
Supplementary Material for “HyperNVD: Accelerating Neural Video
Decomposition via Hypernetworks”

Maria Pilligua1,2,* Danna Xue1,2,* † Javier Vazquez-Corral1,2
1 Universitat Autònoma de Barcelona 2 Computer Vision Center

In this supplementary material, we present more quantitative results on unseen videos in Section A, highlighting our
model’s superior adaptability and efficiency for new videos. More ablation results about using the MAE encoder embedding
are presented in Section B. We also explain the network architectures, loss functions, and training data we use in Section C.
Finally, we showcase additional qualitative results demonstrating video layer decomposition and editing capabilities in Sec-
tion D.

A. More results on unseen videos
We present more results of fine-tuning the NVD model from the 15-video metamodel on unseen videos. In this setting, the
parameters generated by the MAE encoder and hypernet are used to initialize the NVD model. This latter model is updated
during fine-tuning. In Table 1, we compare the results of training the NVD model from metamodel (i.e. our HyperNVD)
versus training from scratch (i.e. Hashing-nvd [1]). All the models are trained for 80k iterations, each video takes around 2
hours. The results show consistent improvements on all the unseen videos.

Table 1. Reconstruction quality (PSNR) on unseen videos when fine-tuning from our 15-video metamodel versus training from scratch.

Methods scooter-black car-shadow bmx-trees scooter-gray mallard-water drift-straight rihno paragliding
From scratch 26.12 30.76 29.20 30.68 29.12 29.50 32.66 32.54

From metamodel 28.52 31.74 30.11 31.57 29.99 30.24 32.97 32.96
Improvements +2.40 +0.98 +0.91 +0.89 +0.87 +0.74 +0.31 +0.42

To demonstrate the acceleration of our method, the training curve of different videos is shown in Figure 1. Our model gets
the same PSNR as Hashing-nvd [1] (the current SOTA both for efficiency and quality, also our baseline) in 40 minutes faster
on an NVIDIA RTX 3090 GPU, reflecting a 30% improvement in training time (2 hours in total).

0 20 40 60 80 100 120
Time (minutes)

0 20 40 60 80 100 120
Time (minutes)

0 20 40 60 80 100 120
Time (minutes)

0 20 40 60 80 100 120
Time (minutes)

PS
N

R
(d

B)

25

27

29

31

27

29

31

33

23

25

25

27

29

31

27

29

31

33

35

from sratch
from metamodel

from sratch
from metamodel

from sratch
from metamodel

from sratch
from metamodel

PS
N

R
(d

B)

PS
N

R
(d

B)

PS
N

R
(d

B)

mallard-water car-shadow swing surf

Figure 1. Fine-tuning the video decomposition model from our 15-video metamodel (HyperNVD) versus training from scratch (Hashing-
nvd) on unseen videos.

*These authors contributed equally to this work.
†Corresponding author.

1

B. More ablation results
To further validate the generalization ability of the VideoMAE embeddings, we conduct an ablation on fine-tuning from
the metamodel trained with 3 videos with different embeddings. Table 2 shows that VideoMAE still outperforms learned
embeddings on unseen videos. Notably, VideoMAE Encoder does not add extra computational cost during fine-tuning, so it
also improves the effciency when adapting the HyperNVD to unseen videos.

Table 2. Ablations on different embeddings on unseen videos. Results are reported in PSNR.

Embedding boat bear kite-walk
learned 32.62 30.98 31.88

MAE encoder 33.31 32.45 32.69

C. Implementation details
In this section, we present the detailed network architectures in Section C.1, our loss functions for training the network in
Section C.2, and the videos we use for training the HyperNVD in Section C.3.

C.1. Architectures
The details of the architecture are presented in Table 3. As explained in the main paper, our network has three main compo-
nents:
(1) The MAE encoder reduces the output of VideoMAE from shape (#videos, 768, 1568) to a compressed embedding shape

of (#videos, 768, 1) using 1-linear-layer encoder. To guarantee the compressed embedding maintains VideoMAE’s main
features, the encoder is learned in combination with a decoder composed of a 1-linear layer that returns to the initial
embedding shape (#videos, 768, 1568).

