evaluate clustering methods. These methods aim to place in different
clusters (groups) dissimilar objects and in the same cluster (group) objects that are similar to each other. We denote by E the
set of elements that these methods have to deal with. For the sake of simplicity, we do not consider hierarchical clustering.

Random Experiment 5. (1) Apply both the clustering method C and the oracle O on E to obtain, respectively, the predicted
and ground-truth clusterings. (2) Randomly draw two distinct elements, ✏1 and ✏2, from E. (3) Consider that the pair (✏1; ✏2)
is a negative or a positive, in a given clustering, when ✏1 and ✏2 are in different clusters or in the same cluster, respectively.
(4) Choose the outcome as follows: tn when (✏1; ✏2) is negative in both the predicted and ground-truth clusterings, fp when
(✏1; ✏2) is negative in the ground-truth clustering and positive in the predicted clustering, fn when (✏1; ✏2) is positive in the
ground-truth clustering and negative in the predicted clustering, and tp when (✏1; ✏2) is positive in both the predicted and
ground-truth clusterings.

Choice for ⌦ and P(⌦,⌃). Our theory applies with ⌦ = {tn, fp, fn, tp}. By definition, the function eval gives, for any
clustering method (the evaluated entity), the distribution of outcomes resulting from this random experiment. It is the
performance PC = eval(C) of C.

Choice for S. When S is chosen such that S(fp) = S(fn) = 0 and S(tn) = S(tp) = 1, we are in the same setting as
the one we studied for the two-class classification in Sec. 5. This is indeed not because we use the same symbols for
the elements of ⌦ —this is just a convention—, but because, in both settings, we have |⌦| = 4, |S = 0| = 2, and
|S = 1| = 2. This implies that the performance orderings that satisfy our three axioms for ranking two-class classifiers
can also be used for ranking clustering methods, and vice versa.

Choice for �. As the clustering method is used once and only once during the execution of the evaluation, we know that if the
performances P1 and P2 are achievable by some clustering methods C1 and C2, then any performance P = �1P1+�2P2

(with �1 � 0, �2 � 0, and �1 + �2 = 1) is achievable by a clustering method C obtained by a non-deterministic
combination of C1 and C2 that chooses them with respective probabilities �1 and �2. Thus, � = conv makes sense, and
all ranking scores can be used to rank clustering methods.

Choice for I . When � = conv, we have demonstrated that all rankings induced by the ranking scores RI satisfy all our three
axioms. This leaves a great flexibility for the users to fine-tune the ranking w.r.t. their application-specific preferences
through the random variable I . As we have seen, the only constraints are that I 6= 0 and I(!) � 0 8! 2 ⌦.

Note about Fowlkes-Mallows index. The score FMI known as Fowlkes-Mallows index [9] and cosine coefficient [1],
which is commonly used for clustering methods and defined as the geometric mean of the positive predictive value
PPV (a.k.a. precision) and true positive rate TPR (a.k.a. sensitivity and recall), does not satisfy our 3rd ax-
iom: the performance ordering induced by FMI is incompatible with � = conv. More precisely, the cluster-
ing method C obtained by randomly choosing between some methods C1 or C2 can be such that FMI(eval(C)) <
min(FMI(eval(C1)), FMI(eval(C2))), while it makes no sense to say that C can be worse than C1 or C2. From this
perspective, it is advisable to use any ranking score instead of FMI , for example, those in green in Tab. 1.

A.2.6 Ranking (with a Note about Kendall’s ⌧ )

Let us consider the following thought experiment to evaluate ranking methods. We denote by E the set of elements that these
methods have to rank. For the sake of simplicity, we prefer to deal only with the case with no tie hereafter.

Random Experiment 6. (1) Apply both the ranking method R and the oracle O on E to obtain, respectively, the predicted
and ground-truth sequences of elements. (2) Randomly draw two distinct elements, ✏1 and ✏2, from E. (3) Four cases can



occur depending on whether ✏1 is before or after ✏2 in the predicted sequence and whether ✏1 is before or after ✏2 in the
ground-truth sequence. Nevertheless, two outcomes are enough: choose , if ✏1 and ✏2 appear in the same order in both
sequences, / otherwise.

Choice for ⌦ and P(⌦,⌃). Our theory applies with ⌦ = {,,/}. By definition, the function eval gives, for any ranking
method (the evaluated entity), the distribution of outcomes resulting from this random experiment. It is the performance
PR = eval(R) of R. The probability of drawing a discordant pair is given by P ({/}), and the probability of drawing
a concordant pair is given by P ({,}).

Choice for S. Clearly, S(/) < S(,) is wanted.

Choice for �. As the ranking method is used once and only once during the execution of the evaluation, we know that if the
performances P1 and P2 are achievable by some ranking methods R1 and R2, then any performance P = �1P1+�2P2

(with �1 � 0, �2 � 0, and �1 + �2 = 1) is achievable by a ranking method R obtained by a non-deterministic
combination of R1 and R2 that chooses them with respective probabilities �1 and �2. Thus, � = conv makes sense,
and all ranking scores can be used to rank ranking methods.

Choice for I . Because |⌦| = 2 and S(/) 6= S(,), we are in a particular case in which all ranking scores rank the ranking
methods in the same way. From this point of view, fine-tuning I is useless.

