ProbPose: A Probabilistic Approach to 2D Human Pose Estimation
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Figure 6. A scheme explaining where keypoints could be in the im-

and the activation window (usually coincides with the model in-
put). Image taken from the COCO val dataset.

age. Rectangles represent the

A. On the types of keypoint

Fig. 6 illustrates possible keypoint locations, assuming that
all keypoints of an individual are present within or outside
the image. The image edge is treated as another form of
occlusion, much like an object blocking part of the body.
Whether a person is occluded by an object (e.g., a wardrobe)
or cropped by the image, invisible keypoints must be esti-
mated from the visible ones and the structure of the human
body.

In the top-down approach to human pose estimation, the
image is divided into three main areas, which are depicted
in Fig. 6 and defined below.

(bbox) — the tightest rectangle enclos-
ing all visible parts of the individual. A perfect human de-
tector outputs this kind of bounding box.

— the part of the image cropped and fed
into the top-down model. Due to aspect ratio constraints
and the need for contextual information, the model input
is usually larger than the bounding box and often includes
areas outside the image.

Activation window (amap, AM) — the area where the
top-down model localizes keypoints. This typically coin-
cides with the model input but can be larger or smaller. Like

Dataset | A B C D E
COCO train 96.2 3.5 00 02 0.0
COCO val 958 39 00 02 0.0
CropCOCOval | 68.8 22 235 0.1 53
OCHuman 99.2 0.8 00 0.0 0.0

Table 3. Domain shift between used datasets. Percenatages of
keypoint types. For definitions, see text.

the model input, the activation window often contains re-
gions outside the image.

The bounding box, activation window, and image edge
divide the space into five subareas, each behaving differ-
ently in the context of top-down human pose estimation.
These subareas (A-E) are visualized in the Fig. 6.

A — inside the bbox . Visible keypoints can only exist
within the bounding box.

B - inside both the activation window and the image .
The vast majority of COCO keypoints fall into areas
A and B. No visible keypoints are located outside the
bounding box.

C - inside the activation window but outside of the image .
Previous methods could theoretically predict keypoints
in area C, but they lack the necessary training data to do
SO.

D - outside of the activation window but inside the image .
Prior top-down methods cannot localize keypoints in
this area or describe them in any way. Approximately
0.2% of keypoints in the COCO dataset fall into this cat-
egory, meaning top-down methods are always penalized
by OKS for these points. However, ProbPose marks
these keypoints as “out” by predicting low presence
probability and won’t get penalized by Ex-OKS.

E - outside of both the image and the activation window .
Like points in area D, keypoints in area E have been
ignored by previous methods in both estimation and
evaluation. ProbPose, along with Ex-OKS, addresses
this issue using presence probability and a novel
evaluation metric Ex-OKS.

The proportion of annotated keypoints in each area de-
fines the domain of a dataset. For example, the domain of
the COCO-val dataset is represented by the vector (95.8,
3.9, 0, 0.2, 0), where each value indicates the percentage
of points in the corresponding subarea. In particular, there
are no annotated keypoints outside the image, and approxi-
mately 99.8% of the keypoints are within the activation win-
dow. Traditional top-down methods assume that 100% of
keypoints lie within the activation window.



Tab. 3 compares the domains of the datasets used for the
ProbPose evaluation. Before this paper, no dataset included
annotations outside the image, specifically in areas C and
D. Therefore, no evaluation protocol worked with these ar-
eas. Thus, previous evaluation protocols did not account
for these areas. Area D becomes critical under heavy occlu-
sion, where the detected bounding box is much smaller than
the individual. Likewise, areas C and E become important
when the image is heavily cropped or in close-view pose
estimation. The CropCOCO dataset tests the model under
domain shift, where keypoints were moved from area A to
areas C and E.

The visibility of the keypoint is only loosely related to
areas A-E. Although visible keypoints are always within the
bounding box (area A), invisible keypoints can be located in
any of the areas. Importantly, classifying keypoint visibility
is a different task from determining whether a keypoint is
present in the activation window.

B. Model calibration

Training probability maps with OKSLoss results in uncal-
ibrated probability maps. Calibration ensures that a prob-
ability map accurately refelcts the likelihood of finding a
point in a specific area. For example, among all predictions
where the model assigns probability 80%, approximately
80% of these predictions should be correct.

To achieve this, probabilities are summed starting from
the largest values, prioritizing the most likely regions first.
For instance, area with the top 5% of probabilities should
contain exactly 5% of the ground truth points. Because the
summation starts from the highest probabilities, the area
corresponding to the top 5% is always a subset of the top
20% etc. As a single pixel often has a probability greater
than 10%, calibration is done on sub-pixel precision.

Calibration is performed on a validation set using tem-
perature scaling [8], optimizing a single parameter 7". The
goal is to create an evenly distributed histogram as shown
in Fig. 7a, which shows the calibration curves before and
after the temperature scaling. Before calibration, the model
was underconfident with more than 5% of GT points in the
top-5% area. Notice the large peak in the 0% to 5% range.
These correspond to keypoints where the model failed com-
pletely, predicting very low probability for the correct area,
or incorrectly detecting the keypoint elsewhere (“keypoint
stealing” in overlapping individuals). More research on
overlapping individuals or data augmentation techniques
such as [2] can help address this issue.

The Fig. 7b presents the calibration curve of the presence
probability. Unlike keypoint localization, presence proba-
bility is naturally calibrated during training due to the use
of binary cross-entropy loss and the similar distribution be-
tween the training and testing sets.

