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Supplementary Material

A. Proofs
Lemma A.1. The equilibrium distribution of SDE (8) is p̃1,y .

Proof of Lemma A.1. Under generic conditions, the Langevin dynamics

dXt = −∇U(Xt)dt+
√
2dWt

have the equilibrium ρ∞ ∝ e−U . For p̃1,y in (7) to be the equilibrium, it suffices to verify that

∇ log p̃1,y = −(x1 +∇x1Ly(Φ(x1))).

This follows by that log γ(x1) = −∥x1∥2/2 + c and log p(y|Φ(x1)) = −Ly(Φ(x1)).

Proof of Theorem 4.1. By (4) and (6), we have

p0,y(x0) =
1

Zy
p(y|x0)pdata(x0), p̃0,y(x0) =

1

Z̃y
p(y|x0)Φ#γ(x0),

where
Zy :=

∫
p(y|x0)pdata(x0)dx0, Z̃y :=

∫
p(y|x0)Φ#γ(x0)dx0.

Then, we have

2TV(p0,y, p̃0,y) =

∫
|p0,y(x0)− p̃0,y(x0)|dx0

≤
∫

1

Zy
p(y|x0) |pdata(x0)− Φ#γ(x0)| dx0 +

∣∣∣∣∣ Z̃y − ZyZy

∣∣∣∣∣ . (A.1)

By definition of κy in (10), we have 1
Zy
p(y|x0) ≤ κy , ∀x0, and thus∫

1

Zy
p(y|x0) |pdata(x0)− Φ#γ(x0)| dx0 ≤ κy

∫
|pdata(x0)− Φ#γ(x0)| dx0.

Meanwhile, Z̃y − Zy =
∫
p(y|x0)(Φ#γ(x0)− pdata(x0))dx0, and then

|Z̃y − Zy|
Zy

≤
∫

1

Zy
p(y|x0)|Φ#γ(x0)− pdata(x0)|dx0

≤
∫
κy|Φ#γ(x0)− pdata(x0)|dx0.

Putting back to (A.1), we have

2TV(p0,y, p̃0,y) ≤ 2κy

∫
|pdata(x0)− Φ#γ(x0)| dx0 = 4κy TV(pdata,Φ#γ),

which proves the theorem under (9).

Proof of Lemma 4.2. By that p̃0,y = Φ#p̃1,y , p̃S0,y = Φ#p̃
S
1,y , and Data Processing Inequality.

Proof of Corollary 4.3. By Theorem 4.1, Lemma 4.2, and triangle inequality since TV is half of the L1 norm between two
densities.



B. Experimental Details
B.1. Details of the proposed approach
Consistency model generative process. To represent the map Φ from noise space to data space, we utilize the pre-trained
CMs of [51] with a 1- or 2-step sampler. For the 2-step sampler, we use standard multistep consistency sampling (Algorithm 1,
[51]), i.e.,

x0 = fθ

(
fθ(xT , T ) +

√
t2 − ϵ2z, t

)
,

where fθ is the pre-trained CM, xT ← x1, T = 80, ϵ = 2× 10−3 is a small noise offset , and t is an intermediate ”time step”
along the PF-ODE trajectory (the “halfway” point). In [51], z is sampled from the standard Gaussian for each call to Φ. In this
work, we sample z once and fix it for all future calls to Φ, which we observe to empirically improve performance.

Warm-start initialization and sampling. The posterior sampling process begins with a warm-start initialization consisting
of K steps of Adam optimization with learning rate, β1, and β2 for each experiment outlined in Tables A.1, A.2, and A.3.
This is followed by N steps of Langevin dynamics simulation (via EM discretization in the main-text experiments) using step
size τ . The NFEs per sample can be computed as η(K +N)/N , where η is the number of steps used for CM generation. All
experiments are implemented in PyTorch and are run on a system with NVIDIA A100 GPUs.

