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7. Exprimental Details

To provide a comprehensive overview of the experimental
setup, we list the hyperparameter settings for our method
and all baseline methods in Table 5.

Methods α N Scaling Coef LR Epochs

Task-Arithmetic – – 0.3 – –
Ties-Merging 0.5 – 0.3 – –
DARE 0.5 – – – –
RegMean – 256 – – –
Fisher-Merging – 4096 – – –
AdaMerging – – – 1e-3 500
AdaMerging++ 0.5 – – 1e-3 500
Twin-Merging 0.5 100 0.3 1e-3 10
EMR-Merging – – – – –
T-Switch(Ours) 0.5 – – – –
Auto-Switch(Ours) 0.5 100 – – –

Table 5. Hyperparameter settings of our method and all baselines.

Here, α represents the discard rate of task vector param-
eters, N denotes the number of example samples retained
for each task, and ”Scaling Coef” refers to the scaling co-
efficient applied to the merged task vector. LR indicates
the learning rate used for training the merging weights or
coefficients (e.g., AdaMerging and AdaMerging++) or the
task router (e.g., Twin-Merging). ”Epochs” refers to the ad-
ditional training epochs required for the merging method.
A dash (’-’) in the table indicates that the corresponding
method does not involve the specified hyperparameter. The
hyperparameter settings for all baseline methods follow the
configurations provided in the original papers.

In the low rank experiment, we set the rank of LoRA
to 64 and only added it on conv1 and mlp, and trained 20
epochs on different datasets to obtain corresponding low-
rank task vectors.

For all methods that require setting discard ratio, we
searched between 0.1-0.9 and selected the optimal discard
ratio for different methods. The Table 6 shows the optimal
discard ratios for different methods.

Method ViT-B/32 ViT-B/32+LoRA ViT-L/14 RoBERTa
DARE 0.6 0.6 0.7 0.1

Adamerging++ 0.7 0.5 0.4 –
Ties-Merging 0.3 0.9 0.3 0.9

T-Switch (ours) 0.7 0.5 0.6 0.4
Auto-Switch (ours) 0.6 0.6 0.5 0.4

Table 6. The optimal discard ratio for different baselines.

8. Additional Results on ViT models

8.1. Merging results on the ViT-L/14 model

To evaluate the effectiveness of our method in merging
larger models, we conducted experiments on eight visual
tasks using the ViT-L/14 model. Table 7 shows the com-
bined performance of our method and various baseline
methods. Our Auto-Switch achieved the best results, sig-
nificantly outperforming other baseline methods. Notably,
T-Switch even surpasses the average performance achieved
in the Individual case. This demonstrates that our T-Switch
retains excellent performance on larger visual models and
validates the generalizability of our proposed methods.

Figure 7. Additional ablation results. Left: Merging results(%)
with discard ratios ranging from 0.0 to 0.9 on the ViT-L-14 model.
Right: Ablation results of the Auto-Switch method merging eight
visual tasks on the ViT-B/32 model when the discard ratio is 0.5.

Additionally, we have verified the impact of different
discard rates α on the merging performance of our method
on ViT-L by conducting ablation experiments on the ViT-
L/14 model with various discard rates α. The left panel
of Fig.7 presents the ablation results for merging eight vi-
sual tasks with discard ratio α ranging from 0.0 to 0.9 us-
ing the ViT-L/14 model. From the results, we observe a
similar phenomenon to that found in the main experiments:
as the discard ratio increases, the performance of T-Switch
improves, even surpassing fine-tuning performance at a dis-
card ratio of 0.6, with noticeable performance degrada-
tion only occurring beyond α = 0.7. As the number of
discarded redundant parameters increases, the interference
noise in the task vector will also decrease. Consequently,
the performance of T-Switch and Auto-Switch shows im-
provement with a moderate increase in α.



Type Methods Automatic Example Storage SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD AVG

–

Pretrained – – – 66.87 77.94 71.33 62.22 58.45 50.55 76.36 55.37 64.89
Traditional MTL – – – 80.80 90.60 96.30 96.30 97.60 99.10 99.60 84.40 93.09
Individual – – – 84.86 92.39 97.37 99.74 98.11 99.24 99.69 84.15 94.44
T-Switch(Ours) – – – 84.75 92.61 97.38 99.74 98.12 99.25 99.73 84.31 94.49

St
at

ic

Weight-Averaging – é – 71.10 81.56 82.60 90.63 78.23 70.65 97.01 62.77 79.32
Task-Arithmetic – é – 73.91 82.13 86.65 92.70 87.91 86.78 98.94 65.64 84.33
Ties-Merging – é – 73.95 80.27 85.85 91.67 90.50 88.03 99.67 65.73 84.46
DARE – é – 73.80 82.51 86.87 93.12 88.06 87.36 98.92 66.07 84.59
RegMean – Ë – 73.04 86.10 88.40 97.52 91.53 89.78 99.0 69.95 86.91
Fisher-Merging – Ë – 68.11 84.54 75.13 84.11 95.64 91.36 95.56 67.23 82.71
AdaMerging – Ë – 79.00 90.30 90.80 96.20 93.40 98.00 99.00 79.90 90.83
AdaMerging++ – Ë – 79.53 90.75 91.47 96.53 94.05 98.02 99.02 80.80 91.27

D
yn

am
ic Twin-Merging Ë Ë 10476.1 84.41 91.57 96.95 99.70 98.18 92.40 99.74 84.52 93.43

EMR-Merging é é 1391.5 83.17 90.71 96.78 99.70 97.94 99.09 99.69 82.71 93.73
Auto-Switch(Ours) Ë Ë 174.4 83.27 92.50 96.71 99.67 98.12 99.24 99.75 84.15 94.18

Table 7. Main results of merging full-rank task vectors of the ViT-L/14 model on eight vision datasets. The best method is highlighted in
bold, and the second-best method is underlined.

