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A. Further Details about the Training Dataset

The proposed synthetic dataset' comprises RGB images
that feature text lines superimposed on diverse background
patterns (Figure 2). The process to create a text image is
divided into two macro-steps: Text Content Sampling and
Text Line Rendering.

Text Content Sampling. First, we formed the text lines
to render in the samples of the dataset. To this end, we
consider the following English corpora available on the
NLTK? library: abc, brown, genesis, inaugural,
state_union, and webtext. To ensure a balanced
character distribution and to address the learning of rare
characters, we employ a rarity-based weighting strategy.
Specifically, each word in the corpora is assigned a weight,
allowing for weighted sampling from the resulting distri-
bution. The weight of each word is computed based on
the frequency of unigrams and bigrams contained within
it. This approach prioritizes words that include infrequent
character patterns, enabling the HTG model to learn from
the long-tail distribution of characters more effectively. The
Python implementation of the algorithm for computing the
weight of each word is reported in Listing 1. The func-
tion word_weight (word) calculates a score for each
word based on the unigram and bigram frequencies, stored
in u_counts and b_counts, respectively. These counts
represent the frequencies of unigrams and bigrams across
the entire corpus. The resulting word weight is the average
of the unigram and bigram-based scores. In Figure 1, we
show the character’s distribution with the custom weights
per word and the naive sampling (original). Each bar of

lhttps : / / huggingface . co / datasets / blowing - up -
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Figure 1. Characters frequency in text from the original corpora
used to generate the synthetic training dataset, and from the bal-
anced version of the corpora.

the distribution represents a character in our charset (which
contains 157 characters) in this order: [ , e, a, n, s, i, r,
t,o,1,A, .,mc,d,u,0,S,hE,p,M,qg,C,R, 1,1I,-,D,
b,T,2,N,3,0,y,P,B,L,",F,k,£,H,4,5,G,U,v, 7,8,
".6,9,V,K,x,w,Y,),4W,,,* 2z, :,J, X', 3, /,_,
é,>,2,2,0,;,%,4,1,06,9,%,<, [,4, 4, # j,& }, + U,
6.n 8= (.6, \,1,&,» U EaeAs ,¢cun ",
.8, 7w YA 8, %80, 7, --,¢,4,4,0,7, f,T, ", 1,7,
1,1,8,1,8,8,0,A,°,A t",2,0,8, 2,1, 1,d"]. Note
that, our current Emuru is trained on a dataset derived from
fonts covering primarily Latin characters, there is nothing
in the approach itself that prohibits extension to non-Latin
scripts. Specifically, to extend Emuru to non-Latin scripts,
its VAE should be re-trained on a similarly-built synthetic
dataset of non-Latin strings, rendered with fonts that sup-
port the desired characters. Given that there are a number
of such fonts available online, we argue that there is no ob-
vious method or model limitation as to why the results of
Emuru would not translate also to non-Latin scripts.

Text Line Rendering. Once we sample a sentence, we se-
lect a font from a list of 100,000 fonts and render the text
image on a white background, obtaining I7. Then, we sam-
ple a background I from a set of images depicting reason-
able supports for writings (e.g.,paper-like textures, wood,
walls), a transparency value o € [0.5,1] and process I
and T p in parallel. To obtain Ip (Figure 2, center), we
use the following random transforms: Rotation, Warping,
Gaussian Blur, Dilation, and Color Jitter (with probabili-
ties respectively set to 0.5, 1.0, 0.5, 0.1, and 0.5) and apply
the transparency «. To obtain Ip (Figure 2, right), we use
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Figure 2. Exemplar sample images I from the synthetic dataset used for training Emuru (left). These samples consist of a rendered
greyscale text image I (center) superimposed to RGB paper-like background images Ip (right).

def word_weight (word) :
# Compute the score
# based on the unigrams
u_score = 0
for ¢ in word:
u_score += u_counts[c]
u_score /= len (word)
# Compute the score
# based on the bigrams
bigrams = pairwise (f’ {word} ')
bigrams list (bigrams)
b_score = 0
for b in bigrams:
b_score += b_counts[’’.Jjoin (b)]
b_score /= len(bigrams)

# Average the two
(u_score + b_score)

scores
/ 2
Listing 1. Python code for computing the words weight, needed

for the character frequency balancing procedure adopted to obtain
the text in our synthetic training dataset.

return

the following random transforms: Dilation, Color Jitter, and
Random Inversion of the values (with probabilities respec-
tively set to 0.1, 0.5, 0.2). The image I (Figure 2, left) is the
result of superimposing I7 on Ip.