Note about Kendall’s ⌧ . When S(/) = �1 and S(,) = 1, the expected value of the satisfaction is given by XE
S (P ) =

1 � 2P ({/}) = P ({,}) � P ({/}) = ⌧(P ). In other words, with the task corresponding to this choice for the
satisfaction, Kendall’s correlation coefficient ⌧ [13] is the ranking score corresponding to uniform importance values.



A.3. Supplementary Material about Sec. 3.2
This section is devoted to reminders about the order theory.

A.3.1 Reminders of Classical Definitions.

Let R be a homogeneous binary relation on P(⌦,⌃). It is said:
• reflexive iif PRP 8P ;
• irreflexive iif @P : PRP ;
• transitive iif P1RP2 ^ P2RP3 ) P1RP3 8P1, P2, P3;
• symmetric iif P1RP2 , P2RP1 8P1, P2;
• asymmetric iif @(P1, P2) : P1RP2 ^ P2RP1;
• and antisymmetric iif P1RP2 ^ P2RP1 ) P1 = P2.
Two homogeneous binary relations Ra and Rb on P(⌦,⌃) are said converse iif P1RaP2 , P2RbP1 8P1, P2.

A relation R is:
• an equivalence iif it is reflexive, transitive, and symmetric;
• a preorder iif it is reflexive and transitive;
• and an order iif it is reflexive, transitive, and antisymmetric.
An order R is said total iif @(P1, P2) : P1 6 RP2 ^ P2 6 RP1. It is said partial otherwise.

A.3.2 The 4 Cases in the Comparison of Two Performances with a Preorder ..

Let us now consider a preorder . and derive the homogeneous binary relations ⇠, >, <, 6S as follows:

P1 ⇠ P2 , P1 . P2 ^ P2 . P1 (1)
P1 > P2 , P1 6. P2 ^ P2 . P1 (2)
P1 < P2 , P1 . P2 ^ P2 6. P1 (3)

P1 6S P2 , P1 6. P2 ^ P2 6. P1 . (4)

Indeed, we have:

P1 . P2 , P1 < P2 _ P1 ⇠ P2 . (5)

Similarly, one can derive other binary relations taking unions of ⇠, >, <, or 6S. For example,

P1 & P2 , P1 > P2 _ P1 ⇠ P2 . (6)

A.3.3 Implications of the Transitivity of ..

We can easily check, for each Rab 2 {., 6.}, each Rba 2 {., 6.}, each Rbc 2 {., 6.}, each Rcb 2 {., 6.}, each
Rca 2 {., 6.}, and each Rac 2 {., 6.}, if there exists (Pa, Pb, Pc) such that PaRabPb, PbRbaPa, PbRbcPc, PcRcbPb,
PcRcaPa, and PaRacPc. Because of the assumed transitivity of ., there are only 29 possible cases out of the 26:

1. Pa 6S Pb, Pb 6S Pc, Pa 6S Pc

2. Pa 6S Pb, Pb 6S Pc, Pa > Pc

3. Pa 6S Pb, Pb 6S Pc, Pa < Pc

4. Pa 6S Pb, Pb 6S Pc, Pa ⇠ Pc

5. Pa 6S Pb, Pb > Pc, Pa 6S Pc

6. Pa 6S Pb, Pb > Pc, Pa > Pc

7. Pa 6S Pb, Pb < Pc, Pa 6S Pc

8. Pa 6S Pb, Pb < Pc, Pa < Pc

9. Pa 6S Pb, Pb ⇠ Pc, Pa 6S Pc

10. Pa > Pb, Pb 6S Pc, Pa 6S Pc

11. Pa > Pb, Pb 6S Pc, Pa > Pc

12. Pa > Pb, Pb > Pc, Pa > Pc

13. Pa > Pb, Pb < Pc, Pa 6S Pc

14. Pa > Pb, Pb < Pc, Pa > Pc

15. Pa > Pb, Pb < Pc, Pa < Pc



16. Pa > Pb, Pb < Pc, Pa ⇠ Pc

17. Pa > Pb, Pb ⇠ Pc, Pa > Pc

18. Pa < Pb, Pb 6S Pc, Pa 6S Pc

19. Pa < Pb, Pb 6S Pc, Pa < Pc

20. Pa < Pb, Pb > Pc, Pa 6S Pc

21. Pa < Pb, Pb > Pc, Pa > Pc

22. Pa < Pb, Pb > Pc, Pa < Pc

23. Pa < Pb, Pb > Pc, Pa ⇠ Pc

24. Pa < Pb, Pb < Pc, Pa < Pc

25. Pa < Pb, Pb ⇠ Pc, Pa < Pc

26. Pa ⇠ Pb, Pb 6S Pc, Pa 6S Pc

27. Pa ⇠ Pb, Pb > Pc, Pa > Pc

28. Pa ⇠ Pb, Pb < Pc, Pa < Pc

29. Pa ⇠ Pb, Pb ⇠ Pc, Pa ⇠ Pc

From this list, we can derive some rules for manipulating the binary relations ⇠, >, <, and 6S. First, we can see that ⇠,
>, and < are transitive:

P1 ⇠ P2 ^ P2 ⇠ P3 ) P1 ⇠ P3 (7)
P1 > P2 ^ P2 > P3 ) P1 > P3 (8)
P1 < P2 ^ P2 < P3 ) P1 < P3 . (9)

