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Supplementary Material

We strongly encourage readers to check the qualitative
video samples in the project page at ditflow.github.
io. Here, we provide additional elements for easing the
understanding of our work. Specifically, we first provide
implementation details in Section A and further ablations in
Section B. Then, we provide additional reasoning about al-
ternative strategies for supervision (Section C) and propose
a simple experiment to justify AMF in Section D. Further
MotionClone evaluation is provided in Section E. Finally,
we discuss limitations (Section F).

A. Implementation

Positional embedding training details CogVideoX-5B
uses a different positional embedding mechanism to
CogVideoX-2B. CogVideoX-2B uses 3D sinusoidal em-
beddings similar to [54] and these are simply added to the
tokens to provide absolute positional information. During
guidance, gradients can backpropagate from the AMF loss
at block 15 to these embeddings. CogVideoX-5B uses 3D
rotary positional embeddings (RoPE [52]) that are embed-
ded into all queries and keys at each attention block. Gradi-
ents still backpropagate from block 20 to the RoPE applied
to all previous blocks.

Dataset We provide a sample of the dataset in Table 4.
Video names are the same as those used in the DAVIS
dataset [39]. Please refer to the supplementary material in-
cluded in the project page for the full dataset and visuals.

B. Additional Ablation Studies

We conducted further ablation studies on temperature (τ ),
number of guidance blocks, and optimization algorithm in
Table 3, following the experimental setup in Section 5.4.
The temperature ablation reveals that setting τ = 5 yields a
marginal improvement in both MF and IQ metrics. Impor-
tantly, the performance varies only slightly across different
temperature values, demonstrating DiTFlow’s robustness to
this hyperparameter. We also compare our original single-
block approach (using only block 20) against a multi-block
configuration (blocks 20+15+10). While DiTFlow benefits
slightly from multi-block guidance, we opted for the single-
block approach in our main experiments due to the addi-
tional computational overhead associated with multi-block
configurations. Finally, we compare results for three dif-
ferent optimizers and find that Adam has the best balance
between motion transfer and quality.

Temperature MF ↑ IQ ↑
1 0.763 0.313
2 0.797 0.313
5 0.799 0.317

10 0.777 0.315

(a) Temperature

Blocks MF ↑ IQ ↑
20 0.797 0.313

10,15,20 0.804 0.313

(b) Multi-block setup

Optimizer MF ↑ IQ↑
Adam 0.797 0.313

AdamW 0.803 0.311
SGD 0.623 0.320

(c) Optimizer algorithm

Table 3. Further ablations on CogVideoX-5B.

C. Nearest neighbor alternatives
An alternative signal for AMF construction could have been
the usage of nearest neighbors on noisy latents, as in related
works [14]. In Figure 8, we visualize correspondences ex-
tracted between two frames using this technique and com-
pare it to our AMF displacement. We demonstrate a much
smoother displacement map, which can lead to better guid-
ance on the rendered video.

D. Justification of AMF experiment
We conduct a small-scale study on 14 videos (from Sec-
tion 5.4), where we move the content of each video’s first
frame in a random direction. We calculate the AMF of each
video. If the motion of content is correctly captured, the
AMF vectors should point in the direction of the introduced
motion vector. We calculate the patch-wise cosine simi-
larity between AMF and ground truth motion. We obtain
0.857 for CogVideoX-2B and 0.734 for CogVideoX-5B.
The lower bound is 0.5 if random directions are predicted.
This proves that AMF is a valid signal for capturing motion,
which also aligns with the AMF visualisation in Figure 8.
The superior performance of the 5B model can also be at-
tributed to its better motion representations.

E. Injection baseline
We provide the qualitative results of our Injection baseline
in Figure 9. It is able to transfer coarse subject location
information while deviating significantly from the reference
motion. For instance, in the Subject example, the bear walks
in the opposite direction.

F. Limitations
As seen in previous methods [62], generations are still lim-
ited to the pre-trained video generator, so it has difficulty
transferring motion with prompts or motions that are out
of distribution. For example, complex body movements
(e.g. backflips) still remain a difficult task for these mod-
els. Moreover, we highlight that motion transfer is inher-
ently ambiguous if not associated to prompts. For example,
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(a) Frame i (b) Frame j

(c) Latent nearest neighbour (d) AMF displacement ∆i,j

Figure 8. Displacement maps of squat motion. We visualise
the displacement map between frames (a) and (b) computed on
latents. The displacements are mapped to colours according to
the colour wheel arrows shown. Taking the latent nearest neigh-
bour [14] in (c) results in very noisy displacements with poor
matching of content between frames. The AMF displacement in
(d) captures the downwards (yellow) motion of the person and
rightwards (red) motion of the panning camera better.

transferring the motion of a dog to a plane may risk to map
motion features of other elements in the scene to the plane
in the rendered video, even with KV injection. For future
work, we believe it will be important to associate specific
semantic directions (e.g. dog 7→ plane) to constrain editing,
similar to what happens in inversion-based editing [35].

The pairwise nature of AMF does lead to slightly
more memory consumption compared to previous methods.
However, we found performance to be consistent across se-
tups with different number of frames. Long video gener-
ation approaches that generate a smaller set of frames at
a time may readily be applied to our motion transfer ap-
proach.



Caption Subject Scene
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“Dog running between poles in an agility course” “Bear running in a garden” “Parachuting over a city, aerial view from above”

Figure 9. Injection baseline. Results are provided in the same setup as Figure 4.

Video Caption Subject Scene
blackswan A black swan swimming in a river A duck with a tophat swimming

in a river
A paper boat floating in a bathtub

car-turn A gray car with black tires driving
on a road in a forest

A man with a black top running
on a road in a forest, camera shot
from a distance

Black suv with tinted windows
driving through a roundabout in
a bustling city, surrounded by tall
buildings and bright lights

car-roundabout A gray mini cooper driving
around a roundabout in a town

A man riding a unicycle around a
roundabout in a town

A lion walking through a bustling
roundabout, surrounded by vi-
brant city life

libby Dog running in a garden Bear running in a garden Plane flying through the sky
above the clouds

bus Aerial view of bus driving on a
street

Aerial view of red ferrari driving
on a street

Closeup aerial view of an ant
crawling in a desert

camel A camel walking in a zoo A giraffe walking in a zoo A blue Sedan car turning into a
driveway

bear A bear walking on the rocks A giraffe walking on the rocks A giraffe walking in the zoo
bmx-bumps BMX rider biking up a sandy hill Black Jeep driving up a sandy hill Black Jeep driving up a hill in a

bustling city
bmx-trees Kid with white shirt riding a bike

up a hill, seen from afar, long-
distance view

Leopard running up a grassy hill Leopard running up a snowy hill
in a forest

boat Fishing boat sails through the sea
in front of an island, close-up,
medium shot, elevated camera an-
gle, wide angle view

Black yacht sails through the sea
in front of an island

Black yacht sails through the sea
in front of a bustling city

Table 4. Dataset snippet. Sample of DAVIS videos chosen with associated prompts from each category described in Section 5.
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