B. Details about the Considered Datasets

In this section, we give further details about the datasets we
use for evaluation.

IAM. The IAM Handwriting Database [11] is a collection
of greyscale document scans written in English by multiple
writers. The dataset features free-layout modern English
text lines from the Lancaster-Oslo/Bergen (LOB) corpus.
The number of pages per writer varies significantly, ranging
from 1 to 10. The dataset comes with both line-level and
word-level segmentation information. The HTG commu-
nity commonly used this dataset for training and evaluation
of the proposed approaches and has adopted a split defined
in [7], in which the samples from 339 writers are used for
training, and those from 161 other writers are used for test.
In this work, we adopt the same split. However, while most
of the competitors are trained on IAM (and, therefore, see
the test set as in-distribution samples), we never use any
training data from it to train our model (therefore, test sam-
ples are out-of-distribution for us).

CVL. The CVL Database [8] is a collection of RGB scans
of English and German manuscripts written with ink on
white paper by 310 writers. In this work, we consider the
line-level annotation of the dataset and perform the evalu-
ation on its test set, which contains lines from 283 differ-
ent authors. We include this dataset since it is mostly in
the same language as the commonly-adopted IAM, but the
handwriting styles are out-of-distribution w.xt. TAM.

RIMES. The RIMES Database [1] is a collection of binary



images of customer service-themed letters in French, writ-
ten by multiple authors. For our experiments, we consider
the lines in the official test split of the dataset, which have
been written by 100 authors. We include this dataset as a
more challenging collection of out-of-distribution genera-
tion cases. In fact, both the language and the styles differ
from those in JAM.

Karaoke.> To assess the capabilities of Emuru and the
existing handwriting style imitation approaches, we devise
a dataset of text lines images obtained by rendering song
lyrics with 100 publicly available fonts*, 50 calligraphy,
and 50 typewritten, on a white background. This dataset,
especially its typewritten split, serves as a challenging test
to measure the performance of HTG models when dealing
with significantly out-of-distribution, font-like styles.

C. Details about the Considered Scores

Measuring the performance of styled HTG models is a chal-
lenging task per se. Early works on HTG simply employ
the Fréchet Inception Distance (FID) to measure the real-
ism of the generated images, and sometimes the CER to
measure their readability. Recent works [14—16] have high-
lighted the limitations of such scores (especially the FID)
and thus proposed to assess the performance of HTG mod-
els both by using multiple scores or introducing novel, task-
specific scores. In line with these works, for our evaluation,
we adopt the following scores (some of which have been
reported in the main paper).

Fréchet Inception Distance (FID). The FID [6] is widely
employed in HTG literature and captures the realism/sim-
ilarity between the distribution of the real images and the
generated ones. In the context of HTG, it somehow cap-
tures the texture-wise style similarity. Note that in most
HTG works, the reported FID is computed only on the ini-
tial square crop of the real and generated images. In this
work, we compute it on non-overlapping crops obtained
from the entire images.

Kernel Inception Distance (KID). Similar to the FID, also
the KID [2] captures the realism of the generated images by
comparing their distribution to the real images distribution.
Despite being less used in image generation evaluation, it is
more numerically stable than the FID [15].

Binarized FID (BFID). To reduce the impact of the texture
(both of the strokes and the background) on the similarity
between generated and real images, we introduce this vari-
ant of the FID score by computing it on binarized images.
Intuitively this measure should capture mostly the percep-
tual handwriting style and disregard color or textures.

3hLLps : / / huggingface . co / datasets / blowing - up -
groundhogs / karaoke, https://open. spotify.com/playlist/
5GTPvzVNedUIkYkV7x0Otgl

4hLLps:/’/fonts.google.com/

Binarized KID (BKID). Similar to the BFID, this score is
obtained by computing the KID on the binarized reference
and generated images.

