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6. Supplementary Material

Our supplementary materials are divided into three parts:
the experimental code, the generated sample audio, and the
textual materials. The textual materials consist of five sec-
tions: Sec. 6.1 introduces the structure and training details
of our diffusion model. Sec. 6.2 explains the steps and train-
ing details of the Video-Sound-Music Pretraining. Sec. 6.3
provides a detailed analysis of the mechanism of Spectrum
Divergence Masked Attention, as proposed in Sec. 3.2, from
the perspective of the spectrogram. Sec. 6.4 showcases the
performance of the music and sound effects generated by
our method in the spectrogram. Sec. 6.5 compares the re-
sults of four custom condition generation methods with the
pre-optimization results.

6.1. Video-to-Soundtrack Diffusion in Details

Data Sample Processing: For all audio signal processing,
we convert all music samples to the required format for
training using a 16 kHz sampling rate. For video signal pro-
cessing, we use a frame rate of 10 fps, following the stan-
dards of Film Score and HIMV. Each input pair is a 10.24-
second clip randomly selected from the dataset. Short-Time
Fourier Transform (STFT) and Mel-spectrogram calcula-
tions are performed using a hop size of 160, window size
of 1024, filter length of 1024, and 128 Mel-frequency bins.

Model Architecture: Our foundational framework is
modified based on AudioLDM. AudioLDM UNet consists
of 4 encoder blocks, 1 bottleneck block, and 4 decoder
blocks, where each block contains 2 residual CNN lay-
ers and 1 spatial Transformer layer. The channel sizes in
the encoder blocks are 128, 256, 384, and 640, and the
decoder blocks mirror these channel sizes in reverse or-
der. Unlike the AudioLDM U-Net, we replace the standard
cross-attention module in each Transformer layer with the
Spectrum Divergence Masked Attention (SDMA) module.
To ensure feature dimension alignment, the cross-attention
module in each SDMA layer has the same shape as the cor-
responding cross-attention module in the Transformer layer.

Training Details: For training the UNet, we use a batch
size of 32 and the AdamW optimizer with a base learning
rate of 3× 10−5. During the forward process, we use a lin-
ear noise schedule from β1 = 0.0015 to β1000 = 0.0195 over
1000 steps. During training, we apply classifier-free guid-
ance with a 10% probability and a guidance scale of w =
2.5. During the sampling process, we use the DDIM sam-
pler with 200 steps. The latent diffusion model is trained on
4 NVIDIA A800 GPUs. For the VAE and HiFiGAN mod-
els, we use the official open-source version of MusicLDM,

with their parameters kept frozen during the UNet training.
Implementation of Comparison Model: For baselines

of AudioLDM-VA and Tango-VA, we use the official model
of AudioLDM and Tango, only modifying the text condition
to a video condition. The training details remain consistent
with those described above.

6.2. Video-Sound-Music Pretraining Details
For video-sound-music pretraining hyperparameters, we re-
fer to the official repository to conduct the training pro-
cess of CLAP. We use fully connected layers to map each
1D vector of video, music, and sound effects into a 512-
dimensional space, simultaneously training them to align.
During training, we use a batch size of 256 and the Adam
optimizer with hyperparameters β1 = 0.99 and β2 = 0.9,
along with a warm-up strategy and cosine learning rate de-
cay, with a base learning rate set to 1× 10−4.

6.3. Explaining the Effectiveness of Spectrum Di-
vergence Masked Attention

In this study, the spectrograms of the generated audio and
the original audio from the dataset appear in Fig. 4 and
Fig. 5 respectively. Fig. 5 provides more detailed descrip-
tions of the music and sound effects. The sound effects and
music components shown in the audio samples in Fig. 5 are
separated from the original audio samples using a source
separation model, and then converted into spectrograms us-
ing Short-Time Fourier Transform (STFT).

Overall, the spectrogram of the audio sample does not
simply equate to the sum of the spectrogram contours of its
sound effects and music components. The audio sample’s
spectrogram contains additional detailed information, some
of which overlaps in the primary time and frequency do-
mains. Therefore, the black and red boxes are used merely
to highlight the main regions corresponding to the respec-
tive concepts and should not be interpreted as implying that
the music component, represented by the red box, is com-
pletely devoid of the texture corresponding to the sound ef-
fect, represented by the black box. The reverse is also true.

From a more detailed perspective, the background noise
of the sound effects in the spectrogram is generally much
higher than that of the music. This difference is primarily
due to the fact that musical tones are typically clearer and
more stable than sound effects, resulting in a more concen-
trated frequency composition and lower background noise
in the spectrogram. In contrast, sound effects may contain
more irregular components or a broader frequency range,
leading to higher background noise. Consequently, the pres-
ence of sound effects in the spectrogram can interfere with
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Figure 5. Comparison of mel spectrograms between the audio generated by the generative model and the audio sample from the original
dataset. To highlight the difference between music and sound effect, we separate the original audio into Music and Sound Effect.

the music itself, manifesting as the background noise of the
sound effects potentially obscuring the texture of the music,
making it harder to distinguish. This is why we employ the
Spectrum Divergence Masked Attention technique: it aims
to mitigate the interference of sound effect noise on the mu-
sic information, thus enabling a more effective integration
of sound effects and music.