See below for a pseudo-code implementation of one iteration of our sampling procedure:

1 x1_i = x1_i.requires_grad_()
2 x0_i = denoise(x1_i)
3

4 L = 1 / (2*sigma**2) * torch.norm(y - A(x0_i)) ** 2
5 g_i = torch.autograd.grad(outputs=L, inputs=x1_i)[0]
6

7 x1_i = x1_i - tau * (x1_i + g) + numpy.sqrt(2.*tau) * torch.randn_like(x1_i)
8 x1_i = x1_i.detach_()

Table A.1. Hyper-parameters for linear and nonlinear image restoration tasks on LSUN-Bedroom (256 x 256).

Method 8x Super-resolution Gaussian Deblur 10% Inpainting Nonlinear Deblur Phase Retrieval HDR Reconstruction

DPS-DM ζ = 25, N = 100 ζ = 7, N = 100 ζ = 25, N = 100 ζ = 15, N = 100 ζ = 10, N = 100 ζ = 5, N = 100
MPGD-DM ζ = 25, N = 100 ζ = 15, N = 100 ζ = 25, N = 100 ζ = 7, N = 100 ζ = 1, N = 100 ζ = 5, N = 100
LGD-DM ζ = 25,M = 1, N = 100 ζ = 25,M = 10, N = 100 ζ = 7,M = 25, N = 100 ζ = 9,M = 10, N = 100 ζ = 1,M = 10, N = 100 ζ = 30,M = 10, N = 100
DPS-CM ζ = 25, N = 100 ζ = 7, N = 100 ζ = 25, N = 100 ζ = 8, N = 100 ζ = 9, N = 100 ζ = 4, N = 100
MPGD-CM N/A N/A N/A ζ = 15, N = 100 ζ = 3, N = 100 ζ = 30, N = 100
LGD-CM ζ = 25,M = 1, N = 100 ζ = 7,M = 1, N = 100 ζ = 5,M = 1, N = 100 ζ = 15,M = 10, N = 100 ζ = 0.5,M = 10, N = 100 ζ = 15,M = 10, N = 100

Ours(1-step)
Adam: K = 800, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 K = 800, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 200, lr = 1× 10−3 K = 800, lr = 5× 10−3

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 1× 10−6 EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 5× 10−6 EM: N = 10, τ = 1× 10−6 EM: N = 10, τ = 1× 10−6

Ours(2-step)
Adam: K = 800, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 500, lr = 5× 10−3 Adam: K = 500, lr = 1× 10−3 Adam: K = 500, lr = 5× 10−3

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 1× 10−7 EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 5× 10−6 EM: N = 10, τ = 1× 10−6 EM: N = 10, τ = 1× 10−6

Table A.2. Hyper-parameters for linear image restoration tasks on ImageNet (64 x 64).

Method 4x Super-resolution Gaussian Deblur 20% Inpainting

DPS-DM ζ = 20, N = 100 ζ = 15, N = 100 ζ = 30, N = 100
LGD-DM ζ = 3,M = 10, N = 100 ζ = 1,M = 10, N = 100 ζ = 5,M = 10, N = 100
DPS-CM ζ = 30, N = 100 ζ = 30, N = 100 ζ = 25, N = 100
LGD-CM ζ = 3,M = 10, N = 100 ζ = 7,M = 10, N = 100 ζ = 6,M = 10, N = 100

Ours(1-step)
Adam: K = 800, lr = 1× 10−2 Adam: K = 800, lr = 1× 10−2 K = 800, lr = 1× 10−2

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 5× 10−4 EM: N = 10, τ = 3× 10−5 EM: N = 10, τ = 1× 10−4

Ours(2-step)
Adam: K = 500, lr = 5× 10−2 Adam: K = 500, lr = 5× 10−2 Adam: K = 500, lr = 5× 10−2

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 1× 10−4 EM: N = 10, τ = 3× 10−5 EM: N = 10, τ = 1× 10−4

B.2. Details of the baselines
The baseline methods conduct t = 1, . . . , N Euler steps for sampling. All methods require a denoiser to provide x0 ≈ x̂0(xt)
at each sampling step t, which is achieved using either a pre-trained EDM [29] or CM [51], both obtained from [51] for each
dataset.



