
A. Appendix Section
A.1. 2BY2 Dataset

Unlike previous datasets like Breaking Bad and Neural
Shape Mating [3, 11] which focus on assembly of object
fragments, our 2BY2 dataset focuses on pairwise assembly
of daily objects with geometry and task variety, includes
tasks that can be quite challenging for robot manipulation.
For example Plug, Bread, flower are very challenging in
real world becuase they require precise pose alignment to
achieve assembly success.

In previous datasets such as Breaking Bad, the pose of
each fragment depends on all the other fragments. However,
in daily pairwise assembly task, the pose of the Object B,
such as bottle and toaster, is not affected by Object A, such
as cap and bread, and is only determined by the canonical
space. In contrast, the pose of Object A is influenced by
the geometry and pose of Object B. For instance, the pose
of a cap is determined by the rim of the cup, while the
pose of a piece of bread is dictated by the slot of the toaster.
Consequently, previous methods that jointly predict the poses
of two objects are not well-suited for daily pairwise assembly
tasks. To address this, we propose a two-step paired network
architecture that sequentially predicts the pose of each object,
effectively mitigating pose errors introduced by joint pose
prediction in prior approaches.

A.1.1 Dataset Collection

We segment, integrate, and pair meshes obtained online,
scaling them to a global scale of 3.0. Each mesh pair is
categorized into Object B and Object A, where Object B
serves as the receiving component, and Object A functions
as the fitting component. Similar to Breaking Bad [11], we
triangulate each mesh using blender [2] and use blue noise
sampling method to extract the point cloud from the surface
of each mesh, and use padding to make sure each dimension
aligns with (1024, 3).

A.1.2 Symmetry Annotation

Each object is associated with a JSON file specifying its
symmetry type. In this work, we account for two types of
symmetry: axis symmetry along the x, y, z axes, and rota-
tional symmetry around the x, y, z axes.

A.1.3 Task Definition

In the Lid Covering category, Object A refers to the lid,
and Object B refers to the corresponding body, including
Kitchen, Bottle, Kettle, Coffeemachine, and Cup.

In the Inserting category:
• In Plug, Object A is the plug, and Object B is the socket.

Figure 1. The Definition of Canonical Pose. The left image illus-
trates the canonical pose of the task bottle, while the right image
represents the canonical pose of plug.

• In Children’s Toy, Object A is the block, such as cylinder
and cone, and Object B is the board with slots.

• In Letter, Object A is the mail, and Object B is the postbox.
• In Bread, Object A is the bread, and Object B is the toaster.
• In Nut, Object A is the bolt, and Object B is the nut.
• In Coin, Object A is the coin, and Object B is the piggy

bank.
• In Key, Object A is the key, and Object B is the lock.
• In USB, Object A is the cap, and Object B is the USB body.

In the High Precision Placing category:

• In the Box task, Object A refers to the shoes, and Object B
refers to the box. The goal is to neatly place the shoes in
the shoebox.

• In the Tissue task, Object A refers to the tissue, and Object
B refers to the tissue rack. The goal is to place the tissue
on the rack.

• In the Flower task, Object A refers to the flower, and
Object B refers to the vase.

• In the Teapot task, Object A refers to the teapot, and Object
B refers to the tea tray. The goal is to neatly place the teapot
on the tray.

• In the Position task, Object A refers to the cup, and Object
B refers to the coffee machine. The goal is to place the cup
underneath the spout of the coffee machine.

A.1.4 Definition of Canonical Pose in Different Tasks

In all tasks except for Plug, the canonical pose refers to the
assembled state where the two objects are placed on the XY
plane under the influence of gravity, ensuring stable con-
tact with the plane. Additionally, the positive Z-axis passes
through the geometric center of the object’s base, ensuring
proper central and vertical alignment, as shown in Figure 3.

In the Plug task, the canonical pose is defined as the state
where the socket is placed on the XZ plane, representing the
wall, as shown in Figure 3.



Figure 2. Task Diversity Visualization. From left to right, each
column shows selected meshes from training set and test set of
Kitchenport, Coin, Cup, Coffeemachine, Position, Toilet, Shoes,
Flower.

Notably, in tasks where only a single relative pose is
required—such as plugging into a socket which is fixed
on the wall—the plug’s pose can be determined through
coordinate transformation, as illustrated in Section A.3.3.