Second, we can also see how ⇠ can be combined with the other 3 relations:

(P1 ⇠ P2 ^ P2 > P3) _ (P1 > P2 ^ P2 ⇠ P3)) P1 > P3 (10)
(P1 ⇠ P2 ^ P2 < P3) _ (P1 < P2 ^ P2 ⇠ P3)) P1 < P3 (11)

(P1 ⇠ P2 ^ P2 6S P3) _ (P1 6S P2 ^ P2 ⇠ P3)) P1 6S P3 . (12)

And, third, we can see how 6S can be combined with > and <:

(P1 6S P2 ^ P2 > P3) _ (P1 > P2 ^ P2 6S P3)) P1 > P3 _ P1 6S P3 (13)

(P1 6S P2 ^ P2 < P3) _ (P1 < P2 ^ P2 6S P3)) P1 < P3 _ P1 6S P3 . (14)

A.3.4 Properties of ⇠, >, <, 6S, ., and &.

Lemma 1. When . is a preorder, ⇠ is reflexive.

Proof. This results from the reflexivity of . and from Eq. (1): P ⇠ P , P . P ^ P . P , true.

Lemma 2. When . is a preorder, ⇠ in transitive.

Proof. This results from the transitivity of . (cf . Eq. (7)).

Lemma 3. When . is a preorder, ⇠ is symmetric.

Proof. This results from the fact that the conjunction is symmetric and from Eq. (1): P1 ⇠ P2 , P1 . P2 ^ P2 . P1 ,

P2 . P1 ^ P1 . P2 , P2 ⇠ P1.

Lemma 4. When . is a preorder, > and < are converse.

Proof. This results from the fact that the conjunction is symmetric and from Eqs. (2) and (3): P1 > P2 , P1 6. P2 ^ P2 .
P1 , P2 . P1 ^ P1 6. P2 , P2 < P1.

Lemma 5. When . is a preorder, > and < are irreflexive.

Proof. For >, this results from the reflexivity of . and from Eq. (2): P > P , P 6. P ^P . P , false^ true = false.
For <, the proof is similar.

Lemma 6. When . is a preorder, > and < are asymmetric.

Proof. For >, this is because P1 > P2 ^ P2 > P1 , (P1 6. P2 ^ P2 . P1) ^ (P2 6. P1 ^ P1 . P2), (P1 6. P2 ^ P1 .
P2) ^ (P2 6. P1 ^ P2 . P1), false ^ false, false. For <, the proof is similar.



Lemma 7. When . is a preorder, > and < are transitive.

Proof. This results from the transitivity of . (cf . Eqs. (8) and (9)).

Lemma 8. When . is a preorder, 6S is irreflexive.

Proof. This results from the reflexivity of . and from Eq. (4): P 6S P , P 6. P ^P 6. P , false^ false, false.

Lemma 9. When . is a preorder, 6S is symmetric.

Proof. This results from the fact that the conjunction is symmetric and from Eq. (4): P1 6S P2 , P1 6. P2 ^ P2 6. P1 ,

P2 6. P1 ^ P1 6. P2 , P2 6S P1.

Lemma 10. When . is a preorder, . and & are converse.

Proof. From Eqs. (5) and (6), as > and < are converse, we have P1 & P2 , P1 > P2 _P1 ⇠ P2 , P2 < P1 _P2 ⇠ P1 ,

P2 . P1.

Lemma 11. When . is a preorder, . and & are reflexive.

Proof. For ., it is by definition of preorders. For &, from Eqs. (1), (2) and (6), we have P & P , P > P _ P ⇠ P ,
(P 6. P ^ P . P ) _ (P . P ^ P . P ), (false ^ true) _ (true ^ true), true.

Lemma 12. When . is a preorder, . and & are transitive.

Proof. For ., it is by definition of preorders. For &, as . and & are converse, P1 & P2 ^ P2 & P3 , P3 . P2 ^ P2 .
P1 ) P3 . P1 , P1 & P3.



A.4. Supplementary Material about Sec. 3.6
A.4.1 The Visual Inspection of Formulas, to Determine the Importance given by Scores, can be Misleading!

Let us consider the example of two-class classification, with P ({tn}), P ({fp}), P ({fn}), and P ({tp}) denoting, respec-
tively, the probability (or proportion) of true negatives, false positives, false negatives, and true positives. Here are two
classical scores, the accuracy and the true positive rate:

A = P ({tn}) + P ({tp}) TPR =
P ({tp})

P ({fn}) + P ({tp})

The formula for the accuracy gives the illusion that the same importance is given to {tn} and {tp} and that no importance
at all is given to {fp} and {fn}. For the true positive rate, the formula might give the impression that the same importance
is given to {fn} and {tp} and that no importance at all is given to {tn} and {fp}. In fact, the visual inspection of formulas
like these is not reliable at all to judge the importance given by a score to the various events. To see it, consider rewriting the
previous equations as

A = (1� ↵)P ({tn})� ↵P ({fp})� ↵P ({fn}) + (1� ↵)P ({tp}) + ↵ 8↵

TPR =
�↵P ({tn})� ↵P ({fp})� ↵P ({fn}) + (1� ↵)P ({tp}) + ↵

��P ({tn})� �P ({fp}) + (1� �)P ({fn}) + (1� �)P ({tp}) + �
8↵,�

A visual inspection of such formulas would lead, indeed, to other illusions about the events that have no importance. This
observation, however, should not stop us from thinking in terms of importance. In fact, we do it in this paper, but we do it in
a mathematical framework that allows to do it rigorously.