Absolute Character Error Rate Difference (ACER).
We consider the State-of-the-Art TrOCR-Base [10] model,
which can handle both handwritten and typewritten images
and compute its CER on the reference and generated images
to capture their readability while taking into consideration
the style. Intuitively, we want the generated images to be as
readable as the reference ones (which suggest that they ac-
tually contain text) but not significantly more, which could
be that the HTG model has collapsed to a very readable style
that does not necessarily resemble the reference.

Handwriting Distance (HWD). The HWD [15] is a per-
ceptual score that has been recently proposed specifically
for HTG and captures the similarity in terms of calligraphic
style between the real and generated images pairs. For this
reason, we include it in our evaluation setup.

Absolute Intra Learned Perceptual Image Patch Simi-
larity Difference (AI-LPIPS). To measure the style preser-
vation over long generated images, we split each image into
non-overlapping crops and compute the LPIPS [17] (which
is based on the similarity of feature maps) between all pos-
sible combinations of crops of the same image. We repeat
this process for both the real and the generated image sep-
arately and then compute the absolute difference between
these values. We want its value on the generated images to
be similar to what is obtained on the real ones (to ensure
mimicking the degree of variability of the reference style)
and not significantly lower, which could indicate mode col-
lapse to a repeated stroke.

D. Analysis on the Style Input Length

As mentioned in Section 2, existing HTG methods have
a variety of settings for the style reference image, rang-
ing from single words [3-5, 9] to entire paragraphs [12].
These approaches offer different advantages depending on
the use case, with some models demonstrating some adapt-
ability to a style from minimal input and others leveraging
more context for improved style fidelity. We argue that an
HTG model should be flexible to the number of input words
available, handling both data-scarce scenarios with limited
reference samples and situations with more style images
available. To deepen the analysis on this aspect, we eval-
uate the performance of Emuru when generating IAM lines
given increasingly longer reference style images, which we
build starting from the word-level annotations of the IAM
dataset. Note that the IAM dataset contains all the informa-
tion needed to determine which sequence of words appears
within each line and where to cut the line image to obtain a
new line image with the desired width. Therefore, to gener-
ate the set of style samples within a specific width range, we
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Figure 3. Emuru FID scores for IAM line generation using style
inputs of varying length (in blue), compared to those generated
with the original input style (in red). The length of the style input
is expressed as the average pixel width of the style samples, with
standard deviations represented by semi-transparent circles behind
the data points. Additionally, the average number of words in each
style sample is indicated, where an “average word” corresponds to
approximately 125 pixels in width.

exploit the IAM information of the bounding boxes around
the words inside the lines. Specifically, we group images
whose width is in a range of +25px around average width
values that vary from a minimum of 125px to a maximum
of 1025px with steps of 50px. In Figure 3, we report the
results of this analysis. As expected, the performance im-
proves with increasing input length, showing that our model
is flexible to different scenarios and more applicable to real-
world handwriting generation tasks.

E. Analysis on the Styled Output Length

To assess the optimal output text length manageable by
Emuru, we perform experiments by increasing the number
of output characters to render in the styles from the Karaoke
dataset. We report FID and CER scores in Figure 4, repre-
senting style fidelity and text readability. We observe that
the model performs best when generating text lines between
25 and 75 characters, which aligns with the training se-
quence length. Outside this range, Emuru exhibits perfor-
mance degradation in both style fidelity and text readability.
Note that some workarounds for improving the quality of
generated long sequences can be applied, as mentioned in
the following. In Figure 5, we report qualitative results of
image generation with Emuru for increasingly longer text
lines. In the top part of the figure, we feed Emuru with the
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Figure 4. Emuru FID and CER when generating increasingly
longer lines in unseen styles from the Karaoke dataset, separated
into calligraphy and typewritten styles. We express the generated
lines length in terms of the number of characters contained.