A.1.5 Data Splition

As described in the main paper, our 2BY2 dataset includes
18 fine-grained tasks, such as Bottle and Children’s Toy, and
4 tasks which require cross-category generalization ability,
which is Lid Covering, Inserting, High Precision Placing
and All. We ensure geometric diversity when assigning each
object exclusively to either the training or test set, as shown
in Figure 2.

For cross-category tasks like Lid Covering, the training
and test sets both include objects from its own categories,
such as Kitchen, Bottle, Kettle, Coffeemachine, and Cup.
Similar applies to the Inserting and High Precision Placing
tasks. For the All task, both the training and test sets include
all 18 fine-grained tasks.

For each of the 18 fine-grained task, we maintain a
training-to-test set ratio of approximately 3:2. For Lid Cov-
ering, Inserting, High Precision Placing and All, the ratio is
controlled at roughly 5:2.

A.2. Methodology

A.2.1 SE(3) Equivariant and SO(3) Invariant Feature

Robots operate within a three-dimensional Euclidean space,
where manipulation tasks inherently encompass geometric
symmetries such as rotations. Recent works [6, 8, 13, 17–19]
leverage symmetry to enable robust learning and general-
ization. As illustrated in the main paper, SE(3) equivariant
feature, which is extracted by our designed encoder, lever-

age symmetry to improve sample efficiency. In both branch,
SE(3) equivariant features of OB and OA are used for object
pose estimation.

SO(3) invariant features encode geometric shape infor-
mation in the latent space, independent of the input point
cloud’s orientation. In BA, the SO(3) invariant feature of
PB is extracted to facilitate the pose estimation of PA. Intu-
itively, the predicted pose of the bread is determined by the
geometry of the toaster slot.

A.3. Experiment

A.3.1 Data Augmentation

During training, we apply SO(3) data augmentation to all
methods, including both our approach and the baselines,
which provides sufficient data for network convergence and
ensures fair comparison. Notably, as pointed out by [12],
although our network exhibits SE(3) equivariance, SO(3)
data augmentation still benefits the learning process.

A.3.2 2BY2 Dataset Experiment

Similar to Breaking Bad [11], we also use Chamfer Dis-
tance (CD) as our additional evaluation metric to validate
the effectiveness our multi-step pairwise network.

Evaluation Metric. Chamfer Distance (CD) [1] is a com-
mon metric used to measure the similarity between two
point clouds or sets. It is widely applied in computer vision,
3D shape matching, point cloud alignment. More specifi-
cally, given two point clouds P = {p1, p2, . . . , pm} and
Q = {q1, q2, . . . , qn}, Chamfer Distance between P and Q
is defined as:
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More specifically, we use the average Chamfer Distance

between the predicted P ′
B and ground truth PB , and the

predicted P ′
A and ground truth PA:

CD =
1

2
(CD(P ′

B , PB) + CD(P ′
A, PA)) (2)

Results and Analysis. As detailed in the main paper, we
compare our multi-step pairwise network with SE-3 assem-
bly [16], Puzzlefusion++ [15], Jigsaw [9] and Neural Shape
Mating [3]. As shown in Table 1 and Figure , our method
consistently outperforms all baselines across 18 fine-grained
tasks, demonstrating significantly improved alignment and
geometric matching accuracy. This highlights the superior
precision and effectiveness of our multi-step pairwise net-
work. Moreover, in tasks such as Lid Covering, Inserting,
Precision Placing, and the overall All category, our method
achieves a substantial margin of improvement over the base-
lines, further indicating its robust generalization ability.



Figure 3. Qualitative Results Comparison. We highlight Kettle, USB, Toilet, Shoes, Teapot, Nut tasks to demonstrate our improved
translation and rotation predictions compared to baseline methods.

A.3.3 Real-robot Experiment

In some tasks in the real world, instead of two poses, only
one relative pose is needed to solve the pairwise assembly
task. For example, when plugging into the socket that is
fixed to the wall, only the pose of the plug is needed. To
resolve tasks like these, we first infer the socket’s pose in our
defined world frame. In this step, we are not rotating socket
arbitrarily. Then estimate the plug’s target pose in defined
world frame. The plug’s target pose in the real world can be
calculated using a coordinate transformation.

