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Warning: This supplementary features explicit sexual con-
tent and other material that some readers may find disturb-
ing, distressing, or offensive.

In the following sections, we present additional materi-
als about HySAC. Firstly, we discuss the ethical impli-
cations and limitations of the proposed approach (Sec-
tion A). We provide additional details about our training
procedure (Section B) and NSFW classification (Section C).
Moreover, we report zero-shot robustness, further ablation
studies, and qualitative results of hyperbolic space traver-
sal (Section D, E).

A. Discussion and Limitations

This paper underscores the need for a nuanced approach to
content moderation in VLMs, contributing a robust starting
point for future research and deployment in this critical do-
main. Below, we discuss the ethical implications and limi-
tations of our work.
Ethical Implications. Our approach emphasizes trans-
parency by enabling users to distinguish between safe and
unsafe content, rather than concealing potentially harmful
material through unlearning. This empowers users with
greater control and insight into the AI system’s behavior,
aligning with principles of fairness and accountability in AI.
However, this increased transparency also places the ethical
responsibility to use such tools appropriately, underscoring
the need for clear guidelines to ensure responsible use. Ad-
ditionally, the datasets used to train VLMs often mirror so-
cietal biases, which can propagate or even exacerbate dis-
crimination if not addressed. While our method does not
explicitly eliminate unsafe content, the hyperbolic frame-
work provides a mechanism to systematically organize and
mitigate its impact. Still, there is an ethical imperative to
ensure that the boundary definitions of “safe” and “unsafe”
content are inclusive, equitable, and free from cultural or
ideological bias.
Dual-use implications. The ability to handle unsafe con-
tent is a deliberate choice aimed at retaining transparency
and control. Unlike unlearning-based methods, HySAC
maintains awareness of unsafe content, enabling safer redi-
rection while offering greater accountability. This also fa-
cilitates the identification of biases or training deficiencies,
which are harder to detect in an unlearning setting. It
is important to note that any vision-language model (in-
cluding standard CLIP) can be misused for harmful pur-
poses. HySAC will be released with an implementation that
does not support traversal toward unsafe areas. Deploy-

ing entities can also enforce tailored restrictions to align
the model’s behavior with cultural, legal, or organizational
needs, such as blocking unsafe retrievals entirely. HySAC
mitigates misuse risks while fostering accountability and
transparency.
Limitations and future work. While our model can orga-
nize appropriate and inappropriate concepts in a wide vari-
ety of cases, it does not provide any guarantee of success.
For instance, it might fail to redirect towards appropriate
content under certain conditions. Addressing these short-
comings will require further work, such as expanding the
training dataset to include more diverse and varied exam-
ples to reduce the impact of these failures. Additionally,
integrating HySAC with generative frameworks like Sta-
ble Diffusion presents a promising direction. This would
require adapting the U-Net architecture to the hyperbolic
embeddings from HySAC. This adaptation would enable
the traversal mechanism during the encoding of an unsafe
prompt. Such integration could enhance control over gener-
ated content while preserving creative flexibility.

B. Training Details
Here, we report additional training details necessary for re-
producibility.
GPUs. We train HySAC in a distributed setup for 15 hours
using 8 A100 GPUs (64GB), with a batch size of 32 per
GPU.
LoRA configuration. The low-rank adaptation [11] is ap-
plied to all attention layers and fully connected layers of
both the text and visual encoders. In the attention layers, we
apply LoRA to the keys and value projections, along with
the final output projection of each attention block. Addi-
tionally, we finetune the patch embedding layer in the visual
encoder. To prevent overfitting, we use a LoRA dropout rate
of 0.1, while setting the LoRA α parameter to 1 to ensure
stability during finetuning.
Memory usage and training times. Average VRAM us-
age is 54.9GB for Safe-CLIP [18] and 56.5GB for HySAC.
Training times per epoch are ∼24 minutes for Safe-CLIP
and ∼37 minutes for HySAC. With early stopping (patience
= 5), Safe-CLIP converges in ∼10 epochs, while HySAC re-
quires ∼20 due to the added complexity of hyperbolic mod-
eling.

C. NSFW Classification
We expand on the datasets and methods mentioned in Ta-
ble 5. Finally, we present an ablation of the threshold pa-
rameter for NSFW classification using HySAC.



