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In this supplementary material, first in Sec. A, we pro-
vide additional explanations with regard to the contrastive
losses, the optimal transport association procedure, and the
volumetric feature encoding. In Sec. B, we detail the train-
ing and visual localization parameters. We also provide
a pseudo-algorithm describing training in Alg. 1. Then,
in Sec. C, we provide visual localization results on the
12Scenes dataset with ablation studies and in Appendix D
we present a privacy attack experiment. Finally, in Sec. E
we display more visualizations of rendered segmentation,
while commenting on the attached supplementary videos.

A. Technical details of GSFFs
A.1. Contrastive losses and regularization terms

Here we provide more details regarding the derivation of the
losses in Sec. 3.1 of the main paper. We recall that our is
training the model in a self-supervised manner to align the
feature maps F3D and F2D. Therefore, during training at
each step we sample N pixels in these maps to be aligned.
Let us denote the N corresponding pairs of pixel aligned
extracted/rendered features by {F2D

n ,F3D
n }Nn=1. The con-

trastive loss has two terms. The first one is a term enforcing
similarity of 2D extracted features with regard to 3D ren-
dered features, and the second term is enforcing similarity
of the 2D rendered features with regard to 3D extracted fea-
tures:
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From this we can derive Eq. 2 in the main paper, where the
normalization factor A is:
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Similarly, the prototypical contrastive loss has a term en-
forcing the similarity between 2D extracted features and the
associated prototypes, and a second term enforcing similar-
ity between 3D rendered features and the associated proto-
types:
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which simplifies to Eq. 3 with the normalization factor:
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A.2. Optimal transport (OT) associations

In this section, we detail the optimal transport associa-
tion step from Sec. 3.2 of the main paper. Given a batch
of N pairs of pixel aligned extracted/rendered features
{F2D

n ,F3D
n }Nn=1 and a set of K prototypes P ∈ IRK×D, we

aim at associating a prototype per pair of pixel aligned fea-
tures. We want this association operation to respect two cri-
teria: 1) A single prototype must be associated per pair of
features so that the extracted/rendered features are pushed
toward the same ”class” in the feature space. 2) Predictions
must be as balanced as possible to avoid collapse.
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Data: M posed training images, K target number of classes and a total number of training iterations Niter
Build SfM and pretrain a GoF [15] with the training images
Apply spectral clustering on the set of 3D Gaussian centers to initialize the spatial prototypes {pk}Kk=1

Then, to train the GSFFs, iterate:
for iter in range(Niter) do

Sample a random image I and viewpoint P
Extract 2D image-based features F2D and segmentation map S2D

For each 3D Gaussian Gi, extract a scale aware volumetric feature gi from the triplane using the covariance
kernel based encoding (cf. Sec. 3.1)

Assign a 3D segmentation label si to each 3D Gaussian Gi based on volumetric feature/prototypes similarities (cf.
Sec. 4)

From the pose P rasterize 3D segmentation labels and volumetric features to obtain S3D and F3D

Sample a novel viewpoint P̂ , find correspondences between image I and Î (cf. Sec. 3.2).
Render 3D features/segmentation maps from P̂ and replace features/segmentation in F3D, S3D with F̂3D, Ŝ3D at

correspondence location
Repeat the replacements process for 2D features/segmentations
Compute the contrastive loss LNCE from F2D and F3D

Associate a prototype pk to each pair {F2D
i , F3D

i } using the OT labeling procedure (cf. Appendix A.2)
Compute LPRO, LCE from these associations as well as from F2D, F3D, S2D, S3D (cf. Sec. 3.2)
Compute regularization losses LTV L, LDepth and photometric loss LPHO from the rendered image
Jointly update the image encoder, the triplane field and 3D Gaussians by minimizing
L = LPHO + .5LNCE + .5LPRO + .5LCE + .1LTV L + 0.05LDepth

Update the prototypes pk with an EMA scheme based on volumetric features gi and the spectral clustering
assignments

end
Algorithm 1: Pseudo algorithm describing the training process of GSFFs.