Table A.3. Hyper-parameters for linear and nonlinear diversity experiments on LSUN-Bedroom (256 x 256).

Method 8x Super-resolution Gaussian Deblur 10% Inpainting Nonlinear Deblur Phase Retrieval HDR Reconstruction

DPS-DM ζ = 7, N = 100 ζ = 7, N = 100 ζ = 7, N = 100 ζ = 5, N = 100 ζ = 5, N = 100 ζ = 1, N = 100
LGD-DM ζ = 15,M = 1, N = 100 ζ = 5,M = 1, N = 100 ζ = 15,M = 1, N = 100 ζ = 4,M = 10, N = 100 ζ = 0.5,M = 10, N = 100 ζ = 10,M = 10, N = 100

Ours(1-step)
Adam: K = 400, lr = 5× 10−3 Adam: K = 600, lr = 5× 10−3 K = 600, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 200, lr = 1× 10−3 K = 800, lr = 5× 10−3

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 4× 10−4 EM: N = 10, τ = 1× 10−6 EM: N = 10, τ = 1× 10−4 EM: N = 25, τ = 7.5× 10−6 EM: N = 25, τ = 3× 10−6 EM: N = 25, τ = 3× 10−6

Ours(2-step)
Adam: K = 600, lr = 5× 10−3 Adam: K = 600, lr = 5× 10−3 Adam: K = 800, lr = 5× 10−3 Adam: K = 500, lr = 5× 10−3 Adam: K = 500, lr = 1× 10−3 Adam: K = 500, lr = 5× 10−3

β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
EM: N = 10, τ = 4× 10−4 EM: N = 10, τ = 1× 10−5 EM: N = 10, τ = 1× 10−4 EM: N = 25, τ = 7.5× 10−6 EM: N = 25, τ = 3× 10−6 EM: N = 25, τ = 3× 10−6

Diffusion Posterior Sampling (DPS). DPS [12] utilizes the denoiser corresponding to a pre-trained DM to approximate
the measurement likelihood gradient at each step of DM sampling. At each state xt along the diffusion sampling trajectory,
a score-base diffusion model can provide a predicted x̂0(xt), which can be used to compute∇xt

p(y|x̂0) via differentiation
through the score-based model. In DPS, each step of diffusion sampling is adjusted by this gradient with weight ζ, i.e.,
xt−1 ← xt−1 − ζ∇xt

p(y|x̂0).

Manifold Preserving Guided Diffusion (MPGD). MPGD [20] computes the gradient of the measurement likelihood in the
denoised space rather than with respect to xt at each step, taking a gradient step in x̂0 before updating the diffusion iterate.
That is, MPGD conducts the update x̂0 ← x̂0(xt) − ζ∇x̂0p(y|x̂0(xt)), which can then be use to yield xt−1 at each step.
MPGD also provides an optional manifold projection step which utilizes pre-trained autoencoders to ensure x̂0 remains on the
data manifold. For a fair comparison, we only consider MPGD without manifold projection in this work.

Loss Guided Diffusion (LGD). LGD [49] aims to improve the approximation of p(y|x0) at each step along the
sampling trajectory via a Monte Carlo approach. Viewing p(y|x̂0) in DPS as a delta distribution approximation of
p(y|x0) about x̂0, LGD instead computes the log-mean-exponential of p(y|x̂(m)

0 ) for m = 1, . . . ,M perturbed copies
of x̂0. That is, p(x̂0|xt) ∼ N (x̂0(xt), r

2
t I), where rt = βt/

√
1 + β2

t . The weighted (by ζ) Monte Carlo gradient

∇xt
log

(
1
M

∑M
m=1 exp

(
p
(
y|x̂(m)

0

)))
is then used to adjust xt−1, as in DPS.

B.3. Degradations and forward operators
In all experiments, pixel values are scaled from [-1, 1] (as in [51]) before application of forward operators. The details of the
measurement likelihoods corresponding to each forward operator are outlined below. All methods use σ = 0.1, except for
phase retrieval, which uses σ = 0.05.