(2) The main NVD model, whose architecture is shown in Figure 2 from the main paper, includes an alpha module and
two Layer Modules (LM), each consisting of a mapping module, a texture module, and a residual module. Each of
these modules is a 4-layer MLP (input layer, 2 hidden layers, output layer). The mapping module has an inner hidden
dimension of 256 while all the rest have a hidden dimension of 64.

(3) Our hypernet comprises 33 MLPs, each corresponding to a structural layer of the main net. Each of these MLPs has an
input dimension of 768, a hidden layer of size 128, and outputs the predicted weights for its respective layer in the NVD
model.

Table 3. Architecture details of our network. b stands for background, f stands for foreground.

Network Module Number of nets Input dim Output dim Hidden layers Hidden dim
MAE

encoder
Encoder 1 (#videos, 768, 1568) (#videos, 768, 1) 0 —
Decoder 1 (#videos, 768, 1) (#videos, 768, 1568) 0 —

NVD
model

Mapping 2 (b&f) (#points, 3) (#points, 2) 3 256
Texture 2 (b&f) (#points, 2) (#points, 3) 3 64
Residual 2 (b&f) (#points, 3) (#points, 1) 3 64

Alpha 1 (#points, 3) (#points, 1) 3 64
Hypernet 1 Module 33 (#videos, 768) (#videos, #weights) 2 128

C.2. Training losses
The training objective of our Hypernet is the same as that of the previous neural video decomposition (NVD) models.
Through these losses, we learn high-quality video reconstruction in a self-supervised manner. For this reason, we consider
loss functions derived from previous research [1, 2]. We adhere to the same notation as outlined in the main paper. These
losses include:

Reconstruction loss. The reconstruction loss serves as the primary objective for self-supervised learning, ensuring the quality
of video reconstruction. This loss comprises two terms: one addressing the RGB values and the other focusing on gradients,

2

Lrecon = λrLrgb + λgLgrad. (1)

Here, λr and λg represent the weights, and are set to 5 and 1, respectively. The RGB term calculates the squared distance
between the reconstructed color, ĉp, and the ground truth color, cp, resulting in:

Lrgb = ∥ĉp − cp∥22 , (2)

and the gradient term Lgrad is given by:

Lgrad =
∥∥∥d̂x − dx

∥∥∥2
2
+

∥∥∥d̂y − dy

∥∥∥2
2
, (3)

where (d̂x, d̂y) and (dx, dy) are the spatial derivatives of the reconstructed image and the ground truth image, respectively.

Consistency loss. This loss ensures accurate motion representation supervised by optical flow. We expect corresponding
pixels across the video to be mapped to the same point in the texture layer. For a pixel coordinate p = (x, y, t), the
corresponding point p′ = (x′, y′, t ± 1), propagated using pre-computed forward or backward optical flow, is calculated
as:

Lflow−p =αp ∥Mf (p)−Mf (p
′)∥

+ (1− αp) ∥Mb(p)−Mb(p
′)∥ ,

(4)

where Mf and Mb are the foreground and background mapping functions, which map p to the texture map coordinates
(up

f , v
p
f) and (up

b , v
p
b), respectively. αp represents the predicted opacity value of p.

We also want the corresponding pixels to have the same alpha value:

Lflow−α = |αp − αp′
|. (5)

Then, the total consistency loss is given by:

Lflow = wp(λfpLflow−p + λfαLflow−α), (6)

where we set λfp = 0.01 and λfα = 0.05. wp indicates whether the correspondence between the two points p and p′

is consistent, based on the standard forward-backward flow consistency check. Specifically, wp = 1 denotes consistent
correspondence. To verify the reliability of the predicted optical flows, we perform a cycle mapping using the forward and
backward flows. If the coordinate difference is smaller than 1 pixel, we consider it a reliable prediction and assign wp = 1;
otherwise, we set wp = 0.