To solve these constraints, we resort to using optimal
transport, where we frame this problem as finding a map-
ping Q ∈ IRN×K between pixels and prototypes that max-
imizes the feature similarity between the pairs of features
and the prototypes. We define the joint feature/prototypes
similarities S ∈ IRK×N as:

Skn = exp
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We introduce the following objective where Q maximizes
the joint feature/prototypes similarities S:

maxQ∈U( 1
N , 1

K ) Tr(Q(−logS)t) + λh(Q) ,

where the entropy term h(Q) encourages balanced pre-
dictions while using joint extracted/rendered feature proto-
types similarities yields a single association per feature pair.
If we relax Q such that it belongs to the transportation poly-
tope U( 1

N , 1
K ) [3], Q can be efficiently computed with the

iterative Sinkhorn-Knopp algorithm [3]. The final associa-
tions Γ∈ IRN are obtained with Γ=argmaxk(Q).

A.3. Projecting 3D Gaussians onto the Triplane

In this subsection, we explain how a volumetric feature for
each 3D Gaussian is derived from the triplane grid (Sec. 3.1

of the main paper). The triplane grid is centered at the origin
of the world coordinate space and it is composed of three or-
thogonal 2D planes Hxy, Hxz, Hyz ∈ IRD×R×R, D being
the triplane feature dimension and R the resolution of the
grid. We project each 3D Gaussian Gi onto these planes
and derive three Gaussian kernels Gxy

i ,Gxz
i ,Gyz

i from the
projections, which we use to obtain scale aware volumetric
features g3Di .

To obtain the xy feature, we proceed as follows (xz and
yz features are obtained similarly). Let mi by the center of
Gi and Σi its covariance matrix. We first project the center
on the plane yielding mxy

i . We perform orthographic pro-
jection of the covariance matrix to obtain Σxy

i . We define a
grid of dimension 5 by 5 centered on mxy

i . On the plane xy,
we use the coordinates of the points in the grid u to define
the following Gaussian kernel:

Gxy
i (u) = 1

z exp(−
u(Σxy

i )−1ut

2 ) ,

where Z is a normalization constant. We query the fea-
ture plane Hxy for each point uk in the grid and apply the
Gaussian kernel on the queried features. This yields a D-
dimensional feature gxyi associated to Gxy

i . We repeat this
operation for Hxz,Gxz

i and Hyz,Gyz
i . The resulting fea-

tures gxy
i , gxzi , gyz

i are summed to obtain the volumetric fea-
ture g3D

i of Gi.



B. Implementation details
B.1. Additional training details

Similar to GoF [15], densification and pruning operations
based on image space gradients are applied until iteration
15000. The densification interval is set to 600 iterations un-
til iteration 7500, and reduced to 400 iterations afterward.
To facilitate the convergence of the 3D Gaussian model,
we train on images downscaled by a factor 4 until iteration
7500. From iteration 15000, the geometric regularization
losses from [15] are applied until the end of the training.
The triplane learning rate is set to 7e-3, while the encoder
learning rate is set to 1e-4. The learning rates for 3D Gaus-
sian primitives are identical to GoF [15].

GSFFs is optimized with the Adam optimizer [4]. The
prototypes are updated based on an exponential moving av-
erage (EMA) scheme with α = 0.9995 after each training
iteration. The temperature τ for the contrastive losses is
set to 0.05. In the Multi-view consistency paragraph from
Sec. 3.2, the pixel reprojection threshold is set to 2 for the
fine level, and to 4 for the coarse level. The coarse encoder
uses a Dinov2 [6] pretrained backbone , followed by projec-
tion convolutional layers (convolutional layer with kernel
size 1 to reduce the dimension, while maintaining the reso-
lution) and a ConvNeXt block [5]. The fine encoder is com-
posed of a shallow convolutional layers followed by a Con-
vNeXt block [5]. The segmentation heads contain convo-
lutional layers with ReLU activations and GroupNorm [14]
normalization.

We provide in Alg. 1 the pseudo algorithm describing the
training process of the GSFFs.

B.2. Data pre-processing

To reduce running time and the memory footprint, images
are rescaled such that image width is 1024 pixels for Cam-
bridge Landmarks and 480 pixels for Indoor6. The original
image resolution of 640 by 480 pixels is used on 7Scenes.
During visual localization, we use the same image resolu-
tion as the one used during training.

Cambridge Landmarks and Indoor6 contain images with
illumination changes, as such we learn an embedding per
training image to capture these illumination changes dur-
ing the training. These embeddings are only used during
training to learn the scene representation. On Cambridge
Landmarks during training, we mask out the sky and pedes-
trians. The masks are extracted using the semantic segmen-
tation model from [9]. As Indoor6 contain day/night im-
ages with extreme illumination changes we further apply
CLAHE normalization on images.

