
Supplementary Material:
MonoDGP: Monocular 3D Object Detection with Decoupled-Query and

Geometry-Error Priors

Fanqi Pu1 Yifan Wang1 Jiru Deng1 Wenming Yang1*

1Shenzhen International Graduate School, Tsinghua University
{pfq23, yf-wang23, djr23}@mails.tsinghua.edu.cn, yang.wenming@sz.tsinghua.edu.cn

A. Detailed Discussion on Depth Error
In our method, we regard the distance between the cam-

era plane and the car’s closest wheel point as the geometric
depth. However, this assumption is appropriate when the
camera has the same height of the object. The height in-
consistency will lead to the bias lbias between the actual
geometric depth Zgeo and the wheel depth Zw. We set
the height ratio γ of the camera height Hcam to the object
height H as follows:

γ =
Hcam

H
(1)

We will discuss how the height ratio affects the distribu-
tion of the depth error Zerr.
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Figure 1. The perspective transformation when the camera height
is lower than the object height.

The vehicle is treated as a trapezoid. The closest wheel
locates in the lowest position of the 2D bounding box, while
the highest position in the object surface will change with
the height ratio. As shown in Fig. 1, when γ < 1, the wheel
depth is shorter than the geometric depth, which can be ex-
pressed as:

Zgeo = Zw + lbias (2)

To calculate the wheel bias, we first represent the height
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at the wheel point based on the similar triangle theory:

tanα =
H −Hcam

Zw + la
=

H −Hw

la
(3)

Hw = H − (H −Hcam) · la
Zw + la

(4)

And then we utilize Hw to compute lbias :

H

Zgeo
=

Hw

Zw
(5)

lbias =
(H −Hcam) · Zw · la
H · Zw +Hcam · la

=
(1− γ) · Zw · la
Zw + γ · la

(6)

We can express depth error as follows:

Zerr = lb1 + la − lbias = lb1 + σ1 · la (7)

σ1 =
γ

1− (1−γ)·la
Zw+la

(8)

where γ < σ1 < 1, lbias < (1− γ) · la. The original depth
error, which should be perspective-invariant, is calculated
by the formula Zerr = lb1 + la. Except for the vehicle’s
own attributes, γ and Zw also affect the depth error. The
closer σ1 is to 1, the less effect it has. According to the
Eq. (8), σ1 reduces as Zw increases and γ decreases.

To present the greatest impact of the height ratio, we take
an extreme example based on the Fig. 2, and make σ1 as
smaller as possible. Specifically, we set Hcam = 1.5m,
H = 1.8m, γ = 5

6 , la = 1m, Zw = 50m. From the Eq. (6)
and Eq. (8), we obtain σ1 ≈ 0.84 and lbias ≈ 0.16m.
This extreme bias value is significantly lower than the whole
depth value.

As shown in Fig. 3, when γ > 1, the wheel depth is
larger than the geometric depth, which can be expressed as:

Zgeo = Zw − lbias (9)
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Figure 2. The data distribution of the object’s central depth and
dimension height on the KITTI training set.
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Figure 3. The perspective transformation when the camera height
is higher than the object height.

We can achieve the wheel bias similar to the previous
proof process:

tanβ =
Hcam −H

Zw + la + lb1 + lb2
=

Hw −H

la + lb1 + lb2
(10)

Hw =
H · Zw +Hcam · (la + lb1 + lb2)

Zw + la + lb1 + lb2
(11)

lbias =
(γ − 1) · Zw · (la + lb1 + lb2)

Zw + γ · (la + lb1 + lb2)
(12)

Homogeneously, we can express depth error as follows:

Zerr = lb1 + la + σ2 · (la + lb1 + lb2) (13)

σ2 =
(γ − 1)

1 + γ·(la+lb1+lb2)
Zw

(14)

where 0 < σ2 < γ − 1, lbias < (γ − 1) · (la + lb1 + lb2).
The closer σ2 is to 0, the less effect it has. According to the
Eq. (14), σ2 increases as Zw and γ increase.

To show the height ratio’s maximum impact, we also
suppose an extreme case and make σ2 as larger as possible.
To be more specific, we set Hcam = 1.5m, H = 1.25m,
γ = 6

5 , la + lb1 + lb2 = 2m, Zw = 50m. Based on
the Eq. (12) and Eq. (14), we achieve σ2 ≈ 0.19 and
lbias ≈ 0.38m. This bias value is higher than the value
calculated when γ < 1, but has a slight effect on the whole
depth.