Super-resolution. The super-resolution task is defined by the following measurement likelihood:

y ∼ N (y|AvgPoolf (x), σ
2I),

where AvgPool represents 2D average pooling by a factor f .

Gaussian deblur. Gaussian blur is defined by a block Hankel matrix Cψ representing convolution of x with kernel ψ:

y ∼ N (y|Cψx, σ2I).

We consider a 61 x 61 Gaussian kernel with standard deviation of 3.0, as in [12].

Inpainting. The measurement likelihood corresponding to p% inpainting is a function of a mask P with (1-p)% uniformly
random 0 values:

y ∼ N (y|Px, σ2I).

Nonlinear deblur. Following [12], the forward nonlinear blur operator is a pre-trained neural network Fϕ to approximate
the integration of non-blurry images over a short time frame given a single sharp image [52]. Therefore, the measurement
likelihood is as follows:

y ∼ N (y|Fϕ(x), σ2I).



Phase retrieval. The forward operator of the phase retrieval task takes the absolute value of the 2D Discrete Fourier
Transform F applied to x: |Fx|. However, since this task is known to be highly ill-posed [12, 19], an oversampling matrix P
is also applied (with oversampling ratio 1 in this work):

y ∼ N (y||FPx|, σ2I).

High dynamic range reconstruction. In the HDR forward model, pixel values are scaled by a factor of 2 before truncation
back to the range [-1, 1]. Therefore, the measurement likelihood is as follows:

y ∼ N (y|clip(2x,−1, 1), σ2I),

where clip(·,−1, 1) truncates all input values to the range [-1, 1].

C. Additional experiments
Numerical SDE solver comparison. Alternative numerical methods to EM (11) can be applied to discretize the Langevin
dynamics SDE, such as the exponential integrator (EI) [24]. The EI scheme discretizes the nonlinear drift term gi =
∇x1

Ly(x0)|x1=zi
and integrates the continuous-time dynamics arising from the linear term:

zi+1 = e−τzi − (1− e−τ )gi +
√
1− e−2τξi,

where ξi ∼ N (0, I). In Table A.4, quantitative comparison between our method using EM versus EI is shown on generating
10 samples for 100 images from the LSUN-Bedroom validation dataset, where the forward operator is nonlinear blurring.
The same hyper-parameters are used for both methods, which are outlined in Table A.1. In this case, there is a marginal
improvement in most metrics when using the EI scheme.

Table A.4. Comparison between our method with EM and EI integration on the nonlinear deblur task on LSUN-Bedroom (256 x 256).

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

Ours-EM(1-step) 20.3 0.566 0.440 76.7
Ours-EM(2-step) 18.7 0.501 0.492 73.3
Ours-EI(1-step) 20.5 0.569 0.437 76.3
Ours-EI(2-step) 18.7 0.504 0.491 74.2

D. Additional qualitative results
Visualizations of additional reconstructions from our method corresponding to the linear and nonlinear experiments from
Section 6.1 can be found in Figures A.2, A.3, A.4, A.5, and A.6. Additionally, diverse sets of samples from our one-step/two-
step CM method corresponding to the experiments of Section 6.2 are visualized in Figures A.7, A.8, A.9, A.10, A.11, and
A.12. Finally, diverse samples via the linear tasks on ImageNet (64 x 64) are shown in Figures A.13, A.14, and A.15. In these
experiments, we use the one-step CM sampler with the same hyper-parameters as in Table A.2, but with τ = 4× 10−4 for
inpainting, τ = 9× 10−4 for super-resolution, and τ = 5× 10−5 for Gaussian deblur.

E. Further Methodological Details
Inference time and sampling efficiency. In Figure A.1, we report a time comparison between sample accumulation via
DPS-DM and our method with 1-step CM sampling, including 500 steps of warm start for our method (see Section 5). While
there is a large upfront NFE and time cost for warm start, this cost is amortized over sample accumulation. Each additional
sample of DPS requires 100 NFEs, while each additional sample via our method is acquired in a single function evaluation.
This corresponds to a much more gradual increase in overall computation time as more samples are generated.