reference style image and the entire text line to be gener-
ated all at once. As we can see, the model maintains style
consistency across long outputs but struggles to correctly
render all the words as their number increases. This dis-
crepancy between the input and the output text is reflected
in the ACER score, as observed in the quantitative analysis
in Section 4 Section 4. To improve this aspect, in the bottom
part of Figure 5, we also show a simple yet effective solu-
tion for generating longer lines with increased text fidelity.
Specifically, we let Emuru iteratively generate one word at
a time by using the previously generated line as a style ref-
erence. This incremental approach improves the alignment
of the output image with the input text with a computational
overhead of 29.5% (2.24s), mainly due to the additional 10
padding embeddings that the model has to generate as a stop
signal after each new word generation.
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F. Detailed Comparison Between VAEs

In this section we expand the analysis on the performance
of Emuru VAE on multiple datasets reported in Section 4.
As the performance of the autoregressive Transformer in
Emuru is tied to the quality of the latent vectors it has
been trained on, this detailed analysis helps determine a
soft bound on the reconstruction quality. In Table I, we re-
port the results of the reconstruction performance compari-
son on different datasets, which we compute on images re-
constructed with different VAEs: Emuru VAE, SD1.5 VAE
(used by DiffPen and OneDM), and SD3 VAE (the current
State-of-the-Art in image reconstruction). As we can see,
Emuru VAE consistently gives the best or second-best BFID
and BKID due to its ability to closely capture and reproduce
the handwritten style. Looking at FID and KID, in some
datasets the performance is a bit lower w.r.z.the alternatives
considered, likely due to the fact that Emuru VAE is trained
to reconstruct text on a clean background (and not the orig-
inal input image). Moreover, the AI-LPIPS is consistently
better, which indicates that the images reproduced by our
VAE have a consistent style in all their parts. In general, we
can observe either better or comparable performance to the
other considered VAEs. The tailored training of our VAE al-
lows us to obtain these results with a much more lightweight
model and a more compressed latent space (~16% of the
parameters of the other VAEs and 1 latent channel instead
of 4 and 16, respectively for SD1.5 VAE and SD3 VAE).

G. Multi-stage Training Ablation

In Table 2, we report a detailed analysis of the performance
obtained with Emuru across different training stages. As
explained in Section 3, we train Emuru with the MSE loss
in two stages: pretraining with text lines containing 4 to
7 words (Pretraining in Table 2) and fine-tuning on text
lines containing 1 to 32 words (+ Var. len. ft in Ta-
ble 2). Predictably, there is a significant performance im-
provement across all metrics and datasets, which contain
variable-length text lines. These results indicate the benefit
of the two-stage training approach. During the first stage,
the autoregressive Transformer learns to correlate the text
input to the VAE embeddings extracted from the reference
style image in a simpler setup. Then, in the second stage,
the model learns to deal with variable-length inputs and can
also focus on understanding when to stop generating. In
fact, although the pertaining stage is longer, the samples
used in this stage have similar text length and reference im-
age width, and thus, batches of such samples are more infor-
mative since they contain less padding. On the other hand,
the images used in the variable length fine-tuning stage need
to be padded more to be batched, which makes this stage
less efficient. Nonetheless, thanks to pertaining, few itera-
tions are sufficient to achieve good performance.

IAM words
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

SD1.5 VAE 21.15 242 20.72 1.65 0.01 0.92 2.34
SD3VAE 15.28 2.09 13.62 135 0.01 0.84 2.72
Emuru VAE 27.74 2.60 2341 132 0.08 0.64 0.02

TIAM lines
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

SD1.5 VAE 1587 1.64 1647 1.27 0.01 0.68 74.04
SD3 VAE 980 1.77 9.66 1.53 0.00 0.59 82.95
Emuru VAE 16.74 1.11 13.76 0.53 0.01 0.76 6.24

CVL
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

SD1.5 VAE 83.33 34.82 101.89 34.74  0.01 0.63 45.74
SD3VAE 70.84 8.77 84.68 930  0.00 0.57 52.81
Emuru VAE 11.25 110 9.77 053 0.05 0.79 5.28

RIMES
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

SD1.SVAE 20.35 277 19.57 2.14 0.02 0.79 0.50
SD3VAE 19.07 5.10 17.65 4.95 0.03 0.90 3.52
Emuru VAE 47.79 2.62 4427 145 0.01 1.24 39.72