In most instances, the camera height is close to the ve-
hicle height, which means γ ≈ 1 and the depth error is
roughly perspective-invariant for the car category. Even
if the object height is obviously different from the camera
height, the network can directly learn and predict this tiny
bias compared with the whole depth. The error prediction
is still a simple and effective method to replace the multi-
depth prediction.

B. Discussion on Geometric Constraints
Previous works like Deep3DBox [12] and Shift R-

CNN [13] enforce strict geometric constraints by tightly fit-
ting projections of the 3D bounding box into the 2D box.
While recent methods such as MonoGR2 [1] and GUP-
Net [9] formulate constraints based on geometric similar-
ity, where under vehicle-mounted camera perspectives and
fixed focal length, the object’s center depth can be uniquely
determined through the proportional relationship between
its 3D height and 2D projected height.

Projection-alignment constraints exhibit quadratic errors
from 2D boundary localization inaccuracies, while height-
ratio constraints demonstrate linear errors confined to
height predictions. The former fails with truncated objects
requiring full 2D contours, whereas the latter maintains
functionality under partial occlusions through visible height
segments. Height-ratio constraints surpass projection-
alignment methods in stability (linear vs. quadratic errors),
efficiency (closed-form vs. iterative), and robustness (par-
tial vs. full contours), establishing them as core geomet-
ric priors for monocular 3D detection. Future frameworks
could incorporate projection-alignment constraints as aux-
iliary regularizers within joint optimization.

C. Detailed Loss Function
The 2D loss L2D adopts focal loss [7] to estimate the

object categories, L1 loss to estimate the projected center
(x3d, y3d) and 2D sizes (l, r, t, b), and GIoU loss for the
bounding box. We can formulate the 2D object loss as:

L2D = λ1Lcls + λ2L2dsize + λ3Lxy + λ4Lgiou (15)

The 3D loss follows MonoDLE [11] to predict 3D sizes
(h3d, w3d, l3d) and orientation angle α. As for the depth
prediction, an uncertainty regression loss based on the
Laplacian distribution is defined as:

Ldepth =

√
2

σd

∥∥∥∥f ·H
hbbox

+ Zerr − Zgt

∥∥∥∥
1

+ log(σd) (16)

where σd is the standard deviation of the distribution.
We can formulate 3D object loss as:

L3D = λ5L3dsize + λ6Langle + λ7Ldepth (17)



Methods
Val, IoU=0.5, AP3D|R40

Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard

MonoDGP (Ours) 13.77 10.06 7.96 12.21 6.61 5.95
w/o Segment Embeddings 13.02 9.67 7.66 10.56 5.22 4.68
w/o RSH 12.50 9.42 7.34 9.16 4.34 4.18
w/o Depth Error 9.90 7.55 6.09 11.13 5.86 5.51

Table 1. Ablation study of the pedestrian and cyclist categories on
the KITTI val set.

Methods Extra
data

Test, IoU=0.5, AP3D|R40

Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard

CaDDN [15] LiDAR 12.87 8.14 6.76 7.00 3.41 3.30
OccupancyM3D [14] 14.68 9.15 7.80 7.37 3.56 2.84
MonoPGC [19] Depth 14.16 9.67 8.26 5.88 3.30 2.85
GUPNet [9]

None

14.72 9.53 7.87 4.18 2.65 2.09
MonoCon [8] 13.10 8.41 6.94 2.80 1.92 1.55
DEVIANT [5] 13.43 8.65 7.69 5.05 3.13 2.59
MonoDDE [6] 11.13 7.32 6.67 5.94 3.78 3.33
MonoDETR [21] 12.65 7.19 6.72 5.12 2.74 2.02
MonoDGP (Ours) None 15.04 9.89 8.38 5.28 2.82 2.65

Table 2. Comparisons of the pedestrian and cyclist categories on
the KITTI test set. We bold the best results and underline the
second-best results.

The depth map loss Ldmap utilizes focal loss to predict
categorical foreground depth map. More detailed informa-
tion about Ldmap can be found in MonoDETR [21].

D. Experiments on Other Categories
Since segment embeddings are mainly trained to distin-

guish between background and target, they can easily han-
dle multiple classes without modification. Ablation studies
of other categories are shown in Tab. 1. In particular, error
prediction significantly improves 3D pedestrian prediction
compared to cars and cyclists. This can be explained that
pedestrians have consistent depth errors across orientations,
whereas cyclists have irregular shapes and greater geomet-
ric uncertainty. These spatial uncertainties may degrade the
effectiveness of the projection transformation.