A.4.2 So, How can we Determine the Importance given by Scores?

One cannot determine the application-specific preferences implicitly considered by any score X . However, one can determine
those that are consistent, or have the best consistency, with X . We detail these notions hereafter.

For a given set of performances. Consider a score X and a ranking score RI . If, for a given set ⇧ ✓ P(⌦,⌃), the scores
X and RI are linked by a strict monotonic relationship on ⇧ \ dom(X) \ dom(RI) and if ⇧ \ dom(X) = ⇧ \ dom(RI),
then the performance orderings .X and .RI (induced by X and RI in the way specified in Theorem 1) are identical on ⇧.
We say that the score X is consistent with the application-specific preferences I , on this set. A score can be consistent with
different importance values (e.g., as consequence of Properties 3 and 4).

For a given distribution of performances. Let P̊ = {P 2 P(⌦,⌃) : P ({!}) > 08! 2 ⌦)}. All ranking scores are defined
on this set. Consider a score X and the set ⇧ = dom(X) \ P̊. We say that the score X has the best consistency with the
application-specific preferences I when I maximizes the rank correlation between X and RI , on ⇧, for the given distribution
of performances. See Appendix A.7.2 for computational details.



A.5. Supplementary Material about Sec. 4.2
A.5.1 Proof of Theorem 1.

For convenience, we provide a reminder of Theorem 1 and Axiom 1 below.

Theorem 1 (Sufficient condition for Axiom 1). A binary relation .X on P(⌦,⌃) induced by a score X as P1 .X P2 iif
either P1 = P2 or P1 2 dom(X) and P2 2 dom(X) and X(P1)  X(P2), is a preorder satisfying Axiom 1.

Axiom 1. The ranking function rankE : E ! [1, |E|] : ✏ 7! rankE(✏) satisfies |{✏0 2 E : eval(✏) < eval(✏0)}| + 1 
rankE(✏)  |{✏0 2 E : eval(✏) . eval(✏0)}|, where . is a preorder on P(⌦,⌃).

Proof. To establish that .X is a preorder, we have to show that it is (1) reflexive and (2) transitive.
(1) The reflexivity of .X is trivial to establish, since P1 = P2 ) P1 .X P2.
(2) The transitivity of .X can be shown as follows. P1 .X P2 ^ P2 .X P3 implies that:

• either P1 2 dom(X), P2 2 dom(X), P3 2 dom(X), and X(P1)  X(P2)^X(P2)  X(P3)) X(P1)  X(P3))
P1 .X P3;

• or P1 62 dom(X), P2 62 dom(X), P3 62 dom(X), and P1 = P2 ^ P2 = P3 ) P1 = P3 ) P1 .X P3.
We conclude that, in all cases, P .X P and P1 .X P2 ^P2 .X P3 ) P1 .X P3. The orderings .X induced by scores X
are thus preorders.

Summary. If the homogeneous binary relations ⇠, >, <, and 6S on P(⌦,⌃) are derived from the ordering .X as explained
above, and if the .X is derived from the score X , then the comparison between performances P1 and P2 can be summarized
as follows.

P1 2 dom(X) P1 62 dom(X)

P2 2 dom(X)

X(P1) < X(P2), P1 < P2

X(P1) = X(P2), P1 ⇠ P2

X(P1) > X(P2), P1 > P2

P1 6S P2

P2 62 dom(X) P1 6S P2

P1 = P2 , P1 ⇠ P2

P1 6= P2 , P1 6S P2

A.5.2 Proof of Theorem 2

For convenience, we provide a reminder of Theorem 2 and Axiom 2 below.

Theorem 2 (Sufficient condition for Axiom 2). If a score X satisfies min!2E S(!)  X(P )  max!2E S(!) for all events
E 2 ⌃ and all performances P 2 dom(X) such that P (E) = 1, then the ordering .X satisfies Axiom 2.

Axiom 2. For P1, P2 2 P(⌦,⌃) such that P1(S  s) = 1 and P2(S � s) = 1 for some s, then P1 . P2 or P1 6S P2.

Proof. Axiom 2 is satisfied when P1 62 dom(X) or P2 62 dom(X).
• Either P1 = P2 , P1 ⇠ P2 ) P1 . P2,
• or P1 6= P2 , P1 6S P2.
Axiom 2 is also satisfied when P1 2 dom(X) and P2 2 dom(X).
• On the one hand, the axiom stipulates that the event E1 = {! 2 ⌦ : S(!)  s} and the performance P1 are such that
P1(E1) = 1. Trivially, we have max!2E1 S(!)  s. On the other hand, the theorem stipulates that, as P1(E1) = 1,
X(P1)  max!2E1 S(!). Putting all together, we have X(P1)  s.

• On the one hand, the axiom stipulates that the event E2 = {! 2 ⌦ : S(!) � s} and the performance P2 are such that
P2(E2) = 1. Trivially, we have s  min!2E2 S(!). On the other hand, the theorem stipulates that, as P2(E2) = 1,
min!2E2 S(!)  X(P2). Putting all together, we have s  X(P2).

• As we have established that X(P1)  s and s  X(P2), we have X(P1)  X(P2), P1 . P2.



