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A. Experiment Details
A.1. Baseline Details
CLIP. Throughout our experiments, we use CLIP-H from
OpenAI [11] as the feature extractor, which works slightly
better than CLIP-B/L. We use the full representation, i.e.
257 tokens (256 spatial tokens with 1 class token) from
the second last layer following IP-Adapter Full [16], which
improves ID preservation compared to using only class to-
ken or a reduced number of tokens (e.g. 16). For multiple
inputs, we use token concatenation following IP-Adapter,
which outperforms simple averaging. For fair comparisons,
we train IP-Adapter with CLIP representation in the same
Flow Matching Decoder stage for 5K steps with an effective
batch size 32 (roughly 1 epoch in MFHQ). The convergence
happens at around 4K steps.
ArcFace. We use the ArcFace [4] model from insightface
[3] throughout the experiments. We project Arcface em-
bedding from R1×512 to 256 tokens with 1280 channels
R256×1280, which is comparable to CLIP and Omni-ID in
terms of representation size. Using 256 tokens improves
its ID preservation compared to using 4 or 16 tokens only
in IP-Adapter FaceID [16], and outperforms other reduced
number of tokens (64). We concatenate representations in
the token dimension for multiple inputs, where averaging
merging also reaches a similar results for ArcFace repre-
sentation. We train IP-Adapter with ArcFace representation
in the Flow Matching Decoder stage by 75K steps to con-
verge. Compared to CLIP and Omni-ID which take about
5K steps, the convergence of ArcFace is rather slow, due to
its over-compactness for generative tasks.
ArcFace+CLIP. Following IP-Adapter FaceIDPlus [16],
Arc-Face+CLIP baseline projects ArcFace tokens from the
average ArcFace embeddings in R1×512 to 256 queries
in R256×1280, where each individual CLIP features in
R257×1280 are used as keys and values to aggregate multiple
inputs. For a fair comparison to Omni-ID, the same trans-
former with self attention layers is used to merge features.
Both the improved number of tokens and the self-attention

layers in transformer improves the face quality compared
to the original implementation in FaceIDPlus, where 4 or
16 tokens are used as query and Q-former [7] without self
attentions are employed.

A.2. Decoders and Training Details
Decoders details.
• Masked transformer decoder. MTD is built by 6 CA

blocks and 2 SA blocks, which reaches high-quality
reconstruction while smaller number of decoder blocks
might compensate encoder quality due to the lower
decoding ability. Mask ratio of MTD is set to 95%, i.e.
5% patches are visible during training, which leads better
encoder performance in downstream tasks than mask
ratio 85% or 99%. The patch size for the decoder is set to
14×14 to balance the speed and quality.

• Flow-matching denoising decoder. For the Flow-
Matching Decoder, FLUX dev [1] serves as the base
model. We implement a FLUX-based version of IP-
Adapter [16], where the Omni-ID representation is
injected into all blocks, including MM-DiT and DiT
blocks, via learnable decoupled attention layers. Inject-
ing into both block types results in slightly better quality
compared to injecting into only MM-DiT blocks or only
DiT blocks, although this improvement is not critical.
Each decoupled attention layer optimizes a single linear
projection to map ℓ from RL×C to RL×3250, where
3250 is the channel size used in FLUX. During the
Flow-Matching Decoder stage, the Omni-ID encoder and
the projection layers of the decoupled attention layers
are optimized, while the original parameters in FLUX
remain frozen.