8.2. Ablation of Auto-Switch hyperparameters:
samples-per-task N and number of neighbors C

In our proposed Auto-Switch, there are two additional hy-
perparameters of this method besides the discard ratio α,
namely the number of samples retained for each task N and
the number of neighbors C. To verify the impact of these
two hyperparameters on Auto-Switch, we conduct ablation
experiments on the ViT-B/32 model. The results shown
in Fig.7 indicates that: (1) As the number of neighbors C
increases, the model’s merging performance tends to de-
crease. This happens because, when selecting neighbors
from the local vicinity of the input sample, an increase in
the number of neighbors (especially when it approaches the
total number of samples) can introduce many distant, irrel-
evant samples. These distant samples can negatively impact
classification accuracy, thereby reducing the effectiveness
of the merging process. Therefore, selecting an appropriate
number of neighbors C, is crucial. (2) As the number of
samples per task N increases, the model’s merging perfor-
mance improves significantly. This is because more sam-
ples help to concentrate the features of each dataset, which
in turn enhances the stability of neighbor selection.

Figure 8. Left: The weights assigned to each binary task vectors;
Right: Performance across various tasks as the discard ratio varies.

8.3. Exploring the weight allocation of Auto-Switch to
different tasks

We validated it using the ViT-B/32 model on different task
test sets to further investigate the distribution of weight al-
location in Auto-Switch. The left panel of Fig.8 shows the
weight allocation to all task vectors when evaluating a cer-
tain task. Auto-Switch allocate most weight to the task vec-
tor related to the task, but regardless of the number of mod-
els merged, only one merging process is required.

8.4. The impact of Bin-Discard’s discard ratio variation
on each task

We tested the impact of varying discard rates on each task,
with results for the ViT-B/32 model shown in the right panel
of Fig.8. The trends were consistent across tasks: initially
increasing, then decreasing, with optimal performance ob-
served at discard rates between 0.6 and 0.7.

Methods ViT-B/32 ViT-L/14 Roberta

base-model 113.595 868.488 75.317
Twin-Merging 158.72 1851.57 211.09
Auto-Switch 161.98 1854.78 214.47

Table 8. The total time (s) required to evaluate the test set for all
tasks.

8.5. Analysis of inference speed in Auto-Switch

We have added analysis on inference speed for better un-
derstanding on Auto-Switch. As shown in the Table 8, on
an Nvidia A100 GPU with a ViT-B/32 base model, Twin-
Merging achieves 71.57% of direct inference speed, while
our Auto-Switch reaches 72.01%, but with only 1.66% of
Twin-Merging’s storage. This demonstrates the excellent
trade-off between inference complexity and storage effi-
ciency of our approach.



9. Additional Results on LLMs
To extensively validate the effectiveness of the proposed
method, we perform merging using our methods and several
baselines on two models with the same architecture but fine-
tuned in different domains: WizardMath-13B (Math) and
llama-2-13b-codealpaca (Code). Since the fine-tuning data
for these two LLMs is not available, some baselines such as
RegMean, Fisher-Merging, Ada-Merging, Ada-Merging++,
and Twin-Merging could not be reproduced. It is important
to note that in our Auto-Switch method, we replace KNN
with Sentence Transformer to calculate semantic similarity,
and use it to assign weights to task vectors from different
domains. The merging results are shown in the Table 9.

Methods GSM8K MATH HumanEval MBPP AVG

WizardMath-13B 63.53 14.14 7.32 19.60 26.15
T-Switch (Math) 63.91 13.72 6.78 19.46 25.97
llama-2-13b-codealpaca 0.00 0.00 25.00 27.80 13.20
T-Switch (Code) 0.00 0.00 23.17 27.60 12.69
Weight-Averaging 55.88 10.50 8.54 8.40 20.83
Task-Arithmetic 63.59 14.01 9.76 8.80 24.04
DARE 63.97 13.99 11.59 10.00 24.89
Ties-Merging 62.54 13.68 10.98 22.60 27.45
EMR-Merging 63.28 13.08 20.12 26.20 30.67
Auto-Switch (Ours) 63.46 13.64 23.78 27.60 32.12

Table 9. The merging results of the LLMs, evaluated using the
pass@1 metric for both HumanEval and MBPP. The result of
DARE is based on the Task-Arithmetic method. The best method
is highlighted in bold, and the second-best method is underlined.

In the Task-Arithmetic baseline, since the task vectors
from the WizardMath-13B model are longer than those
from the llama-2-13b-codealpaca model, the merged model
tends to retain more mathematical abilities. As a result, the
model becomes proficient in mathematical tasks but loses a
significant amount of code-related knowledge.

As concluded in the main paper, our proposed meth-
ods still demonstrate superior performance in the merging
of LLMs. Surprisingly, the approximate model obtained
using T-Switch even outperforms WizardMath-13B on the
GSM8K. As for the other three test sets, there is a slight
performance decline, which is reasonable because the bina-
rization operation in T-Switch discards a significant amount
of information from the task vectors. Meanwhile, the Auto-
Switch outperforms the T-Switch on the HumanEval, which
to some extent proves that there may be useful information
within task vectors from different domains that aids the cur-
rent task.