We also compare the pedestrian and cyclist detection re-
sults in Tab. 2. Specifically, our method achieves a superior
performance on all levels of difficulty for pedestrian detec-
tion, benefiting from its simple and stable geometric struc-
tures. However, the performance for the cyclist category
falls short of the best.

Notably, despite these geometric challenges, our cyclist
detection performance remains competitive among methods
without extra training data. This underscores the generaliz-
ability of RSH module for complex categories.

E. Sensitivity to Initial Features
Since error prediction mode heavily relies on good geo-

metric features, the inaccuracies of initial features can sig-
nificantly impact the convergence and performance of the

Geometric Depth ( f ×H3D/hbbox ) Val, IoU=0.7, AP3D|R40

Ground Truth H3D Ground Truth hbbox Easy Mod. Hard
30.76 22.34 19.01

! 39.10 31.89 27.51
! 33.62 25.04 21.97

! ! 57.81 48.55 41.92

Table 3. Sensitivity study on the KITTI val set for the car category.

Depth Prediction Mode Val, IoU=0.7, AP3D|R40

Easy Mod. Hard
Direct Depth 24.33 18.87 15.31
DAv2-small (HS) + Depth Error 11.45 9.11 7.86
DAv2-small (VK2) + Depth Error 27.04 20.48 17.52
DAv2-base (VK2) + Depth Error 27.86 21.15 18.10

Table 4. Ablation Study of pre-trained MDE. ‘DAv2’ denotes
Depth Anything V2 [20] method, ‘HS’ denotes pre-trained on in-
door dataset Hypersim [16], ‘VK2’ denotes pre-trianed on outdoor
dataset Virtual KITTI 2 [3].

proposed network. The Initial features, such as 3D dimen-
sion height (H3D) and 2D bounding box height (hbbox), are
crucial for geometric depth calculation. To analyze their
individual impacts, we conduct sensitivity experiments re-
placing predicted H3D and hbbox with ground truth values.

As shown in Tab. 3, the perfectly accurate geometric
depth improves moderate AP3D by up to 26.21%, high-
lighting the significance of these features. Compared to
hbbox, the network is more sensitive to H3D errors due to its
inherent difficulty as a 3D property. There also exists a cou-
pling relationship between hbbox and H3D. Simultaneously
replacing both features with ground truth values performs
much better than replacing them individually. Current limi-
tations mainly arise from height prediction error accumula-
tion in the perspective projection. Improvements in monoc-
ular features, particularly for H3D, will further enhance the
performance of error prediction in the future.

F. Initial Depth from Pre-trained MDE

Monocular depth estimation (MDE) models have devel-
oped for many years. We can also utilize the pre-trained
MDE to provide a roughly approximate surface depth, sim-
ilar to geometric depth, which may render the learning prob-
lem even simpler.

To explore this possibility, we exploit Depth Anything
V2 [20] to generate depth maps. Based on the initial metric
depth, error prediction can achieve better performance com-
pared to direct prediction in Tab. 1. However, MDE heavily
relies on pre-trained datasets, while geometric depth relies
on its own attributes without additional parameters. This
will limit the generalization of achieving initial depth from
pre-trained MDE.



Difficulty Methods Extra AP3D APH3D

All 0-30 30-50 50-∞ All 0-30 30-50 50-∞

Level 1(IoU=0.7)

CaDDN [15] LiDAR 5.03 15.54 1.47 0.10 4.99 14.43 1.45 0.10
PatchNet [10] in [18] Depth 0.39 1.67 0.13 0.03 0.39 1.63 0.12 0.03
PCT [18] Depth 0.89 3.18 0.27 0.07 0.88 3.15 0.27 0.07
M3D-RPN [2] in [15] None 0.35 1.12 0.18 0.02 0.34 1.10 0.18 0.02
GUPNet [9] in [5] None 2.28 6.15 0.81 0.03 2.27 6.11 0.80 0.03
DEVIANT [5] None 2.69 6.95 0.99 0.02 2.67 6.90 0.98 0.02
MonoUNI [4] None 3.20 8.61 0.87 0.13 3.16 8.50 0.86 0.12
MonoDGP (Ours) None 4.28 10.24 1.15 0.16 4.23 10.10 1.14 0.16

Level 2(IoU=0.7)