A.5.3 Proof of Theorem 3

For convenience, we provide a reminder of Theorem 3 and Axiom 3 below.

Theorem 3 (Sufficient condition for Axiom 3). If a score X is such that ⇧ ✓ dom(X) ) �(⇧) ✓ dom(X) and
minP2⇧ X(P )  X(P )  maxP2⇧ X(P ) for all ⇧ ✓ dom(X) and all P 2 �(⇧), then the ordering .X satisfies
Axiom 3.

Axiom 3. Let P be a performance, and ⇧ be a set of performances on P(⌦,⌃) such that P 0 . P _ P . P 0
8P 0
2 ⇧.

• P 0 . P 8P 0
2 ⇧) P . P 8P 2 �(⇧);

• P 0
6. P 8P 0

2 ⇧) P 6. P 8P 2 �(⇧);
• P . P 0

8P 0
2 ⇧) P . P 8P 2 �(⇧);

• and P 6. P 0
8P 0
2 ⇧) P 6. P 8P 2 �(⇧).

Proof. We take .=.X and ⇧ 6= ;.
Remainder of the conditions. The first condition of Theorem 3 is:

⇧ ✓ dom(X)) �(⇧) ✓ dom(X) . (15)

The second condition of Theorem 3 is:

min
P2⇧

X(P )  X(P )  max
P2⇧

X(P ) 8⇧ ✓ dom(X) 8P 2 �(⇧) . (16)

The condition of Axiom 3 is that P is comparable to all performances in the set ⇧:

P 0 . P _ P . P 0
8P 0

2 ⇧ . (17)

On the domain of X . By Theorem 1, this last condition implies that

P 2 dom(X) , (18)

and
⇧ ✓ dom(X) . (19)

Taking Eq. (15) and Eq. (19) together, we have

�(⇧) ✓ dom(X) , P 2 dom(X) 8P 2 �(⇧) . (20)

Proof that P 0 . P 8P 0
2 ⇧) P . P 8P 2 �(⇧). On the one hand, we have, by Theorem 1,

P 0 . P 8P 0
2 ⇧,X(P 0)  X(P ) 8P 0

2 ⇧

,max
P 02⇧

X(P 0)  X(P ) .

On the other hand, Eq. (16) implies that

X(P )  max
P 02⇧

X(P 0) 8P 2 �(⇧) .

Considering the last two equations together, we obtain

X(P )  max
P 02⇧

X(P 0)  X(P ) 8P 2 �(⇧)

)X(P )  X(P ) 8P 2 �(⇧) .

By Theorem 1, we have thus P . P .
Proof that P 0

6. P 8P 0
2 ⇧) P 6. P 8P 2 �(⇧). On the one hand, we have, by Eq. (17) and Theorem 1,

P 0
6. P 8P 0

2 ⇧)P < P 0
8P 0

2 ⇧

,X(P ) < X(P 0) 8P 0
2 ⇧

,X(P ) < min
P 02⇧

X(P 0)



On the other hand, Eq. (16) implies that

min
P 02⇧

X(P 0)  X(P ) 8P 2 �(⇧)

Considering the last two equations together, we obtain

X(P ) < min
P 02⇧

X(P 0)  X(P ) 8P 2 �(⇧)

)X(P ) < X(P ) 8P 2 �(⇧) .

By Theorem 1, we have thus P < P , and by Eq. (17), P 6. P .
Proof that P . P 0

8P 0
2 ⇧) P . P 8P 2 �(⇧). On the one hand, we have, by Theorem 1,

P . P 0
8P 0
2 ⇧,X(P )  X(P 0) 8P 0

2 ⇧

,X(P )  min
P 02⇧

X(P 0) .

On the other hand, Eq. (16) implies that

min
P 02⇧

X(P 0)  X(P ) 8P 2 �(⇧) .

Considering the last two equations together, we obtain

X(P )  min
P 02⇧

X(P 0)  X(P ) 8P 2 �(⇧)

)X(P )  X(P ) 8P 2 �(⇧) .

By Theorem 1, we have thus P . P .
Proof that P 6. P 0

8P 0
2 ⇧) P 6. P 8P 2 �(⇧). On the one hand, we have, by Eq. (17) and Theorem 1,

P 6. P 0
8P 0

2 ⇧)P 0 < P 8P 0
2 ⇧

,X(P 0) < X(P ) 8P 0
2 ⇧

,max
P 02⇧

X(P 0) < X(P )

On the other hand, Eq. (16) implies that

X(P )  max
P 02⇧

X(P 0) 8P 2 �(⇧)

Considering the last two equations together, we obtain

X(P )  max
P 02⇧

X(P 0) < X(P ) 8P 2 �(⇧)

)X(P ) < X(P ) 8P 2 �(⇧) .

By Theorem 1, we have thus P < P , and by Eq. (17), P 6. P .



A.6. Supplementary Material about Sec. 4.3

A.6.1 All Ranking Scores can be Used to Rank Performances (for � = conv)

To show that all ranking scores can be used to rank performances, for � = conv, we show that these scores satisfy the
conditions of Theorems 1, 2, and 3.

All ranking scores satisfy the conditions of Theorem 1, and thus Axiom 1. For convenience, we provide a reminder of
Theorem 1 and Axiom 1 below.