B.3. Visual localization setup

For the pose refinement, we use the Adam optimizer [4]
with coarse/fine learning rates of 0.5/0.2 on Cambridge

N Classes KingsCollege OldHospital ShopFacade StMarysChurch

FP

34 0.034 0.032 0.024 0.028
84 0.046 0.043 0.027 0.031

B
P 34 0.065 0.065 0.071 0.076

84 0.462 0.401 0287 0.392

Table 1. Computation time (s) for a forward pass FP (rendering)
and a backward pass BP (pose optimization) on Cambridge Land-
mark for GSFFs trained with 34 classes and 84 classes.

Training KC OH SF SMC
time (h) PSNR / SSIM / LPIPS

GoF [81] 0.7 16.95/0.69/0.27 16.98/0.63/0.30 20.04/0.74/0.21 18.49/0.71/0.25
GSFFs 10.8 16.92/0.69/0.27 16.94/0.61/0.30 20.02/0.74/0.21 18.47/0.71/0.26

Table 2. Evaluating novel view rendering.

Landmarks, 0.3/0.2 on Indoor6, and 0.2/0.1 on 7Scenes re-
spectively. The number of refinement steps for the coarse
and fine level is set to 150/300 on Cambridge Landmarks
and Indoor6, and 75/150 on 7Scenes. Rendered areas with
high distortion (see [15] for the definition of distortion)
are masked out during refinement. Additionally, the sky is
masked out on Cambridge Landmarks.

B.4. Training time and rendering quality

In Tab. 2 we report novel view rendering quality evaluated
with PSNR, SSIM [13] and LPIPS [18] image metrics as
well as the corresponding model training time for the Cam-
bridge Landmark scenes. From these results in Tab. 2, we
observe that GSFFs-Feature, compared to GoF [15], adds
computational overhead (the cost of training the feature
fields), but it does not decrease the novel view synthesis
quality. Note that GSFFs-Privacy cannot render RGB im-
ages for privacy reasons.

We also provide rendering time and backward pass time
for the pose optimization in Tab. 1 for 34 and for 84 classes.
We can observe that while the forward pass is only slightly
increased, the cost of backward pass increases significantly
with the increase the number of classes. Globally, through
our experiments, we found that in general using 34 classes
is a good compromise between rendering speed and pose
accuracy (see the accuracies in Tab. 4 in the main paper and
Tab. 1 for the training times).

C. Additional Localization Experiments
C.1. 12Scenes Dataset

In Tab. C.1, we report localization results on the 12Scenes
[12] dataset for both the SfM pseudo ground truth (pGT)
and the DSLAM pGT. We compare our GSFFs-Feature
model against three non privacy preserving feature render-
ing based-approaches methods NeRF-SCR [2], PNeRFLoc
[19], NeuraLoc [17] and GSPlatloc [16]. GSFFs is more
accurate than all baselines and clearly outperforms the ren-
dering based-approaches [2, 19], while providing accuracy



Model kitchen living bed kitchen living luke gates362 gates381 lounge manolis office2 5a office2 5b
GSFFs-PR Feature (34 Classes) (NV) 0.3/0.2/99 0.3/0.18/100 0.4/0.17/100 0.7/0.42/91 0.4/0.21/96 0.6/0.27/97 0.5/0.23/100 0.5/0.27/99 0.8/0.29/97 0.5/0.22/99 0.9/0.41/99 1.1/0.41/94
GSFFs-PR Privacy (34 Classes) (NV) 0.6/0.32/97 0.6/0.29/100 0.5/0.23/100 0.9/0.51/75 0.7/0.30/99 0.8/0.30/96 0.8/0.31/98 0.7/0.36/98 1.6/0.54/91 0.7/0.31/97 1.3/0.65/95 1.8/0.83/69
NeRF-SCR [2] 0.9/0.5 2.1/0.6 1.6/0.7 1.2/0.5 2.0/0.8 2.6/1.0 2.0/0.8 2.7/1.2 1.8/0.6 1.6/0.7 2.5/0.9 2.6/0.8
PNeRFLoc [19] 1.0/0.6 1.5/0.5 1.2/0.5 0.8/0.4 1.4/0.5 8.1/3.3 1.6/0.7 8.7/3.2 2.3/0.8 1.1/0.5 X 2.8/0.9
GSPlatloc [16] 0.8/0.4 1.1/0.4 1.2/0.5 1.0/0.5 1.2/0.5 1.5/0.6 1.1/0.5 1.2/0.5 1.6/0.5 1.1/0.5 1.4/0.6 1.5/0.5
NeuraLoc [17] 0.9/0.5 1.1/0.4 1.3/0.6 1.0/0.6 1.2/0.5 1.4/0.7 1.1/0.5 1.1/0.5 1.7/0.6 1.0/0.5 1.3/0.6 1.5/0.5
GSFFs-PR Feature (34 Classes) (NV) 0.7/0.4 1.1/0.4 1.1/0.4 0.8/0.4 1.0/0.5 1.3/0.5 1.1/0.4 1.2/0.5 1.4/0.5 0.8/0.4 1.2/0.5 1.7/0.6