Calibrating probability maps allows for estimating cali-
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Figure 7. Calibration curves of probability maps (a) before and af-
ter temperature scaling and presence probability (b). While pres-
ence probability is calibrated in a standard way, for probability
maps we require that top 5% of pixels contains 5% of points etc.
The peak in the calibration of the probability maps between 0%
and 5% are hard errors where the model fails to locate the key-
point. These are usually caused by occlusion and multibody situa-
tions.

brated posterior probability. By multiplying all elements in
the probability map with presence probability, we get a pos-
terior probability map, the probability that the keypoint is in
the given pixel. The posterior probability maps are shown
in Fig. 13 where ich color corresponds to area where a key-
point is with 10% probability. This leads to probabilistic
statements such as shown in Figs. 11 and 12.

C. Expected OKS maximization vs. UDP

UDP decoding [9] estimates the global maximum of the
predicted heatmap and then refines it to subpixel precision.
To refine the localization, the heatmap is blurred using a
Gaussian with fixed variance, and the maximum value is
shifted toward the estimated peak of the local Gaussian.
However, if the initial estimate (heatmap maximum) is in-
correct, UDP refining cannot correct it. UDP decoding as-
sumes the predicted heatmap follows a Gaussian distribu-
tion and estimates the peak of the predicted Gaussian.



Expected OKS maximization convolves the predicted
probability map with an OKS kernel and calculates the ex-
pected OKS for each pixel. The OKS kernel varies for each
keypoint type. The initial estimate is the global maximum
of the expected OKS map. To achieve subpixel precision,
we fine-tune the estimate using quadratic interpolation in
the neighboring pixels. Expected OKS decoding makes no
assumptions about the shape of the distribution and takes a
global approach, favoring areas with larger mass over sharp
peaks, aligning more closely with probability maps.

The difference between the UDP and OKS maximization
decodings is shown in Figs. 9 and 10. When the predicted
probability map is unimodal (which is true for most pre-
dicted heatmaps), the difference is negligible. However, if
the probability map is multimodal or lacks a clear peak, ex-
pected OKS favors areas with greater mass.

D. Points on the bounding box border

When we evaluated ProbPose qualitatively on the standard
COCO dataset, we observed that the ground truth annota-
tions were not always where we expected, particularly in
cases where OKS scores worsened the most. Specifically,
we noticed that ground truth keypoints near the bounding
box border were annotated inside the box but should have
been placed outside. It appears that human annotators for
the COCO dataset prioritized annotating as many keypoints
as possible, even at the cost of accuracy.

Examples of such misannotations are shown in Fig. 8. As
illustrated in the last row, this issue is not limited to the im-
age border but also occurs along the bounding box border.
This supports our hypothesis that the image border behaves
as another form of occlusion, as discussed in Appendix A.

ProbPose demonstrates that training with crop data aug-
mentation can help mitigate the impact of these incorrect
annotations in COCO. However, we did not find an easy
and automated solution to fix this issue in the evaluation
set. Ignoring points near the bounding box border during
the evaluation showed that ProbPose performs even better,
but this approach also excludes many correctly annotated
and presumably challenging keypoints. Manual reannota-
tion may be necessary to address these errors.

Figure 8. Ground truth annotation (left) vs. ProbPose-s (right) on
COCO. Images showcasing dubious annotations along the bound-
ing box border where ProbPose gets penalized even though its in-
put seems better than ground truth. In the third row, our estimate is
missing as we correctly predict it outside of the activation window.
The problem is not only along the image border as shown in the
last row.



Figure 9. Decoding does not matter as the predicted heatmap is
unimodal. Decoding predicted probability maps throught UDP
(left) and expected OKS maximization (right). Probability map
maximum in white, UDP-refined point in light purple and max-
imal expected OKS in dark purple. Majority of keypoints have
such heatmaps so the difference in performance is not big. Notice
the non-Gaussian shape of predicted probability maps and sharper
peaks for expected OKS as opposed to UDP.

Figure 10. Decoding does matter when distributiona are multi-
modal. Decoding predicted probability maps throught UDP (left)
and expected OKS maximization (right). Probability map max-
imum in white, UDP-refined point in light purple and maximal
expected OKS in dark purple. The predicted heatmaps contain a
small, one-pixel-wide peak marked by the white cross. Expected
OKS have sharper peaks but predict optimal location globaly in
areas with biggest “mass” even though the maximal value could
be elsewhere.



Figure 11. Images from CropCOCO; probability maps thresholded at different posterior probabilities. First column are input images with
GT bboxes and estimated poses. Second to fifth columns are probability maps for all keypoints (each keypoint different color) thresholded
at 50%, 75%, 90% and 95% respectivelly. Therefore, second column shows areas where keypoints are with 50% posterior probability
(probmap multiplied by presence probability.) Areas expand with higher required confidence until they disapear when presence probability
is below required threshold. Occuded keypoints have much larger areas as their confidence is lower.



Figure 12. Images from OCHuman [34]; probability maps thresholded at different posterior probabilities. First column are input images
with GT bboxes and estimated poses. Second to fifth columns are probability maps for all keypoints (each keypoint different color)
thresholded at 50%, 75%, 90% and 95% respectivelly. Therefore, second column shows areas where keypoints are with 50% posterior
probability (probmap multiplied by presence probability.) Areas expand with higher required confidence until they disapear when presence
probability is below required threshold. Occuded keypoints have much larger areas as their confidence is lower.



Figure 13. Calibrated probability maps with probability levels thresholded in 10% steps. Each color represents area with 10% probability
that the keypoint is in that area. The green area in the right image shows activation window (AW) area. Notice that the probability map is
more precise for smaller (face in the left image) and visible (left side of teh right image) keypoints.
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