Theorem 1 (Sufficient condition for Axiom 1). A binary relation .X on P(⌦,⌃) induced by a score X as P1 .X P2 iif
either P1 = P2 or P1 2 dom(X) and P2 2 dom(X) and X(P1)  X(P2), is a preorder satisfying Axiom 1.

Axiom 1. The ranking function rankE : E ! [1, |E|] : ✏ 7! rankE(✏) satisfies |{✏0 2 E : eval(✏) < eval(✏0)}| + 1 
rankE(✏)  |{✏0 2 E : eval(✏) . eval(✏0)}|, where . is a preorder on P(⌦,⌃).

Theorem 4. All ranking scores satisfy the conditions of Theorem 1.

Proof. For all ranking scores RI , it is possible to induce an ordering .RI satisfying the requirements of Theorem 1.

All ranking scores satisfy the conditions of Theorem 2, and thus Axiom 2. For convenience, we provide a reminder of
Theorem 2 and Axiom 2 below.

Theorem 2 (Sufficient condition for Axiom 2). If a score X satisfies min!2E S(!)  X(P )  max!2E S(!) for all events
E 2 ⌃ and all performances P 2 dom(X) such that P (E) = 1, then the ordering .X satisfies Axiom 2.

Axiom 2. For P1, P2 2 P(⌦,⌃) such that P1(S  s) = 1 and P2(S � s) = 1 for some s, then P1 . P2 or P1 6S P2.

Theorem 5. All ranking scores satisfy the conditions of Theorem 2.

Proof. We take X = RI . When P (E) = 1, we have

RI(P ) =

P
!2⌦ I(!)S(!)P ({!})P

!2⌦ I(!)P ({!})
=

P
!2E I(!)S(!)P ({!})P

!2E I(!)P ({!})

with
P

!2⌦ I(!)P ({!}) > 0 when P 2 dom(RI).
• Let M = max!2E S(!). We have

S(!) M 8! 2 E

,S(!)�M  0 8! 2 E

)

X

!2E

I(!) [S(!)�M ]P ({!})  0 as I(!) � 0 and P ({!}) � 0

,

X

!2E

I(!)S(!)P ({!}) 
X

!2E

I(!)MP ({!})

,

X

!2E

I(!)S(!)P ({!}) M
X

!2E

I(!)P ({!})

| {z }
>0

,

P
!2E I(!)S(!)P ({!})P

!2E I(!)P ({!})
M

,RI(P ) M



• Let m = min!2E S(!). We have

S(!) � m 8! 2 E

,S(!)�m � 0 8! 2 E

)

X

!2E

I(!) [S(!)�m]P ({!}) � 0 as I(!) � 0 and P ({!}) � 0

,

X

!2E

I(!)S(!)P ({!}) �
X

!2E

I(!)mP ({!})

,

X

!2E

I(!)S(!)P ({!}) � m
X

!2E

I(!)P ({!})

| {z }
>0

,

P
!2E I(!)S(!)P ({!})P

!2E I(!)P ({!})
� m

,RI(P ) � m

• Putting all together, when P (E) = 1, we have m  RI(P ) M , and so,

min
!2E

S(!)  RI(P )  max
!2E

S(!) . (21)

All ranking scores satisfy the conditions of Theorem 3, and thus Axiom 3 (for � = conv). For convenience, we provide
a reminder of Theorem 3 and Axiom 3 below.

Theorem 3 (Sufficient condition for Axiom 3). If a score X is such that ⇧ ✓ dom(X) ) �(⇧) ✓ dom(X) and
minP2⇧ X(P )  X(P )  maxP2⇧ X(P ) for all ⇧ ✓ dom(X) and all P 2 �(⇧), then the ordering .X satisfies
Axiom 3.

Axiom 3. Let P be a performance, and ⇧ be a set of performances on P(⌦,⌃) such that P 0 . P _ P . P 0
8P 0
2 ⇧.

• P 0 . P 8P 0
2 ⇧) P . P 8P 2 �(⇧);

• P 0
6. P 8P 0

2 ⇧) P 6. P 8P 2 �(⇧);
• P . P 0

8P 0
2 ⇧) P . P 8P 2 �(⇧);

• and P 6. P 0
8P 0
2 ⇧) P 6. P 8P 2 �(⇧).

Theorem 6. All ranking scores satisfy the conditions of Theorem 3 (for � = conv).

Proof. The proof is in two parts.
• First, let us show that ⇧ ✓ dom(RI) ) conv(⇧) ✓ dom(RI). For any P 2 conv(⇧) there exists a weighting function
�⇧,P : ⇧! R�0 : P 7! �⇧,P (P ) such that

P
P2⇧ �⇧,P (P ) = 1 and

P
P2⇧ �⇧,P (P )P = P . For all P 2 conv(⇧), we

have:

⇧ ✓ dom(RI),
X

!2⌦

I(!)P ({!}) 6= 0 8P 2 ⇧

)

X

P2⇧

�⇧,P (P )
X

!2⌦

I(!)P ({!}) 6= 0

,

X

!2⌦

I(!)
X

P2⇧

�⇧,PP ({!}) 6= 0

,

X

!2⌦

I(!)P ({!}) 6= 0

, P 2 dom(RI) .