Training Details. Omni-ID uses a two-stage few-to-many
identity reconstruction training process: the MTD stage
and the Flow Matching Decoder stage. The MTD stage is
trained on our MFHQ dataset at an image resolution of 448
using a constant learning rate of 1e−4, an effective batch
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Figure I. Gallery of Omni-ID in personalized T2I generation. Omni-ID enables high identity preservation. Results achieved by injecting
Omni-ID representation through IP-Adapter [16] into the frozen FLUX dev model [1] without LoRA [6].
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Figure II. Illustration of MFHQ Creation. Given a video, we
first detect faces and distribute identities to different clips by a
threshold based on the cosine distance of face embeddings [4].
Then, a face quality estimation [2] is applied to sort the quality
of frames within each identity. 20% faces with lowest quality are
removed. A head pose estimation [13] is employed to estimate
the poses for each face which are used to cluster the frames into
M = 16 clusters. Finally, 8 frames are sampled M clusters, where
each cluster is only sampled at most once. The sum of absolute
pose differences is assured larger than 15 degree for each pair.

size of 256 (distributed as 32 batches across 8 NVIDIA
A100 GPUs), and the AdamW optimizer for 250K itera-
tions. The Flow Matching Decoder stage is trained on the
same dataset at a resolution of 512, with a constant learning
rate of 1e−4, an effective batch size of 32, and the AdamW
optimizer for 5K iterations. In both stages, we uniformly
sample a variable number of inputs (1 to 3) and generate all
8 targets for each identity.
Downstream Details.
• Controllable face generation. For all experiments, we

freeze the face representation encoder and optimize both
the ControlNet and IP-Adapter using a constant learning
rate of 2e−5 and an effective batch size of 16 for 15K
steps. The models are trained on MFHQ with a variable
number of inputs (uniformly sampled between 1 and 7)
and a single target image, all at a resolution of 512×512.
All models converge well before reaching 15K steps. The
ControlNet is implemented and initialized as described
in [15]. The IP-Adapter is initialized from our Flow
Matching Decoder. For fair comparisons, other represen-
tations (e.g., CLIP and ArcFace) also undergo the Flow
Matching Decoder training stage to achieve convergence,
requiring 5K steps for CLIP and 75K steps for ArcFace.

In the benchmark, ground truth landmarks from the same
identity are used as ControlNet inputs, and metrics are
calculated between the generated images and the targets.
The generation resolution is set to 512× 512.

• Personalized T2I generation. We integrate frozen face
representations into the frozen FLUX dev base model [1]
using learnable decoupled attentions, following the ap-
proach outlined in IP-Adapter [16]. Injecting into MM-
DiT blocks is unnecessary in personalized T2I and does
not affect the image quality. The IP-Adapter is trained
using a simple flow-matching loss without additional reg-
ularization (e.g. ID loss, alignment loss [5]) and without
employing LoRA [6]. These regularization and LoRA
modules are left for future study as orthogonal to our
work. Our training is performed at a resolution of 512 ×
512 for 50K steps with a constant learning rate of 1e−4,
using the AdamW optimizer. Subsequently, we fine-tune
the IP-Adapter at a resolution of 768 × 768 for 20K
steps, maintaining the same hyperparameters. Models are
trained on our internal purchased dataset (Getty Images).
For fair comparisons, other representations, such as CLIP
and ArcFace, are trained under the same hyperparameters
unless otherwise noted. Due to its slower convergence
compared to Omni-ID and CLIP, ArcFace requires 100K
steps in the first stage to achieve convergence. Inference
for this task is performed at a resolution of 1024× 1024.

MFHQ Details. Refer to Fig. II how MFHQ is collected
for each video clip.

B. Supplementary Experiments

B.1. Additional Controllable Face Generation

Fig. III further compares Omni-ID with ArcFace [4] and
CLIP [11] in the context of controllable face generation.
Unlike the benchmark case presented in the main paper,
where Ground Truth landmarks were used to guide identity-
specific generation, here we use the template-driven land-
marks as conditions. 9 template images are collected to
obtain a grid of expression and pose in FLAME code [8]
through 3D mesh reconstruction by 3D landmark estima-
tion. Then, we use the FLAME shape code for each identity
with the template FLAME expression and pose code from
each template to get the rigged mesh. From each mesh, 2D
lanmarks are rendered as condition to generate each view at
the grid for each identity.

