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Supplementary Material

We provide supplementary material related to the main paper,
arranged as follows:
1. Additional implementation details (Appendix A)
2. Additional Analysis (Appendix B)
3. Additional ablation study (Appendix C)
4. Additional qualitative results (Appendix D)
5. Discussion (Appendix E)

A. Additional Implementation Details
A.1. Grid Search for Optimal Threshold

Given that the threshold for the foreground mask has a sig-
nificant impact on the IoU, to eliminate the bias introduced
by manually setting the threshold (e.g., 0.5), we perform a
grid search over the similarity map for each image with a
step size of 0.01 to identify the optimal foreground mask.
For each threshold t, we convert the similarity map into a
binary mask by applying

M̂ (x, y) =

{
1 if S (x, y) ≥ t

0 if S (x, y) < t
, (14)

where S (x, y) is the similarity score for each pixel at po-
sition (x, y), M̂ (x, y) is the binary mask at that pixel. We
calculate cIoU for all threshold values in the grid, and choose
the threshold t′ that maximizes the cIoU for the image

t′ = argmax
t

(cIoU (t)) . (15)

Once the optimal threshold is selected for each image, we
use it to generate the final binary masks for evaluation, which
ensures that the comparison is fair and threshold-invariant.

A.2. Model Architecture and Training

As for reasoning segmentation, we trained two models:
READ-7B and READ-13B. For READ-7B, we initialize
the parameters using the released SESAME model [42] to
accelerate training, with the training dataset allocated in
a 10:1:1:1:1:10 ratio. We employ LoRA [9] for efficient
fine-tuning, using lora r = 8, and conduct end-to-end joint
training. For READ-13B, we train it from scratch, using
LLaVA 1.5-13B as the base model. Initially, we train it on
the full dataset in a 10:10:2:3:1:1 ratio for about 8 epochs,
and then fine-tune it with a ratio of 3:10:2:3:1:10, using a
learning rate of 0.0001 and lora r = 64. As for referring
segmentation, we maintain the same settings as those used
for READ-7B in reasoning segmentation. All our code will
be publicly available at https://github.com/rui-qian/READ.

B. Additional Analysis
(1) Fig. 4 shows qualitative analysis of the <SEG> token
on the ReasonSeg val set. Points derived from (a) serve as

prompts with original SAM in (c). Similarity between the
<SEG> token and image token embeddings stemming from
the last hidden layer is computed by Eq.(5), w.r.t. LLaVA
encoder in (a) and SAM decoder in (b). The consistency
in (a), (b) indicates that the <SEG> token in LMMs learns
semantics similar to direct mentions in text, as observed in
CLIP [31]. Note that 1st column in (b) shows failure cases,
indicating the existence of misalignment between the LLaVA
encoder in (a) and SAM decoder in (b). Such observation
sheds light on the interpretability of semantic alignment is-
sues, where the LLaVA encoder generates accurate textual
responses even in scenarios where the SAM decoder fails
at segmentation, when eliciting LISA [16] for reasoning ex-
planations. In future work, we aim to further investigate the
underlying connections behind this phenomenon. (2) Fig. 6
shows a qualitative analysis of Pprompt on the ReasonSeg val
set. We first select several points with the highest similarity
scores as positives (red in (b)) and an equal number of points
with the lowest similarity scores as negatives (blue in (b)).
These points are then directly used as prompts instead of the
<SEG> token, and are input into the original SAM model
to generate the segmentation mask. Columns in (b) demon-
strate that only relying on the selected similarity points as
prompt can still generate a segmentation mask potentially.

C. Additional Ablation Study
Effect of points ratios. To explore how the ratios of posi-
tive, negative, and neutral points impact the performance of
READ, we vary the positive and negative thresholds (tpos
and tneg) as well as the number of points |P|. As the positive
sample ratio (tpos) increases, model performance improves,
particularly when fewer points are used (|P|=10). Also,
increasing the number of points generally enhances perfor-
mance, with the most significant improvements observed at
|P|=60, regardless of the tpos setting.