• Second, let us show that, for all P 2 conv(⇧), minP2⇧ RI(P )  RI(P )  maxP2⇧ RI(P ). Let us pose
l = minP2⇧ RI(P ) and u = maxP2⇧ RI(P ). We have:

l  RI(P )  u 8P 2 ⇧

,l 

P
!2⌦ I(!)S(!)P ({!})P

!2⌦ I(!)P ({!})
 u 8P 2 ⇧

,l
X

!2⌦

I(!)P ({!}) 
X

!2⌦

I(!)S(!)P ({!})  u
X

!2⌦

I(!)P ({!}) 8P 2 ⇧

)l
X

!2⌦

I(!)P ({!}) 
X

!2⌦

I(!)S(!)P ({!})  u
X

!2⌦

I(!)P ({!})

,l 

P
!2⌦ I(!)S(!)P ({!})
P

!2⌦ I(!)P ({!})
 u

,l  RI(P )  u

A.6.2 On the Properties of Ranking Scores.

Proof of Property 1. Let us demonstrate that we have RI(P ) = XE
S (P 0) with P 0 = filterI(P ). For all ! 2 ⌦, we have:

P 0({!}) =
P ({!})I(!)P

!02⌦ P ({!0})I(!0)

Thus,

XE
S (P 0) =

X

!2⌦

P 0({!})S(!)

=
X

!2⌦

P ({!})I(!)P
!02⌦ P ({!0})I(!0)

S(!)

=

P
!2⌦ P ({!})I(!)S(!)P
!02⌦ P ({!0})I(!0)

= RI(P )

Proof of Property 2. Let S0 = ↵S + � with ↵,� 2 R.
P

!2⌦ P ({!})S0(!)I(!)P
!2⌦ P ({!})I(!)

= ↵

P
!2⌦ P ({!})S(!)I(!)P

!2⌦ P ({!})I(!)
+ �

Proof of Property 3. RkI =
P

!2⌦ kI(!)S(!)P ({!})P
!2⌦ kI(!)P ({!}) =

P
!2⌦ I(!)S(!)P ({!})P

!2⌦ I(!)P ({!}) = RI

Proof of Property 4. Let us consider a binary satisfaction, that is S(!) 2 {0, 1} 8! 2 ⌦. Let us define the events E0 = {! 2
⌦ : S(!) = 0} and E1 = {! 2 ⌦ : S(!) = 1}. If I 0 = (1S=0↵0 + 1S=1↵1)I with ↵0 > 0 and ↵1 > 0, then

RI(P ) =

P
!2⌦ I(!)S(!)P ({!})P

!2⌦ I(!)P ({!})

=

P
!2E1

I(!)P ({!})
P

!2E0
I(!)P ({!}) +

P
!2E1

I(!)P ({!})



and

RI0(P ) =

P
!2⌦ I 0(!)S(!)P ({!})P

!2⌦ I 0(!)P ({!})

=

P
!2E1

I 0(!)P ({!})
P

!2E0
I 0(!)P ({!}) +

P
!2E1

I 0(!)P ({!})

=

P
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↵1I(!)P ({!})
P
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↵0I(!)P ({!}) +
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↵1I(!)P ({!})

=
↵1

P
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I(!)P ({!})
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P

!2E0
I(!)P ({!}) + ↵1

P
!2E1

I(!)P ({!})

Thus, RI0 = ↵1RI
↵0(1�RI)↵1RI

and @RI0
@RI

= ↵0↵1

(↵0(1�RI)↵1RI)
2 > 0. This leads immediately to the conclusion that .RI0=.RI .

Proof of Properties 5 and 6. Let us consider a binary satisfaction and the events E0 = {! 2 ⌦ : S(!) = 0} and E1 = {! 2
⌦ : S(!) = 1}. Let I1 and I2 be two random variables and I = �1I1 + �2I2 with �1,�2 2 R such that �1 + �2 = 1.
• When the random variables I1 and I2 are such that I1(!) = I2(!) = I(!) 8! 2 E1, if we take f : x 7! x�1,

�1f (RI1(P )) + �2f (RI1(P ))
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• When the random variables I1 and I2 are such that I1(!) = I2(!) = I(!) 8! 2 E0, if we take f : x 7! (1� x)�1,

�1f (RI1(P )) + �2f (RI1(P ))
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Proof of Property 7. Let R 2 {<,,=,�, >} and v = RI(P ). For all P 0
2 P(⌦,⌃), we have:

RI(P
0)RRI(P ) (22)

,RI(P
0)Rv (23)

,

P
!2⌦ I(!)S(!)P 0({!})P

!2⌦ I(!)P 0({!})
Rv (24)

,

"
X

!2⌦

I(!)S(!)P 0({!})

#
R

"
v
X

!2⌦

I(!)P 0({!})

#
(25)

,

X

!2⌦

I(!) [S(!)� v]P 0({!})R0 (26)

This is either a linear equality or a linear inequality constraint. Thus,

�R(P ) =
�
P 0
2 P(⌦,⌃) : RI(P

0)RRI(P )
 

(27)

=

(
P 0
2 P(⌦,⌃) :

X

!2⌦

I(!) [S(!)� v]P 0({!})R0

)
(28)

is a convex subset of P(⌦,⌃).
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Classical formulation

C = {c�, c+}

(y, ŷ) 2 C2

tn = (c�, c�) fp = (c�, c+)

fn = (c+, c�) tp = (c+, c+)

⌦ = C2

S = 1Y=Ŷ

�������������������!