C.1. Additional details on datasets
Mixed NSFW. The Mixed NSFW dataset used in Ta-
ble 5 comprises 442 images collected from various NSFW
sources across the internet. The dataset is divided as fol-
lows: (i) 237 safe images randomly sampled from the
PASS [1] dataset, which contains natural images without
persons; (ii) 205 NSFW images collected from various
sources depicting nudity1, violence/blood2, and firearms3.

C.2. Baselines
The settings for NSFW-CNN [15], CLIP-Classifier [23],
and CLIP-distance [20] are taken from Leu et al. [16], and
we briefly summarize them below for reference, along with
NudeNet [2] and Q16 [22].

NSFW-CNN. NSFW-CNN [15] uses InceptionV3 [25]
trained on data obtained from an NSFW scraper [13]. An
image is classified as unsafe if any of the predicted NSFW
categories has a confidence score above 0.7; otherwise, it is
labeled as safe.
CLIP-Classifier. CLIP-Classifier [23] employs the CLIP
image encoder (VIT-L/14) [4] with an added fully con-
nected layer for binary classification, trained on a subset of
the LAION-5B dataset [24]. Images with a classifier confi-
dence score above 0.7 are marked as NSFW.
CLIP-Distance. CLIP-Distance uses the CLIP VIT-L/14
image encoder [4] and classifies images based on their co-
sine similarity to the text embeddings of 17 predefined
strings representing NSFW concepts. This approach was
employed in the safety checker of Stable Diffusion [21].
We utilize the code implementation from Rando et al.4 to
classify an image as NSFW or safe.
NudeNet. NudeNet [2] ensembles multiple networks
trained for detecting nudity. Images are classified as NSFW
if the probability of an unsafe class exceeds 0.7.
Q16. Q16 [22] uses CLIP [19] models, prompt-tuned with
socio-moral value datasets [6] to identify NSFW content.

C.3. Ablation of the threshold for HySAC classifier.
HySAC determines the threshold for classifying NSFW im-
ages based on the norm of the embedding, using the mean of
the distribution norms from Figure 2 as the threshold. The
NSFW classification performance of HySAC is reported for
0.1 intervals around this mean threshold.

In Table 7, we demonstrate the impact of the threshold
hyperparameter on NSFW retrievals for NudeNet and ex-
amine the tradeoff between safe and unsafe retrievals for
the Mixed NSFW dataset. We observe that for NudeNet,

1Images labeled as “unsafe” from the validation set of roboflow/nudity-
dataset.

2Images depicting violence from drive/violence-data.
3Images from the validation set of roboflow/weapon-dataset.
4See Rando’s Colab Notebook.

NudeNet Mixed NSFW

Thresh. Acc ↑ FNR ↓ Acc ↑ FPR ↓ FNR ↓
0.51 100 0.0 50.7 53.6 0.0
0.52 99.5 0.5 59.7 43.7 0.2
0.53 89.2 10.8 78.5 16.5 6.8
0.54 59.6 40.4 75.4 3.6 23.1
0.55 59.6 40.4 62.8 2.0 38.4

Table 7. Ablation of NSFW Classification Threshold for
HySAC. This table shows the trade-off between safe and unsafe
classification performance as the threshold varies. Accuracy, FPR,
and FNR are reported in percentages. The bold values indicate the
best performance, and the underlined values indicate the second
best. Values corresponding to the threshold of 0.51, although best
for FNR (i.e., NSFW classification), come at the cost of higher
misclassification of safe content and are thus not bolded. Rows
highlighted in purple correspond to the results reported in Table 5.

increasing the threshold leads to a decrease in accuracy and
an increase in the False Negative Rate (FNR), indicating
more NSFW content being misclassified as safe. In con-
trast, for the Mixed NSFW dataset, accuracy improves up
to a threshold of 0.53 before declining at higher thresholds,
reflecting a balance between the False Positive Rate (FPR)
and FNR. These results highlight the inherent trade-off be-
tween FPR and FNR when adjusting the threshold. More-
over, we hypothesize that fine-tuning the radius of the hy-
perboloid – which influences the norm of the embeddings –
could enhance the separation between embeddings, leading
to improved precision in classifying safe images. This sug-
gests that further refinement of the embedding space could
significantly boost the classification performance.

D. Additional Experimental Results and Abla-
tions

Here, we show the zero-shot retrieval and classification per-
formance of HySAC in comparison to baseline models. We
also show the retrieval performance of HySAC across var-
ious NSFW categories of the ViSU test set. Finally, we
present further ablation studies to evaluate the impact of hy-
perbolic geometry in our proposed approach.