Karaoke Typewritten
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

SD1.5VAE 1228 087 9.54 0.31 0.01 0.55 20.60
SD3 VAE 529 1.13 289 050 0.01 0.65 32.76
Emuru VAE 6.55 0.75 392 0.09 0.01 0.56 7.43

Karaoke Calligraphy
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS

SD1.5VAE 2338 1.63 24.65 1.16 0.00 1.04 9.37
SD3VAE 11.09 280 9.58 237 0.00 0.87 13.84
Emuru VAE 5.28 155 298 0.51 0.00 1.13 10.63

Table 1. Comparison between the VAE featured in Emuru and
other VAEs used in popular Diffusion Models when reproducing
the images in the test set of different HTG datasets. Note that
none of these VAEs has been trained on the considered datasets.
KID, BKID, and AI-LPIPS are multiplied by 10® and the best
performance is in bold for readability.

H. Additional Quantitative Results

In Tables 3 to 5, we report the performance of Emuru com-
pared to State-of-the-Art HTG solutions on the considered
datasets, expressed in terms of all the scores in the extended
set of considered scores, as described in Appendix C.

I. Additional Qualitative Results

In Figures 6 to 11, we report additional qualitative results
comparing Emuru, the GAN-based VATr++ [16], and the
Diffusion Model-based DiffPen [13] when generating im-
ages from the considered datasets. For each sample, we
report the input style image used for guiding the generation
and another reference image in the same style. We let the
models generate the same text as in the reference to better
observe the style imitation capabilities of the models.



IAM words
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

Pretraining 85.15 53.28 83.53 52.54  0.56 3.51 0.39
+ Var. len. ft 63.61 37.73 62.34 3722 0.19 3.03 0.16

TAM lines
FID| BFID| KID| BKID| ACER| HWD, AI-LPIPS|

Pretraining 4490 4236 28.19 29.75 0.83 2.70 11.39
+ Var. len. ft 13.89 6.19 11.30 536 0.14 1.87 38.27

CVL
FID, BFID| KID| BKID, ACER| HWD| AIL-LPIPS,

Pretraining 77.23 70.52 69.28 5447  0.87 2.52 6.69
+ Var. len. ft 14.39 10.77 12.34 1054 0.13  1.82 0.75

RIMES
FID, BFID| KID] BKID, ACER| HWD] AI-LPIPS,

Pretraining 100.34 75.90 76.32 56.07  0.69 2.96 87.25
+ Var. len. ft 26.93 13.36 21.19 940  0.25 2.18 47.96

Karaoke Typewritten
FID| BFID| KID| BKID| ACER| HWD, AI-LPIPS|

Pretraining 47.06 39.28 22.76 14.69  0.67 2.03 45.52
+ Var.len. ft 9.85 433 560 124 0.11 1.28 5.07

Karaoke Calligraphy
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

Pretraining 37.26 29.65 18.54 16.81 0.54 2.99 4.90
+ Var. len. ft 13.87 799 924 537 0.13 2.24 0.73

Table 2. Ablation analysis on the multi-stage training strategy for
the autoregressive Transformer (‘ft’ stands for ‘fine-tuning’). The
scores are computed on all the considered datasets. KID, BKID,
and AI-LPIPS are multiplied by 10% and the best performance is
in bold for readability.

IAM words
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

TS-GAN 129.57 86.45 141.08 92.48  0.28 422 1.15
HiGAN+ 50.19 21.92 4339 1421 0.20 3.12 0.17
HWT 27.83 15.09 19.64 1195 0.15 2.01 0.06
VATr 30.26 15.81 2231 13.37  0.00 2.19 0.56
VATr++ 3191 17.15 23.05 1520 0.07 2.54 0.55
One-DM 27.54 10.73 2139 6.72  0.10 2.28 0.00
DiffPen 15.54 6.06 11.55 3.93 0.06 1.78 0.53
Emuru 63.61 37.73 6234 3722 0.19 3.03 0.16