CaDDN [15] LiDAR 4.49 14.50 1.42 0.09 4.45 14.38 1.41 0.09
PatchNet [10] in [18] Depth 0.38 1.67 0.13 0.03 0.36 1.63 0.11 0.03
PCT [18] Depth 0.66 3.18 0.27 0.07 0.66 3.15 0.26 0.07
M3D-RPN [2] in [15] None 0.35 1.12 0.18 0.02 0.33 1.10 0.17 0.02
GUPNet [9] in [5] None 2.14 6.13 0.78 0.02 2.12 6.08 0.77 0.02
DEVIANT [5] None 2.52 6.93 0.95 0.02 2.50 6.87 0.94 0.02
MonoUNI [4] None 3.04 8.59 0.85 0.12 3.00 8.48 0.84 0.12
MonoDGP (Ours) None 4.00 10.20 1.13 0.15 3.96 10.08 1.12 0.15

Level 1(IoU=0.5)

CaDDN [15] LiDAR 17.54 45.00 9.24 0.64 17.31 44.46 9.11 0.62
PatchNet [10] in [18] Depth 2.92 10.03 1.09 0.23 2.74 9.75 0.96 0.18
PCT [18] Depth 4.20 14.70 1.78 0.39 4.15 14.54 1.75 0.39
M3D-RPN [2] in [15] None 3.79 11.14 2.16 0.26 3.63 10.70 2.09 0.21
GUPNet [9] in [5] None 10.02 24.78 4.84 0.22 9.94 24.59 4.78 0.22
DEVIANT [5] None 10.98 26.85 5.13 0.18 10.89 26.64 5.08 0.18
MonoUNI [4] None 10.98 26.63 4.04 0.57 10.73 26.30 3.98 0.55
MonoDGP (Ours) None 12.36 31.12 5.78 1.24 12.18 30.68 5.71 1.22

Level 2(IoU=0.5)

CaDDN [15] LiDAR 16.51 44.87 8.99 0.58 16.28 44.33 8.86 0.55
PatchNet [10] in [18] Depth 2.42 10.01 1.07 0.22 2.28 9.73 0.97 0.16
PCT [18] Depth 4.03 14.67 1.74 0.36 4.15 14.51 1.71 0.35
M3D-RPN [2] in [15] None 3.61 11.12 2.12 0.24 3.46 10.67 2.04 0.20
GUPNet [9] in [5] None 9.39 24.69 4.67 0.19 9.31 24.50 4.62 0.19
DEVIANT [5] None 10.29 26.75 4.95 0.16 10.20 26.54 4.90 0.16
MonoUNI [4] None 10.38 26.57 3.95 0.53 10.24 26.24 3.89 0.51
MonoDGP (Ours) None 11.71 31.02 5.61 1.17 11.56 30.58 5.54 1.15

Table 5. Results on the Waymo val set for the vehicle category. Compared with methods without extra data, we bold the best results and
underline the second-best results.

G. Experiments on Waymo Open Dataset

Waymo [17] evaluates objects at Level 1 and Level 2,
which are determined by the number of LiDAR points
within their 3D bounding boxes. The experiments is con-
ducted across three distance ranges: [0, 30), [30, 50), and
[50, ∞) meters. Performance on the Waymo dataset is as-
sessed by average precision AP3D and average precision
weighted by heading APH3D.

We follow the DEVIANT [5] split to generate 52,386
training and 39,848 validation images by sampling every
third frame. For fairness, we mainly compare with methods
using the same split in Tab. 5. Our method achieves state-
of-the-art performance without extra data across all ranges,
particularly for distant objects. These results further vali-
date the effectiveness and generalizability of MonoDGP. It
is worth noting that CaDDN [15]’s performance is better
than MonoDGP, this discrepancy may be attributed to dif-
ferent dataset splits and introduction of LiDAR data.

H. Qualitative Discussion and Visualization
To provide a more intuitive comparison between our

method and the baseline models, we visualize some 3D de-
tection results from both the camera view and the bird’s-eye
view on the KITTI validation set. As shown in Fig. 4, our
method demonstrates superior performance on distant and
length-occluded objects.

However, since error prediction is affected by the ini-
tial accuracy of geometric depth, which is calculated from
height relationships, height occlusion remains a challenge
for our method. For the leftmost vehicle in the third exam-
ple of Fig. 4, bushes block out its lower part, weakening the
accuracy of height and consequently propagating errors to
depth prediction. This failure case highlights the need for
further improvements in handling height occlusion, poten-
tially through the integration of additional contextual infor-
mation or more robust occlusion-aware models.



Figure 4. Qualitative results on KITTI validation set. (a) MonoCD (b) MonoDETR (c) MonoDGP (ours). In each group of images, the
first row shows the camera view, and the second row shows the bird’s-eye view. Green represents the ground truth of boxes, while Red
represents the prediction results. We also circle some objects to highlight the difference between the baseline model and our method.
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