Table 3. Localization results on 12Scenes (SfM pGT top rows / DSlam pGT bottom rows). Median pose error (cm.) (↓)/ Median angle
error (°) (↓)/ Recall at 5cm/5° (%) (↑).

improvement compared to [16, 17] on most of the scenes.

C.2. Varying the number of segmentation classes

In this section, we study the influence of the num-
ber of classes/prototypes on both the feature- and the
segmentation-based variants of our approach. All experi-
ments in the main paper use a feature dimension of 16 with
34 segmentation classes. As we render both features and
segmentations in the same variable (each channel is inde-
pendently rendered), we compile the rasterizer with a fixed
rendering dimension of 50 (16 + 34) yielding a good com-
promise between rendering speed and discriminative power.

In this ablation, we maintain a feature dimension of 16
and vary the number of classes. We compile the rasterizer
with a map dimension of 100 and then train and evaluate
GSFFs-PR with 84 classes, 59 classes, and 15 classes. In
Fig. 1, we plot the median translation and rotation errors
on Cambridge Landmarks against the number of classes of
each model. In Tab. 4 (main paper) we compare 34 classes
versus 84 on the Indoor 6 dataset). From these results, we
derive the following observations. Using only a few classes
is not sufficient because the lack of discriminative power.
Increasing the number of classes first yields a significant
gain, however above a certain limit we observe a drop in
accuracy. We suspect that the reason is over-clustering and
hence more difficulty for the representation to converge dur-
ing the training. Overall, the number of classes must be high
enough to make the segmentation discriminative enough for
localization, but not too high to ensure the convergence.
Naturally, larger scenes with diverse viewpoints will require
more classes, while for simpler scenes it is better to consider
less classes.

Furthermore, we can see from Tab. 4 (main paper) that
GSFFs-PR Feature localization pipeline also benefits from
the increased number of classes as, during training, gra-
dients are backpropagated from segmentation and feature
maps and LPRO implicitly uses the prototypes.

C.3. Effect of the initialization

In Tab. 4 we provide pose refinement results on Cambridge
Landmarks with different initial poses. Note that poses es-
timated with ACE [1] and HLoc [10] are much more accu-
rate than DenseVLAD(DV) [11]. We can observe that, as
expected, improving the initial pose results in higher final

Init. Image Coarse Runtime KC OH SF SMC
Res. Fine Steps Query (s) cm / deg

[64] [64] ? 350 3 27/0.46 20/0.71 5/0.36 16/0.61
[40] Ace 512 x 0.2 25/0.29 26/0.38 5/0.23 13/0.41
DV - - - - 280/5.7 401/7.1 111/7.6 231/8
Vanilla-GS DV 1024 150-300 45 21.9/0.34 22.3/0.42 4.5/0.27 11.8/0.35
GSFFs-PR DV 1024 150-300 45 17.9/0.27 21.4/0.41 4.1/0.26 10.4/0.30
GSFFs-PR DV 480 150-300 8.1 19.7/0.27 21.7/0.36 4.7/0.23 8.7/0.29
GSFFs-PR DV 480 50-50 1.8 74.6/1.26 162/2.81 16.4/0.73 90.2/2.68
ACE - - - - 28.0/0.4 31.0/0.6 5.0/0.3 18.0/0.6
GSFFs-PR ACE 1024 150-300 45 16.1/0.22 17.9/0.34 3.9/0.18 7.6/0.23
GSFFs-PR ACE 480 150-300 8.1 17.8/0.22 18.7/0.33 4.7/0.21 8.5/0.25
GSFFs-PR ACE 480 75-150 4 18.2/0.24 21.1/0.35 4.8/0.22 8.5/0.25
GSFFs-PR ACE 480 50-50 1.8 19.1/0.27 25.4/0.49 5.1/0.26 11.1/0.35
GSFFs-PR ACE 480 25-25 0.9 19.8/0.44 25.6/0.66 5.8/0.45 13.2/0.53
Hloc - - - - 11.1/0.20 15.5/0.31 4.4/0.2 7.1/0.24
GSFFs-PR Hloc 1024 0-50 5 10.9/0.18 14.1/0.29 3.9/0.19 6.4/0.21
GSFFs-PR Hloc 480 0-50 0.9 11.0/0.19 14.2/0.30 3.9/0.18 6.4/0.22