Table 8. Ablation study on points ratios.

tpos tneg

|P|=10 |P|=30 |P|=60

gIoU cIoU gIoU cIoU gIoU cIoU

0.8 0.2 58.94 65.16 59.75 67.62 59.71 68.17
0.7 0.3 58.48 64.00 58.82 65.32 59.20 67.70
0.6 0.4 58.59 64.27 58.66 65.00 58.93 66.69

D. Additional Qualitative Results
Fig. 7 shows qualitative results on the FP-RefCOCO(+/g)
val set. Also, READ retains the conversational ability of
LLMs while performing segmentation tasks and can refuse
to output a mask when the queried object doesn’t exist.
Fig. 8 shows the qualitative results of READ on the Reason-
Seg val set. LISA and SESAME exhibit various defects to
some extent when handling the displayed cases, whereas our
approach delivers more desirable segmentation results.

https://github.com/rui-qian/READ


(a) <SEG>with LLaVA (b) <SEG> with SAM (c) Points as prompt with SAM
Figure 4. Qualitative analysis of the <SEG> token on the ReasonSeg val set. The 1st, 2nd, and 3rd columns of (a), (b), and (c) are LISA,
SESAME, and READ (Ours) for comparisons, respectively. Points derived from (a) serve as prompts with original SAM in (c).
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Figure 5. Showcase of complex reasoning and world knowledge.

E. Discussion
Applicability. To showcase the broader applicability of
our approach, we discuss how READ can be integrated with
other methods. For LLM-based referring segmentation, such
as LISA [16], GSVA [44], and GlaMM [33], our SasP mod-
ule can be seamlessly incorporated with negligible effort, as
they share the same <SEG> token pipeline as READ (ours).
For non-LLM-based referring segmentation, such as MMCA
[47], we compute the similarity between the output state of
the <SEG>-like token and the image tokens derived from
the last hidden layer in transformers to obtain a similarity
map. We then select highly activated points for sparse em-
bedding representations or use these points to interpolate
features from a CNN-based (ResNet) feature map, similar
to the lightweight RoI pooling operation in object detection
tasks. The resulting embeddings can then be employed for
downstream vision tasks. Beyond segmentation, as long
as a vision task involves generating an attention map, our
Discrete-to-Continuous (DtoC) strategy (Sec. 4.1) can be
applied to edit the attention map.

Necessity. This raises two pivotal issues for considera-
tion. First, is the <SEG> token (or a <SEG>-like place-
holder) truly necessary? Moreover, what advantages does

the <SEG> token offer (why <SEG> token)? For the for-
mer, if the <SEG> token merely serves as a connector role
for downstream tasks, then it is not necessary. For tasks
that only involve segmenting positive samples where the
object to be segmented is expected to exist (as in LISA),
one could alternatively use the embeddings derived from
the LLMs’ output text to tap into the LLMs’ capabilities.
However, if the <SEG> token functions as a decision indica-
tor of whether segmentation should be performed, then its
inclusion becomes necessary. For instance, when it comes
to false premises where the target objects might not exist,
it is crucial to rely on the LLMs’ prediction (specifically,
whether the output contains the <SEG> token) to determine
if segmentation should take place.

For the latter, the <SEG> token infuses LLMs’ world
knowledge into downstream tasks, compared to non-LLM-
based methods such as MMCA [47] and M-DGT [5]. As
illustrated in Fig. 5, solving the text query “Where can the
driver see the car speed?” requires the model to possess
world knowledge, since the query itself does not explicitly
contain semantics that point to the answer (“speedometer”).
In contrast, MMCA and M-DGT use BERT and ResNet as
backbones, regardless of how effective their feature embed-
dings are, they inherently lack additional world knowledge.



(b) Points as prompt with SAM(a) <SEG>with LLaVA
Figure 6. Qualitative analysis of Pprompt (points as prompt) on the ReasonSeg val set. The 1st, 2nd, and 3rd columns of (a), (b) are LISA,
SESAME, and READ (Ours) for comparisons, respectively. Points derived from (a) serve as prompts with original SAM in (b).



Figure 7. Visualization on the FP-RefCOCO(+/g) val set.



Figure 8. Visual comparison among READ (ours) and prior works on the ReasonSeg val set.
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