D.1. Robustness evaluation
We evaluate the cross-modal zero-shot retrieval capabil-
ities of HySAC compared to CLIP and Safe-CLIP on
Flickr8K [10], Flickr30K [26] and COCO [3]. Additionally,
we benchmark the zero-shot classification performance on
CIFAR-10 [14], VOC [7], Caltech-101 [17], KITTI [9], and
CLEVR [12]. Table 8 showcases that HySAC can preserve
or improve performance on all retrieval tasks. CLIP fine-
tuned hyperbolic models (MERU⋆ and HyCoCLIP⋆ achieve
similar scores as our method, highlighting the benefit of hy-
perbolic space. For the zero-shot classification task, perfor-

https://universe.roboflow.com/usman-ixf1b/nudity-noeag
https://universe.roboflow.com/usman-ixf1b/nudity-noeag
https://drive.google.com/drive/folders/1-6Q7jmdAqKK-FY31Q6fJacBKem9dn3_N
https://universe.roboflow.com/aidc-weapon-detection-20wnm/weapon-detection-g221d
https://colab.research.google.com/drive/1TWQae-fBpw7vS7j-N1WAM_30Mq2N80JL


Flickr8k Flickr30k MS COCO Zero-Shot Classification

Model T2I I2T T2I I2T T2I I2T C10 VOC C101 KT CL

CLIP 86.4 94.0 87.3 97.3 61.1 79.3 95.6 78.3 83.3 21.7 19.4
MERU 44.4 53.9 37.9 45.9 32.0 40.9 67.9 58.4 70.9 10.3 18.4
HyCoCLIP 83.3 92.9 86.0 93.4 60.3 71.8 90.8 70.7 79.7 26.7 16.6
Safe-CLIP 87.4 93.9 89.9 96.0 72.4 84.0 88.9 76.5 81.4 29.4 22.8

MERU⋆ 93.0 96.8 94.7 98.7 75.8 87.5 93.6 82.0 85.9 24.3 27.7
HyCoCLIP⋆ 92.2 95.9 93.9 98.7 73.1 84.8 92.8 67.9 83.7 23.1 21.5
HySAC 92.1 96.2 93.2 97.9 75.1 85.4 93.6 81.7 82.2 32.6 23.2

Table 8. CLIP robustness preservation results. Metrics: R@5
for zero-shot retrieval, top-1 accuracy for zero-shot classification.

Hate Harassment Violence Self-harm Sexual Shocking Illegal Act.

Model T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T T2I I2T
CLIP 5.2 8.1 6.0 9.2 2.5 5.6 4.1 7.9 2.3 4.3 2.3 5.1 3.0 6.3
MERU 9.7 15.0 8.4 12.8 3.2 6.8 8.3 13.8 5.9 6.0 4.6 7.9 4.8 7.3
HyCoCLIP 3.3 15.9 5.2 16.9 2.7 8.7 2.1 12.6 6.1 4.1 6.3 7.8 3.7 12.9
Safe-CLIP 15.9 32.1 14.9 28.9 11.0 23.6 13.8 33.9 10.6 20.2 12.2 28.0 11.3 24.0
MERU⋆ 3.6 9.3 4.4 8.8 2.0 6.8 2.5 8.8 1.9 3.9 3.7 5.7 2.9 6.3
HyCoCLIP⋆ 2.0 11.0 3.6 8.4 1.3 7.8 3.8 7.9 11.7 6.1 2.4 7.4 2.3 8.0
HySAC 64.6 76.8 61.0 71.5 42.5 53.5 66.5 73.6 50.7 57.7 53.8 66.0 44.9 55.8

Table 9. Retrieval (R@1) for seven categories of unsafe content
from ViSU test.

mances have only partially deteriorated, with good integrity
on most datasets. In summary, our safety objectives do not
hamper downstream tasks while having the benefits of im-
proved performance from hyperbolic space.

D.2. HySAC Across NSFW Categories.
In Table 9, we report results across NSFW categories of the
ViSU dataset, which demonstrates the generalization capa-
bilities of HySAC across topics.