 �������������������

Y : ⌦! C Ŷ : ⌦! C

! = (Y (!), Ŷ (!)) 8! 2 ⌦

'

&

$

%

Our formulation

⌦ = {tn, fp, fn, tp}

⌃ = 2⌦

S(fp) = S(fn) = 0

S(tn) = S(tp) = 1

Figure A.7.1. Passages between two formulations (left: classical, right: ours) for the performance analysis of two-class classification
problems.

A.7. Supplementary Material about Sec. 5.2
A.7.1 Link between Classical Formulation and Ours.

Fig. A.7.1 shows the connections between the classical formulation of the two-class classification task and our formulation,
as explained in Sec. 5.

A.7.2 Custom Optimization Algorithm to Estimate Kendall’s ⌧ .

For any score X , our algorithm aims at determining the minimum and maximum values that a rank correlation between X
and our ranking scores RI can take over all possible importances I . Note that this algorithm is not specific to Kendall’s ⌧ [13]
and could also be used with any other rank correlation, for example Spearman’s ⇢ [23].

Variables. Leveraging Properties 3 and 4, we know that the rank-correlation between X and a ranking score RI1 is equal
to the rank-correlation between X and another ranking score RI2 if I1(tp)

I1(tn)+I1(tp)
= I2(tp)

I2(tn)+I2(tp)
and I1(fn)

I1(fp)+I1(fn)
=

I2(fn)
I2(fp)+I2(fn)

. For this reason, we consider only two variables: a = I(tp)
I(tn)+I(tp) 2 [0, 1] and b = I(fn)

I(fp)+I(fn) 2 [0, 1].

Objective function. We optimize the function ⌧(a, b) that gives the rank correlation between X and RI⇤ with I⇤(tp) = 1�a,
I⇤(tp) = 1 � b, I⇤(tp) = b, and I⇤(tp) = a. In practice, this is an estimation based on a finite set of performances
on which X and RI⇤ are applied. Note that ⌧(a, b) is not a continuous function when estimated on a finite set of
performances. The chosen optimization technique circumvents the difficulties related to that.

Optimization technique. We implemented a custom coarse-to-fine grid-based direct search [5]: we compute ⌧(a, b) on a
coarse grid over the unit square, locate the maximum on the grid, center a smaller square and a finer grid around that
point, and iterate until the square is small enough.

A.7.3 Scores Perfectly Correlated with a Ranking Score, for all Performances

• The accuracy: A = RI with I(tn) = 1/2, I(fp) = 1/2, I(fn) = 1/2, and I(tp) = 1/2.
• The F-score with � = 0.5: F0.5 = RI with I(tn) = 0, I(fp) = 4/5, I(fn) = 1/5, and I(tp) = 1.
• The F-score with � = 1.0: F1 = RI with I(tn) = 0, I(fp) = 1/2, I(fn) = 1/2, and I(tp) = 1.
• The F-score with � = 2.0: F2 = RI with I(tn) = 0, I(fp) = 1/5, I(fn) = 4/5, and I(tp) = 1.
• The negative predictive value: NPV = RI with I(tn) = 1, I(fp) = 0, I(fn) = 1, and I(tp) = 0.
• The positive predictive value: PPV = RI with I(tn) = 0, I(fp) = 1, I(fn) = 0, and I(tp) = 1.
• The true negative rate: TNR = RI with I(tn) = 1, I(fp) = 1, I(fn) = 0, and I(tp) = 0.
• The true positive rate: TPR = RI with I(tn) = 0, I(fp) = 0, I(fn) = 1, and I(tp) = 1.

A.7.4 Scores Perfectly Correlated with a Ranking Score, for the Performances Corresponding to Given Class Priors
⇡� 6= 0 and ⇡+ 6= 0

• The balanced accuracy: BA = RI with I(tn) = ⇡+, I(fp) = ⇡+, I(fn) = ⇡�, and I(tp) = ⇡�.
• Cohen’s kappa:  = RI�2⇡�⇡+

⇡2
�+⇡2

+
with I(tn) =

⇡2
+

⇡2
�+⇡2

+
, I(fp) = 1

2 , I(fn) = 1
2 , and I(tp) =

⇡2
�

⇡2
�+⇡2

+
. Thus, @

RI
> 0.



• The informedness (a.k.a. Youden’s J): JY = 2RI � 1 with I(tn) = ⇡+, I(fp) = ⇡+, I(fn) = ⇡�, and I(tp) = ⇡�.
Thus, @JY

RI
> 0.

• The negative likelihood ratio: NLR = 1�RI
RI

with I(tn) = 1, I(fp) = 0, I(fn) = 1, and I(tp) = 0. Thus, @NLR
RI

< 0.
• The positive likelihood ratio: PLR = RI

1�RI
with I(tn) = 0, I(fp) = 1, I(fn) = 0, and I(tp) = 1. Thus, @PLR

RI
> 0.

• The probability of the elementary event true negative: PTN = ⇡�RI with I(tn) = 1, I(fp) = 1, I(fn) = 0, and
I(tp) = 0. Thus, @PTN

RI
> 0.

• The probability of the elementary event true positive: PTP = ⇡+RI with I(tn) = 0, I(fp) = 0, I(fn) = 1, and
I(tp) = 1. Thus, @PTP

RI
> 0.
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