Moreover, rather than relying on pre-defined grasping
poses, numerous existing grasping methods, such as [5, 7],
can generate adaptable grasps efficiently. The motion trajec-
tory can then be computed using motion planning library.

A.4. Ablation Study

As detailed in the main paper, we compare our method on
Lid covering, Inserting, and High precision placing and All

task in 2BY2 dataset with other encoders: Vector Neuron
DGCNN [4], DGCNN [14], PointNet [10] and an end-to-end
approach which jointly predicts the pose of PA and PB .

Evaluation Metric. Similar to Section A.3.2, We choose
Chamfer Distance (CD) as our additional evalution metric.

Results and Analysis. As shown in Table 2, replacing
our multi-scale VN DGCNN encoder with Vector Neuron
DGCNN [4], DGCNN [14], or PointNet [10] results in a per-
formance drop, highlighting that our encoder better captures
geometric features and exhibits greater sensitivity to pose
transformations. Additionally, substituting our multi-step
network with a joint-learning approach leads to an increase
in Chamfer Distance, underscoring the effectiveness of our
multi-step network design.

A.5. Limitations and Future Works

The current design of our network is primarily constrained
by the scope of the 2BY2 dataset, which could be further ex-
panded to include a wider range of tasks and more complex



Task Jigsaw [9] Puzzlefusion++ [15] NSM [3] SE(3)-Assembly [16] Ours
CD CD CD CD CD ↓

Lid Covering 1.665 1.809 1.082 0.453 0.362
Kitchenport 1.100 1.169 0.772 0.323 0.230
Bottle 1.640 1.738 1.194 0.601 0.321
Kettle 1.277 1.425 0.903 0.428 0.163
Coffeemachine 1.290 1.394 1.178 0.394 0.189
Cup 1.336 1.260 1.093 0.493 0.268
Inserting 0.712 0.842 0.860 0.431 0.278
Plug 0.752 0.746 0.411 0.194 0.085
Childrentoy 1.037 0.917 0.874 0.814 0.791
Letter 1.296 0.862 0.341 0.191 0.140
Bread 0.406 0.301 0.139 0.144 0.105
Nut 0.131 0.665 0.946 0.368 0.059
Coin 0.946 0.921 0.756 0.146 0.134
Key 0.603 0.829 0.441 0.149 0.032
Usb 0.541 0.656 0.508 0.327 0.266
Precision Placing 0.888 0.472 0.366 0.306 0.255
Box 0.263 0.234 0.205 0.102 0.093
Tissue 0.462 0.644 0.335 0.349 0.232
Flower 0.463 0.361 0.371 0.376 0.295
Teaport 0.577 0.475 0.345 0.157 0.069
Position 0.759 0.735 0.585 0.548 0.302

ALL 1.223 1.469 1.100 0.679 0.268

Table 1. Quantitative Evaluation on 2BY2 for Pairwise Object Assembly. Our method outperforms the baseline across all 18 fine-grained
assembly tasks, as well as demonstrating significant improvement on 4 cross-category assembly tasks, including Lid covering, Inserting,
Precision Placing and All. It achieves an average reduction of 0.138 in Chamfer Distance.

Task Vector Neuron DGCNN [4] DGCNN [14] PointNet [10] w/o Multi-step Ours
Chamfer Distance Chamfer Distance Chamfer Distance Chamfer Distance Chamfer Distance ↓

Lid Covering 0.387 0.873 0.875 0.439 0.362
Inserting 0.297 0.483 0.489 0.290 0.278
Precision Placing 0.274 0.864 0.729 0.283 0.255

ALL 0.294 0.806 0.816 0.307 0.268

Table 2. Ablation Study Results. We compare various encoders including Vector Neuron DGCNN [4], DGCNN [14], PointNet [10], and
our proposed multi-scale Vector Neuron DGCNN. We also compare end-to-end networks with multi-step networks to demonstrate the
effectiveness of each component in our network design.

everyday scenarios. Additionally, rather than hardcoding
the grasping pose, a policy network for robotic manipula-
tion could be trained using the 2BY2 dataset. Furthermore,
the network architecture can be optimized to reduce com-
putational overhead, improving its suitability for real-time
robotic operations.
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