TIAM lines
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

TS-GAN 44.17 1945 4542 18.17 0.02 3.21 25.66
HiGAN+ 74.41 34.18 7727 3124  0.00 3.25 63.43
HWT 4472 30.26 43.49 31.14 033 2.97 34.31
VATr 3532 2797 33.61 2781 0.02 2.37 28.17
VATr++ 34.00 21.67 29.68 19.04 0.03 2.38 35.86
One-DM 43.89 21.54 4448 2094 0.13 2.83 78.42
DiffPen 12.89 6.87 9.73 498  0.03 2.13 3.27
Emuru 1389 6.19 130 536 0.14 1.87 38.27

Table 3. Comparison on the word-level and line-level IAM
datasets between Emuru and State-of-the-Art approaches trained
on IAM. KID, BKID, and AI-LPIPS are multiplied by 10% and
the best performance is in bold for readability.

CVL
FID| BFID| KID| BKID| ACER| HWD/ AI-LPIPS]

TS-GAN 42.12 3197 43.15 3244 0.13 3.07 2.02
HiGAN+ 78.44 3947 8039 36.50 0.12 3.07 53.91
HWT 31.22 16.73 26.14 14.44 038 2.59 10.23
VATr 3440 24.64 3221 2501 0.06 2.36 8.77
VATr++ 35.53 19.87 34.15 16.08 0.12 2.18 13.30
One-DM 60.45 26.58 64.13 26.76  0.06 2.66 88.94
DiffPen 40.40 17.50 38.21 1830  0.01 2.99 51.58
Emuru 1439 10.77 12.34 10.54 0.13 1.82 0.75

RIMES
FID, BFID| KID| BKID|, ACER| HWD, AI-LPIPS|

TS-GAN 109.04 36.39 132.90 41.64 0.12 3.26 93.87
HiGAN+ 160.57 47.38 183.82 46.23  0.14 3.39 48.48
HWT 118.21 35.26 128.66 35.60  0.45 3.36 1.89
VATr 113.76 30.21 114.21 27.88 0.07 3.09 7.88
VATr++ 110.04 35.61 104.05 31.90 0.10 2.83 26.84
One-DM 121.18 36.07 121.67 34.68  0.20 3.36 86.49
DiffPen 89.79 1825 94.78 1849  0.04 2.58 78.41
Emuru 2693 1336 21.19 940 0.25 2.18 47.96

Table 4. Comparison on the line-level CVL and RIMES datasets
between Emuru and State-of-the-Art approaches trained on IAM.
KID, BKID, and AI-LPIPS are multiplied by 10% and the best
performance is in bold for readability.

Karaoke Handwritten
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

TS-GAN 60.30 12.68 64.80 6.75 0.05 4.59 75.30
HiGAN+ 125.75 69.41 136.75 72.14 0.04 490 49.49
HWT 62.69 43.03 5935 4398 034 450 33.89
VATr 7222 47.66 67.70 4623  0.04 3.89 60.46
VATr++ 67.16 46.53 5857 4259 0.01 3.96 84.57
One-DM 59.73 3830 56.55 3793 024 431 47.65
DiffPen 34.19 25.78 2891 24.03 0.16  4.18 33.33
Emuru 1387 799 924 537 013 2.24 0.73

Karaoke Typewritten
FID| BFID| KID| BKID| ACER| HWD| AI-LPIPS|

TS-GAN 141.41 75.78 157.33 80.14 0.02  4.70 235.45
HiGAN+ 135.34 63.39 146.34 65.81 0.03 5.19 85.45
HWT 72778 3740 62777 3151 039 457 138.76
VATr 80.38 41.02 7046 3726 0.04 4.14 115.80
VATr++ 76.03 41.69 63.17 36.50 0.01 4.15 89.74
One-DM 70.75 44.06 60.90 42.78  0.25 4.80 119.63
DiffPen 78.07 61.16 67.17 61.05 0.14 471 187.68
Emuru 985 433 560 124 0.11 1.28 5.07

Table 5. Comparison on the line-level Karaoke dataset, separating
calligraphy and typewritten styles, between Emuru and State-of-
the-Art approaches trained on IAM. KID, BKID, and AI-LPIPS
are multiplied by 10® and the best performance is in bold for read-
ability.