Fixed-noise consistency model sampling. We utilize a fixed noise code z ∼ N (0, I) for multi-step CM sampling, as
described in Section B.1. Typical CM sampling utilizes distinct random code(s) z ∼ N (0, I) each time Φ is called. However,
this results in stochastic sampler Φ, violating the interpretation of Φ as a pushforward map, rendering the theoretical guarantee
of posterior sampling invalid. Moreover, we observe that using stochastic Φ in practice (i.e., distinct z) leads to instability in
the sampling scheme and less consistent samples.



Figure A.1. Reconstruction time comparison between DPS-DM and our method for varying numbers of posterior samples. DPS-DM scales
poorly with the number of samples, while our method maintains a nearly constant time, demonstrating significantly lower computational
cost. The corresponding Number of Function Evaluations (NFEs) (including NFEs for the warmup stage) values per image are annotated.

Table A.5. Fidelity/diversity trade-off for 8× SR (left) and nonlinear deblur (right).

τ 1e−5 2.1e−5 4.4e−5 9.1e−5 1.9e−5 4e−5
PSNR ↑ 19.9 20.0 20.0 19.8 19.1 15.7
SSIM ↑ 0.515 0.514 0.514 0.510 0.495 0.442

LPIPS ↓ 0.433 0.432 0.432 0.435 0.448 0.496
FID ↓ 87.7 88.1 87.6 88.0 87.5 90.5
DS ↑ 2.72 2.53 2.52 2.90 3.39 2.78
CS ↓ 0.999 0.998 0.997 0.992 0.973 0.918

τ 5e-6 5.5e-06 6e-6 6.5e-6 7e-6 7.5e-6

PSNR ↑ 20.2 19.7 18.1 17.4 16.5 15.4
SSIM ↑ 0.548 0.541 0.515 0.522 0.506 0.481

LPIPS ↓ 0.449 0.454 0.482 0.479 0.497 0.516
FID ↓ 94.7 97.6 105 99.4 98.4 106
DS ↑ 3.28 3.09 4.12 2.85 2.56 2.71
CS ↓ 0.964 0.958 0.940 0.934 0.921 0.908

One- and two-step consistency model sampling. In this work, we conduct single- and multi-step CM sampling [51]; see
Section 5 and Section B.1. Experimentally, we observe that one-step sampling results in higher-fidelity posterior samples
(Tables 1 and 2) while the two-step sampling results in slightly more diverse samples (Table 3). Our interpretation of these
results is as follows: Two main factors explain this. (1) Absence of Speed-Quality trade-off in CM: Recent work [32] indicates
that CMs lack the usual speed–quality trade-off, as multi-step intervals overlap and do not necessarily improve results. This
occurs due to overlapping time intervals (“jumps”) in multi-step samplers, and Theorem 1 in [32] provides a formal explanation.
(2) Fixed noise in multi-step sampling: Our 2-step sampler (Supp. B.1) fixes injected noise z at each step to avoid divergence
that can arise from using fresh noise at every iteration. While this provides stability, it may also remove beneficial stochasticity,
diminishing performance gains expected from multi-step approaches.

Details of base models. For the experiments in Section 6, we have used EDMs and distilled CMs reported in the original CM
work [51]. In unconditional generation, EDM achieves FID of 3.57 on LSUN-Bedroom (256 × 256) and 2.44 on ImageNet
(64 × 64) with 79-step sampling. The corresponding distilled CMs achieve FID of 5.22 and 4.70 for 2-step sampling in
LSUN-Bedroom (256 × 256) and ImageNet (64 × 64), respectively. Due to the gap in fidelity between unconditional samples
drawn using the diffusion models and consistency models, it is unfair to compare posterior samples between the two model
types. For this reason, we introduce the CM-based baselines in Section 6, to ensure a more fair comparison.