D.3. Ablation on Geometry of the Embedding Space
To better understand the role of geometry in embedding
safety-aware hierarchical relationships, we perform two key
ablation studies. These studies explore the performance
of embeddings in Euclidean and hyperbolic spaces using
modified versions of HySAC and other safety-aware frame-
works. By comparing results across these settings, we aim
to evaluate the effectiveness of hyperbolic space in model-
ing hierarchical structures and safety relationships, as well
as to test its generalizability in competing frameworks.
Euclidean Safety-Aware CLIP. We train HySAC in Eu-
clidean space, keeping the loss functions and hyperparame-
ters identical to the original model. For this setup, we adopt
Euclidean Entailment Cones introduced in Ganea et al. [8]
and defined for vision-language models in Chou et al. [5].
In Euclidean space, the half-aperture of each conical region,
Seucq, is calculated as

ωeuc(q) = sin−1

(
K

∥q∥

)
, (18)

where K is a constant fixed to 0.1 which limits values near
the origin, and q is the Euclidean embedding. For a pair

(p,q) ∈ X , where p is a subconcept of q, the exterior
angle ϕeuc(p,q) is given by

ϕeuc(p,q) = cos−1

(
(q− p) · p
∥q− p∥∥p∥

)
. (19)

Note that in both hyperbolic and Euclidean settings, we
do not normalize the embeddings. The training is performed
using the standard CLIP contrastive loss. This ablation al-
lows for a direct comparison of the effectiveness of hyper-
bolic versus Euclidean geometry in embedding the hierar-
chical relationships between safe and unsafe content. The
results, as shown in Table 10, highlight the benefits of using
hyperbolic space for capturing entailment and safety rela-
tionships, ultimately leading to improved retrieval perfor-
mance and enhanced safety-awareness capabilities.

Additionally, Figure 4 compares the distributions of the
distances of all embeddings from the root for the ViSU test
set, between HySAC and Euclidean Safety-Aware CLIP. In
both models, the root is represented by the origin of the
space. The distributions show four clear peaks correspond-
ing to each one of the T , I , T ⋆, and I⋆ groups of data, while
this is not observable for the Euclidean version.
Hyperbolic Safe-CLIP. We train Safe-CLIP [18] in hyper-
bolic space where we keep all the same loss functions as the
original Safe-CLIP but replace Euclidean space with hyper-
bolic space. Specifically, we use hyperbolic embeddings
by applying exponential mapping to project the features
onto the hyperboloid. By adapting Safe-CLIP to hyperbolic
space, we aim to evaluate the impact of using hyperbolic
space in a competing framework and compare its perfor-
mance to HySAC. The results, reported in Table 10, demon-
strate that incorporating hyperbolic geometry in Safe-CLIP
alone is not sufficient to ensure safety during retrieval.

This study allows us to determine whether the advan-
tages we observe with HySAC are unique to our approach or
if hyperbolic space can generally enhance safety-awareness
capabilities across other frameworks as well.

(T -to-I) (I-to-T ) (T ⋆-to-I ∪ I⋆) (I⋆-to-T ∪ T ⋆)

Model R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10
Euc EC 32.8 72.0 35.7 75.4 2.1 31.5 0.0 0.2
Hyp Safe-CLIP 46.9 82.3 44.7 82.5 5.1 42.1 9.8 51.7

HySAC 49.8 84.1 48.2 84.2 30.5 62.8 42.1 73.3

Table 10. Ablation study on Euclidean space and hyperbolic
Safe-CLIP. We evaluate HySAC against its Euclidean version
which employs Euclidean entailment cones and against Safe-CLIP
finetuned in hyperbolic space.

D.4. Hyperparameter ablations for η

Here, we report the hyperparameter ablations for η, which is
the multiplier for half-aperture in the entailment loss (Equa-
tion 13 in the main paper). This parameter controls the



Figure 4. Distributions of embedding distances from the root.
Comparison of the distance distributions of Euclidean and hyper-
bolic embeddings from the root. Euclidean version of HySAC
does not separate between safe and unsafe content, while HySAC
does.

width of the entailment cone. η < 1 narrows the entailment
cone, enforcing stricter hierarchical constraints, whereas
η > 1 widens it, relaxing these constraints. In HySAC, η
is set to 1 and performs the best on unsafe-safe retrievals as
reported in Table 11. Though η > 1 slightly improves safe-
safe retrievals, it heavily degrades the safety performance.