While CLIP demonstrates strong baseline performance,
it struggles with identity preservation and fails to generate
realistic faces when the pose and expression differ signifi-
cantly from the input images. This limitation arises because
CLIP is an instance-level representation model. In contrast,
our Omni-ID is an identity-level representation, specifically
trained to reconstruct faces in new poses and expressions.
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Table I. Quantitative comparisons to the state-of-the-art on
personalized T2I generation. ID Similarity are computed by the
cosine distance between the generated samples and the five images
of each identity. We compute the average and std across identities.
The base models are FLUX [1] for all methods.

Method ID Similarity↑
IPA-FaceID 0.3535±0.1982
IPA-FaceIDPlusV2 0.4327±0.1090
IPA-Full 0.6649±0.0846
PuLID 0.7289±0.0572
IPA-Omni-ID Schnell (Ours) 0.7306±0.0793
IPA-Omni-ID (Ours) 0.8026±0.0421

Consequently, Omni-ID achieves significantly better iden-
tity preservation while generating new faces of the identity.

B.2. Additional Personalized Text-to-Image
Compare to State-of-the-Art. We compare Omni-
ID+IP-Adapter (IPA Omni-ID) to the state-of-the-art IP-
Adapter [16], InstantID [14], PhotoMakerV2 [9], PuLID [5]
in Fig. IV and Fig. V when using FLUX Dev [15] and Sta-
ble Diffusion (SD) [12] as the base model, respectively.
Our IPA Omni-ID trained by the simple flow matching loss
without any advanced techniques such as LoRA [6], ID
loss [5], aligment loss [5], stacked embedding [9], Identi-
tyNet [14], achieves the highest ID preservation. Refer to
gallery.m4v for all visual results of our model. Tab. I com-
pares IPA Omni-ID with the state-of-the-art personalized
T2I employed FLUX as the base model. Our IPA Omni-
ID outperforms others with the highest identity similarity.
Beyond FLUX Dev Experiments. Despite Omni-ID is
trained using FLUX dev [1] as the Flow Matching Decoder,
Omni-ID can be applied to any other diffusion models. In
this section, we use the Omni-ID encoder with IP-Adapter
on FLUX Schnell [1] and SD15 [12] in the task of person-
alized text-to-image generation. Fig. IV and Fig. V demon-
strates again the superiority of Omni-ID against other rep-
resentations like CLIP and ArcFace.
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Figure III. Qualitative comparisons to the state-of-the-art representations in controllable face generation. We compare Omni-ID with
ArcFace [4] and CLIP [11] with 5 input images. To control each face in the grid, we drive the facial landmark of each identity by the
same template. Our Omni-ID achieves superior identity preservation, captures nuanced details more faithfully, and demonstrates higher
adaptivity to diverse poses and expressions.
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Figure IV. Qualitative comparisons with the state-of-the-art in personalized T2I generation using FLUX [1] as the base model. Our
Omni-ID with IP-Adapter [16] without any other regularization (LoRA [6], ID loss [5], alignment loss [5]) achieves highest ID preservation.
Different variants of IP-Adapter without LoRA are shown at the left side. The state-of-the-art PuLID-FLUX-v0.9.1 achieves lower face
quality compared to Omni-ID. Omni-ID also works well on FLUX Schnell model, which generates each sample by 4 denoising steps.
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Figure V. Qualitative comparisons to the state-of-the-art in personalized T2I generation using Stable Diffusion [12] as the base
model. IPA-Full, IPA-Plus, and our IPA-Omni-ID use SD15 [12] as the base model, generating 512 × 512 resolution samples. InstantID
[14] and PhotoMakerV2 [9] use SDXL [10] as the base model, generating 1024× 1024 samples, which are resized to 512× 512 to show
with other methods side by side. Our Omni-ID with IP-Adapter without any other regularization achieves the highest ID preservation.
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