Moreover, this indirectly explains why generating tex-
ture details using both the music and sound effect control
conditions from the video yields far better results than re-
lying solely on the video-generated output. It is one of
the key reasons why our diffusion model outperforms both
Audioldm-VA and Tango-VA across multiple metrics.

6.4. Explaining the Generation Performance of
Sound Effects and Music

From the perspective of generative performance, compared
to the original audio, the audio that our model generates
exhibits lower background noise, with clearer spectral tex-
ture details and more distinct layers. As we show in Fig. 5,
the spectrogram of the generated audio demonstrates signif-
icantly lower background noise across the entire time do-
main, particularly in the high-frequency range, compared
to the original audio. At the same time, we focus on pro-
cessing the main sound effects in the video. In terms of
spectrogram texture, our model more effectively highlights
and distinguishes the musical texture details compared to
the original audio. As we show in Fig. 5, the spectrogram
reveals that the generated helicopter sound is primarily con-
centrated in the time domain corresponding to the appear-
ance of the helicopter in the scene, whereas the original
audio spreads the helicopter sound effect across the entire

video. Moreover, we not only significantly reduce the back-
ground noise in the time domain of non-helicopter sound
effects but also manage to reduce the background noise dur-
ing the helicopter sound effect. Furthermore, as we see in
the musical section of the spectrogram in Fig. 5, the music
texture that our model generates exhibits more pronounced
layering.

6.5. Customized Condition Generation

Music-Visual Rhythm Syn Soundtrack Generation:
Fig. 6 illustrates the effectiveness of our method in opti-
mizing music content based on the rhythm of video frames.
To facilitate comparison, we analyze the spectral details of
audio that is generated before and after we apply the Music-
Visual Rhythm Syn optimization. For clarity, the video
rhythm variation curve is displayed in the Video Rhythm
graph, where the horizontal axis represents time, and the
vertical axis indicates the magnitude of changes in video
frames. Higher vertical values correspond to more dramatic
video rhythm variations.

In Fig. 6, yellow boxes highlight regions with signifi-
cant video rhythm changes. These annotations are reflected
in the video frames, the video rhythm curve, the original
audio spectrogram, and the optimized audio spectrogram.
From the spectrograms, it is evident that our Music-Visual
Rhythm Syn optimization method aligns the texture struc-
ture of the generated spectrogram with the rhythm variation
trend that is shown in the Video Rhythm graph, while main-
taining the overall structure of the audio spectrogram. This
demonstrates that we successfully adjust the music rhythm
to match the video rhythm.

Moreover, our method does not affect the sound effect
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Figure 6. Comparison of mel spectrograms between the audio generated by the music-visual rhythm syn and the generated sample without
optimization.
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Figure 7. Comparison of mel spectrograms between the audio generated by the emotion condition and the generated sample without
optimization.

regions in the spectrogram, preserving the core audio fea-
tures that are generated by the diffusion model.

Emotion Conditioned Soundtrack Generation: To
avoid significant deviation between the optimized audio
content and the video content, the text descriptions used
for zero-shot classification do not directly include specific
video content. Instead, we constrain the descriptions to sim-
ple emotional statements, such as ”This is a sad piece of
music” or ”This is a happy piece of music”. The results
of emotion-conditioned optimization are shown in Fig. 7.
The text description for Fig. 7a is ”This is a sad piece of
music,” while for Fig. 7b, it is ”This is a tense piece of
music.” From the spectrograms, we observe that the ”sad”
spectrogram tends to exhibit smoother textures, whereas the
”tense” spectrogram demonstrates more rhythmic textures.

Style Conditioned Soundtrack Generation: Fig. 8 il-

lustrates the results of optimizing audio content based on a
specific musical style. To facilitate comparison, we present
not only the spectrograms of the audio before and after opti-
mization but also the spectrogram of the reference style mu-
sic. In the reference style spectrogram, red boxes are used
to highlight the textures that represent the musical style. As
shown in Fig. 8, we successfully capture and learn the char-
acteristics of the target musical style.

Multi-conditioned Soundtrack Generation: Fig. 9
demonstrates the effect of optimizing music content with
multiple custom control conditions. As shown in Fig. 9a,
when the number of custom control conditions increases,
the optimized audio effects change slightly compared to the
pre-optimized version, but overall, they still align with the
video content. However, as shown in Fig. 9b, when the
region of the spectrogram’s audio effects overlaps signifi-
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Figure 8. Comparison of mel spectrograms between the audio generated by style condition and the generated sample without optimization.
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Figure 9. Comparison of mel spectrograms between the audio generated by multi condition and the generated sample without optimization.

cantly with the video’s rhythmic changes, this impacts the
way the video’s rhythm influences the music’s rhythm. The
emotional text description for Fig. 9b is ”This is a heavy
piece of music,” while for Fig. 9c, it is ”This is a cheer-
ful piece of music.” From Fig. 9b and Fig. 9c, we can see
that under multiple conditions, emotional parameters still
effectively control changes in the music’s texture. Simi-
larly, Fig. 9a and Fig. 9c show that the style condition still
influences the structure of the music’s texture.
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