(T -to-I) (I-to-T ) (T ⋆-to-I ∪ I⋆) (I⋆-to-T ∪ T ⋆)

R@1 R@10 R@1 R@10 R@1 R@10 R@1 R@10
η = 0.25 43.8 80.2 42.6 79.5 17.4 53.8 6.0 57.8
η = 0.5 37.5 74.9 35.7 73.1 7.8 41.9 4.9 49.3
η = 0.75 47.1 81.8 43.3 80.8 28.5 59.8 41.4 72.0
η = 1.25 51.7 85.1 49.3 84.6 20.1 62.2 3.6 63.3
η = 1.5 51.4 84.8 50.8 84.8 4.0 49.5 6.6 65.5
η = 1.75 51.7 84.7 50.7 84.8 2.2 46.2 5.1 65.2
HySAC 49.8 84.1 48.2 84.2 30.5 62.8 42.1 73.3

Table 11. Hyperparameter ablations for η. We train HySAC
with different half-aperture scales, comparing only safe recalls and
unsafe to safe recalls. In HySAC, η is set to 1.0.

E. Image and text traversals: details and visu-
alizations

In this section, we detail additional settings to visualize how
effective HySAC is at managing unsafe and safe content
through image and text traversals. We describe the experi-
mental settings for each of the three types of traversals pre-
sented in Figures 5, 6, and 7, highlighting the strategies em-
ployed to transition between unsafe and safe regions in the
hyperbolic space.

E.1. Unsafe Image to Safe Text Traversal
In the first experiment, we show the safety traversal using
unsafe images as queries to gradually find safer, relevant
captions. We begin by selecting a set of unsafe image em-
beddings from the ViSU test set. These embeddings are
firstly mapped to the tangent Euclidean space by applying
a logarithmic mapping. Then they are linearly interpolated

with the origin of the hyperbolic space, which represents the
root feature. During each traversal step, interpolation points
are mapped back onto the hyperboloid through exponential
mapping and used as new queries to retrieve captions from
a pool of safe and unsafe texts. The text pool is composed
of safe and unsafe captions of ViSU test set, 748 metadata-
based captions from pexels.com, and a curated list of
402 unsafe words5.

The retrieval results are reported in Figure 5 and show a
shift from unsafe to safe captions as the image embeddings
while approaching the root, effectively illustrating the abil-
ity of HySAC to perform safety-aware adjustments in the
embedding space.

E.2. Unsafe Image to Safe Image Traversal
The second experiment focuses on redirecting unsafe image
queries toward their corresponding safe images. Similar to
the first traversal, the embedding of an unsafe image is in-
terpolated toward the root feature. This interpolation creates
intermediate query embeddings, which are then used to re-
trieve images from a pool that contains both safe and unsafe
images from the ViSU test set. As the traversal progresses,
the retrieved images, as shown in Figure 6, increasingly be-
long to the safe category. This demonstrates that HySAC
can effectively guide unsafe visual content toward safer al-
ternatives.

E.3. Safe Image to Safe Text Retrieval
The final experiment evaluates how well HySAC preserves
performance on safe data. Here, safe image queries are
used to retrieve captions exclusively from a pool of safe
text, sourced from the ViSU test set and metadata from
pexels.com. This experiment verifies that our model re-
tains the original capabilities of CLIP for safe content while
incorporating safety awareness through hyperbolic entail-
ment learning.

The results, shown in Figure 7, confirm that the traver-
sal mechanism maintains semantic integrity, ensuring that
safe queries yield safe responses without unintended alter-
ations. Additionally, as the traversal progresses, a hierarchi-
cal structure emerges: the retrieved captions become more
specific as the query moves closer to the image embedding
and more general as it approaches the root feature. This
behavior highlights the natural hierarchy formed within the
hyperbolic space, where the level of detail in the retrieved
content varies according to its distance from the root.

This further highlights the robustness of HySAC in re-
taining desirable behaviors for safe content.

5github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-
Otherwise-Bad-Words

https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words


Figure 5. Traversals from unsafe image queries towards safe captions. We present qualitative results of HySAC, showing the traversals
from unsafe image queries toward the root feature. Interpolation points along this path are used as new queries to retrieve captions from a
pool of both safe and unsafe texts.



Figure 6. Traversals from unsafe image queries towards safe images. We illustrate how HySAC can guide the transition from unsafe
image queries to corresponding safe images, utilizing intermediate interpolation steps along the traversal path.



Figure 7. Traversals from safe image queries to safe text. We demonstrate how HySAC effectively maintains its performance on safe
data by using safe image queries to retrieve captions exclusively from a pool of safe text.
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