Advantages and disadvantages of the proposed approach. Our key innovation lies in performing Langevin sampling
directly in the noise space of a pre-trained generative model. Unlike methods that optimize for a point estimate, our approach
combines a warm-start step with posterior sampling dynamics, theoretically approximating samples from the posterior
distribution. This enables the generation of multiple diverse reconstructions with competitive costs compared to optimization-
based baselines. A notable advantage of our approach is that it avoids mode collapse and posterior over-regularization often
observed in GANs and VAEs, leveraging the strong prior modeling capacity of consistency models (CMs). Unlike GANs,
which require adversarial training, or VAEs, which may suffer from latent bottlenecks, CMs enable efficient, stable sampling
with strong expressiveness.



Limitations. A potential limitation is the reliance on a well-behaved generative model with deterministic mapping, which
may restrict flexibility in scenarios involving multimodal or highly stochastic observations. Additionally, although our method
is efficient, the warm-start step adds an extra layer of computation compared to naive sampling.

F. Additional Related Works
Energy-based models and noise space sampling. Using MCMC to accumulate samples is related to EBMs. Early
works used convolutional EBMs to conduct Langevin sampling from a natural image starting point [56] or a synthetic
initialization [57]. Other works have utilized generative models’ noise space for EBM sampling [25, 40, 55, 61]. For instance,
[17] utilize flows to improve noise constrastive estimation of EBMs. Similarly, [61] define the latent noise space of generative
models by an EBM, upon which they learn a saliency map model. [25, 40] conduct HMC sampling in the noise space of flows;
similar approaches adapted variational autoencoders for EBM sampling [55]. Such approaches facilitate efficient sampling by
leveraging tractability in the noise space. Similarly, our method simulates Langevin dynamics in a tractable noise space, but
we focus on the posterior sampling task as opposed to unconditional sampling.

G. Ablation Study
Fidelity vs diversity trade-off. We analyze the effect of the step size τ on fidelity and diversity across 8× SR and nonlinear
deblurring tasks (Table A.5). Larger values of τ promote faster exploration in noise space, resulting in higher diversity—as
reflected by increasing Diversity Score (DS) and decreasing CLIP Similarity (CS). For example, in 8× SR, DS increases
from 2.52 to 3.39 as τ grows from 4.4 × 10−5 to 1.9 ×10−5, while CS drops from 0.997 to 0.973. Similarly, for nonlinear
deblurring, DS peaks at 4.12 for τ = 6× 10−6, indicating strong diversity. Notably, this gain in diversity comes with only
marginal degradation in fidelity. For instance, in SR, PSNR drops slightly (from 20.0 to 19.1) and LPIPS rises marginally (from
0.432 to 0.448). These results demonstrate that our method can generate diverse posterior samples with minimal compromise
in reconstruction quality.
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Figure A.2. Additional image reconstructions for inpainting (left) and 8x super-resolution (right) on LSUN-Bedroom (256 x 256).



Figure A.3. Additional image reconstructions for Gaussian Deblurring on LSUN-Bedroom (256 x 256) (left) and ImageNet (64 x 64) (right).



Figure A.4. Additional image reconstructions for inpainting (left) and 4x super-resolution (right) on ImageNet (64 x 64).



Figure A.5. Additional image reconstructions for nonlinear deblur (left) and HDR reconstruction (right) on LSUN-Bedroom (256 x 256).



Figure A.6. Additional image reconstructions for phase retrieval on LSUN-Bedroom (256 x 256).



Figure A.7. Additional sets of samples for Inpainting (10%) on LSUN-Bedroom (256 x 256).



Figure A.8. Additional sets of samples for SR (8x) on LSUN-Bedroom (256 x 256).



Figure A.9. Additional sets of samples for SR (8x) on LSUN-Bedroom (256 x 256) for 2-step method.



Figure A.10. Additional sets of samples for nonlinear deblur on LSUN-Bedroom (256 x 256).



Figure A.11. Additional sets of samples for HDR reconstruction on LSUN-Bedroom (256 x 256).



Figure A.12. Additional sets of samples for phase retrieval on LSUN-Bedroom (256 x 256).



Figure A.13. Sets of samples for 20% inpainting on ImageNet (64 x 64).



Figure A.14. Sets of samples for 4x super-resolution on ImageNet (64 x 64).



Figure A.15. Sets of samples for Gaussian deblurring on ImageNet (64 x 64).