Table 4. Varying initialization and image resolution.

GSFFs-PR localization accuracy. It also requires less re-
finement steps to converge. Starting from a wide baseline
such as DenseVlad [11] the model needs more refinement
steps but the optimization ultimately reaches high accuracy
(especially for high resolution images) showing the robust-
ness of GSFFs-PR.

C.4. Varying resolution and refinement steps

In Tab. 4 we also provide results with different coarse/fine
number of refinement steps, image resolution and runtime
per query. We can see that performances on high resolution
images is slightly better than on low resolution images, but
this comes at a higher inference cost. We can further de-
crease the running time by decreasing the refinement steps.
The loss in performance is relatively small conditioned that
we start from a good initialization. This suggest that we
could further increase the localization speed by combining
low and hight resolution based refinement and stopping the
optimization earlier.

D. Privacy attack

To visualize and assess the degree of privacy of GSFFs-PR-
Privacy, we train an inversion model [7, 8] to reconstruct
images from rendered segmentations. As a baseline, we
train another inversion model to reconstruct images from
feature maps rendered from GSFFs-PR-Feature. Both in-
versions model are trained on 6 scenes (fire, heads, of-
fice, pumpkin, redkitchen, stairs) from the 7Scenes dataset
and evaluated the remaining scene chess. Example recon-
structed images from both GSFFs-PR-Feature and GSFFs-
PR-Privacy and displayed in Fig. 2. We can observe that



Figure 1. Median pose error (cm.) (↓) and Median angle error (°) (↓) on Cambridge Landmarks for models trained with 15/34/59/84
classes.

Figure 2. Left to right: original image, image inversion attack from rendering our features (middle, GSFFs-PR Feature) or rendering our
segmentation (right, GSFFs-PR Privacy).

images reconstructed from GSFFs-PR-Feature reveal a lot
of scenes details, while images reconstructed from GSFFs-
PR-Privacy totally obfuscate privacy sensitive information.

E. Visualizations

We show in Fig. 3 pairs of 2D extracted / 3D rendered seg-
mentations for the coarse and fine levels while comparing
segmentations from models trained with 34 and 84 classes.
The segmentation classes of the coarse level capture larger
and less sharply defined segments in the image compared
to the fine level segmentations. As shown in the ablation
in Tab. 3 of the main paper, this allows us to increase the
convergence basin of the pose refinement, while improving
fine accuracy. Using 84 classes instead of 34 results in vi-
sually finer-grained segmentations in turn allows for more

accurate pose refinement.

We also attach to this Supplementary three
videos called Shop Facade renderings.mp4,
Kings College renderings.mp4 and Chess renderings.mp4
where we render images, feature maps and segmentation
maps for trajectories in Shop Facade, KingsCollege and
Chess. Features are visualized through PCA down-
projection. Both GSFFs’s feature and segmentation maps
are very stable under wide viewpoint changes, which
is a critical property for accurate pose refinement. We
can furthermore see that the segmentation classes do not
capture, in general, any semantic concepts showing a high
degree of privacy of our model.



Figure 3. From left to right, coarse encoder/rendered segmentation, fine encoder/rendered segmentation. Comparison between models
trained with 34 classes (line 1/3/5/7) and models trained with 84 classes (line 2/4/6/8). 2D extracted and 3D rendered segmentations are
well aligned which allows for accurate privacy preserving visual localization.
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