IAM Words

IAM Words

| style velur /am//}/ ) hlr ae eflpi it ! | style *«'UL--C&’ o /A«P’.La.)\ q_q.,/pva).‘,px_ Q, |
VATr++ f,,v o VATr++ M—QM |
DiffPen -/, /o DiffPen  au~i Hamedc
Emuru 440 EMUrU sy iPme e
Rt £ 40 Bl
IAM Words IAM Words
{_Stfle confraction of hhe weriricles. Going on i~ Chaplec Thee | | Stle oy (o _ Qi oud _actepd o8 {le bid)
VATr++ Cv/)cx VATr++ Mor*qr
DiffPen Q Fcr DiffPen HO t‘b %
Emuru apex Emuru Moy Aoy
Ref. GPCX Ref.  (LAOY &Q E
IAM Words IAM Words
Usyle Bz odbees wweee R Frrrcesry 2o | U Syle Tk diccdin Whid a fuir-box Hhe !
VATI++ gheam 7 VATr++ 2/ 7or
DiffPen ose g A DiffPen WOT
Emuruy  zoeser 7 EMUIU  esror
Rt oz & IO
Figure 6. Further qualitative results on IAM words.
IAM Lines IAM Lines
Ustyle Ad v o LN st o aus W alveady 1 [syle To Wis True Wond, 0s you call %, we come Yo die, | |
VAT ) oy caes . thear hoves krow ietle VATr++ hed N0 place  here
DiffPen  Zn M coues - Haei ¢ lhomes know &LH(_Q OC DiffPen L\Aﬂl nwo ﬂace l/\ue .
Emuru i Tony caaes, fheir hames knows lite of Emuru Lod wo place bLere,
Ref. | In\ 00Dy CODED) ANess hoved ksiend Bie ¢k Ref. hod no glace \ere,
IAM Lines IAM Lines
Il e O E fa;a}Hc flat o seqya cordmns te ! |l Style Tk\@ﬁ \ad baon mostad ©r Six ~eose, ot Wne !
VATr++ e 3%3‘]"* S bkl acoecd He Sw‘a&vs VATr++ ‘Tik\c’uuj rll:\(:’&/ on the (xpa’c\cﬂxor\ gs W)
DiffPen T\, ““99° /‘s bt arswnd Jho aa»jiwy of DiffPen sa\om} irase. o e expetakien oQ ek “‘*‘*J
Emuru - The sagya 1 built around fle sayivg of Emuru colory raise, on e expectation of which they
Ref.  The scqyo <5 Lecilf arceed e %/‘?ft oA Ref. 90\0(\; e on e &pQQ\&‘r\OO oK Chids *\Qy
IAM Lines IAM Lines
'l Style Md we answer, Jhd the Lor‘l wf Gd qgwe os lox freedows’ J 'l Style You wmacle sorce sort o/ a/aw/e:/ #» gf(,/,fk?/, ‘l
VATr++ four CuPS" o thawk e Lod our God VATr++ /(;\/ e 5.((//(“”(-/,;“,/(,,_ < How dare you
DiffPen {fou Cups ' 4o Hanl the Locd o God for Hha focs DiffPen idy e seroundinps b How dare you <y
Emury foor cups” to thank the Lord ocur 6od lor the "lour Emuru Ld/a,.c Juﬂvulw(u\?:. Hows olare  you say
Ref. \‘QM (uis“ Yo Nawe e \,oré oor GQA Qof e © QOU\’ Ref. /}/v///c Jkl‘rppm/vld}vs‘, " " olare il eay
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Figure 9. Further qualitative results on RIMES lines.
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Figure 12. Thanks to the characteristics of the VAE, ink color
can be easily corrected on Emuru-generated images to look more
similar to the color in the reference image.

J. Editing Application

Due to our Emuru VAE, there can be a difference in ink
color between the reference image, /¢y, and the Emuru-
generated one, I,,;. However, this difference can be easily
recovered. Note that, once passed through the VAE, both
Isy1e and I,,,; have a perfectly white background. There-
fore, the background can be easily removed from both im-
ages via standard chroma keying on white. Then, the aver-
age color of the ink pixels can be computed from the ref-
erence image and directly applied to the ink pixels in the
generated image (see Figure 12).
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