Sparsity loss. The sparsity loss is designed to prevent duplicate content across different texture layers.

Lsparsity = λs

∥∥∥(1− αp)cpf

∥∥∥2 , (7)

where cpf represents the predicted color at position p for the foreground layer. We set λs = 1 in the experiments.

Residual consistency loss. This loss ensures smooth lighting conditions while preventing the residual estimator from cap-
turing all color details. Formally, it is defined as:

Lres = λres−sLsmooth + λres−rRres, (8)

where λres−s = 0.1, λres−r = 0.5.
First, the loss ensures smooth lighting conditions by constraining the values at the same position on the texture coordinates

to be positively correlated. For a small k × k patch at time t1 and t2 in the residuals rp, we define the residual consistency
loss using normalized cross-correlation as:

Lsmooth =
(rpt1 − µrpt1

)(rpt2 − µrpt2
)

σrpt1
σrpt2

+ σ2
rpt2

, (9)

3

where µ and σ are the mean and standard deviation of the corresponding patch, respectively. σ2
rpt2

is a variance-smoothness
term. We set k as 3.

Since only lighting changes are expected to be included in the residuals, a regularization term is applied to prevent the
residual estimator R from capturing color details:

Rres = ∥R(·)− 1∥ . (10)

Alpha regularization loss. This additional regularization term ensures that the opacity map for each layer is clean and
reliable, with lighting conditions properly embedded in each layer. It is defined using a BCE loss applied to the maximum
values across all opacity maps:

Lαreg = λαregBCE(max
n∈{0,...,N}

αn), (11)

where we choose λαreg = 0.1.

Two extra losses are applied just in the initial iterations:

Rigidity loss. The rigidity loss is designed to prevent the texture layer from degrading into a simple color palette or devel-
oping a distorted layout. It enforces local rigidity in the mapping from pixel locations in the video to the texture layer. This
loss is applied to both foreground and background mappings:

Lrigid = λr(D(Mb) +D(Mf)), (12)

where λr = 0.001, and the loss is applied only in the first 5,000 iterations. For a giving mapping M, the rigidity term D is
defined as a variant of symmetric Dirichlet term:

D(M) =
∥∥JT

MJM
∥∥
F
+

∥∥(JT
MJM)−1

∥∥
F
, (13)

where JM is the Jacobian matrix of M, it is given by:

JM = [M(px)−M(p) M(py)−M(p)] , (14)

where px = (x+ 1, y, t), py = (x, y + 1, t).

Alpha bootstrapping loss. This loss provides initial guidance for the alpha module to predict a reasonable opacity map
for layer separation. We compute the binary cross entropy loss between the expected alpha value αp of the pixel p and the
corresponding value mp in the reference mask.

Lαboot = λαBCE(αp,mp) (15)

We set λα = 2 and apply the alpha bootstrapping loss during the first 10,000 iterations.

Final loss. The addition of the above-mentioned losses gives the total loss:

Ltotal = Lrecon + Lflow + Lsparsity + Lres + Lαreg (16)

C.3. Training dataset
In Table 4, we list the videos from the DAVIS dataset [3] used for training the models presented in Table 2 of the main paper.
Please recap that Table 2 of the main paper demonstrate the capability of our HyperNVD to train with different numbers of
videos without compromising largely the quality reconstruction.

D. More qualitative results
In this section, we present more visualization results of our approach to video decomposition and editing. A video demo is
also provided in the supplementary materials to intuitively showcase the decomposition and editing results.

Figure 2 illustrates the video decomposition results. The three examples in the figure achieve a PSNR of approximately
30 dB and effectively differentiate between the foreground and background. Notably, the shadows on the rhino’s back are
accurately decomposed into the residual map.

4

Table 4. Videos used for training our metamodel in Table 2 of the main paper.

Number Videos
1 hike
3 hike , car-turn, blackswan
5 hike , car-turn, blackswan , bear, lucia

10 hike , car-turn, blackswan , bear, lucia , boat, bus, kite-walk, rollerblade, stroller

15
hike , car-turn, blackswan , bear, lucia , boat, bus, kite-walk, rollerblade, stroller ,
camel, car-roundabout, elephant, motorbike, train

30

hike , car-turn, blackswan , bear, lucia , boat, bus, kite-walk, rollerblade, stroller ,
camel, car-roundabout, elephant, motorbike, train ,
bmx-bumps, bmx-trees, cow, drift-straight, flamingo, goat, horsejump-low, kite-surf, libby ,
paragliding, scooter-gray, soapbox, soccerball, surf, swing

Figure 3 demonstrates the video editing results. By modifying the foreground and background texture maps, we observe
that elements added to the foreground —such as the bear’s scarf and the headphones and flowers on Lucia’s skirt— naturally
adapt to the motion of the foreground. For these videos, where the backgrounds remain relatively stable, elements added to
the background exhibit no significant motion and blend naturally.

Please note that in all current models —including ours— editing is restricted to non-transparent areas of the texture map
due to the requirement of alpha-weighted compositing for blending layers. Edits applied to transparent regions will not
appear in the final edited video. To add elements outside the object’s region that move along with the object, it is necessary
to modify the opacity map. This limitation is inherent to video layer-based editing and is also present in previous methods.
Despite this constraint, we believe that addressing such challenges could open avenues for future research and enable exciting
new applications.

E. Limitation and discussion
In terms of limitations of our work, since our hypernetwork uses an MLP to predict parameters for each layer of the target
network, resulting in a large parameter count, further structural optimization and techniques like Low-Rank Factorization [5]
could help reduce the hypernetwork’s parameter size.

We have made some interesting observations. For example, using different initial masks does not significantly affect the
final reconstruction quality, but finer masks guide the network to focus on object details. Therefore, in practical applications
where precise editing of edges or related effects is required, using more defined masks is advisable. These can be improved
with the latest segmentation methods, such as SAM2 [4].

5

Ba
ck

gr
ou

nd
Fo

re
gr

ou
nd

Ba
ck

gr
ou

nd
Ba

ck
gr

ou
nd

Fo
re

gr
ou

nd
Fo

re
gr

ou
nd

30
.0

6
dB

29
.9

0
dB

33
.3

5
dB

kite-walk

hike

rhino

a) Original frame b) Masks c) Residuals d) Textures e) Reconstructed frame

Figure 2. Qualitative results on the DAVIS dataset. Displayed are the a) original frames, b) predicted masks, c) residual maps, d) texture
maps, e) reconstructed frames, and PSNR values for different videos. A color checkerboard overlay is applied to the masked areas to
visualize texture transformations.

a) Reconstructed frame d) Edited framec) Edited 2D textures b) Output 2D textures

Figure 3. Edited video results. Displayed are the a) reconstructed frame with our HyperNVD, b) 2D texture maps, c) edited texture maps,
and d) edited frame. We add doodles to both the foreground and background texture layers. The edited video maintains good visual quality
and smooth transitions.

6

References
[1] Cheng-Hung Chan, Cheng-Yang Yuan, Cheng Sun, and Hwann-Tzong Chen. Hashing neural video decomposition with multiplicative

residuals in space-time. In ICCV, 2023. 1, 2
[2] Yoni Kasten, Dolev Ofri, Oliver Wang, and Tali Dekel. Layered neural atlases for consistent video editing. ACM TOG, 40(6):1–12,

2021. 2
[3] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander Sorkine-Hornung. A benchmark

dataset and evaluation methodology for video object segmentation. In CVPR, 2016. 4
[4] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe

Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714, 2024. 5
[5] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny. Adversarial generation of continuous images. In CVPR, 2021. 5

7

	More results on unseen videos
	More ablation results
	Implementation details
	Architectures
	Training losses
	Training dataset

	More qualitative results
	Limitation and discussion

