T2ICount: Enhancing Cross-modal Understanding for Zero-Shot Counting

Supplementary Material

1. Implementation Details
1.1. Hierarchical Semantic Correction Module

We illustrate the workflow of the proposed Hierarchical Se-
mantic Correction Module in fig 1 for clarity. This module
progressively integrates multi-scale features from the de-
noising U-Net decoder while enhancing cross-modal align-
ment between visual and textual representations.
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Figure 1. The workflow of the proposed Hierarchical Semantic
Correction Module

Semantic Enhance Module: Text-to-image and image-
to-text attention mechanisms operate through scaled dot-
product attention computations: text-to-image attention
maps textual queries to visual key-value pairs to locate rel-
evant image regions, while image-to-text attention uses vi-
sual queries to attend to textual key-value pairs, enabling
effective cross-modal feature alignment and information ex-
change between modalities.

1.2. Regression Loss

We detail the regression loss used in our framework here,
which is proposed by CUT [18]. The loss function consists
of two terms: Lgspy Which optimizes the structural similar-
ity in the foreground region, and the £,-like total variation
loss, Lty which maintains the consistency of background
regions. It can be expressed as:

Lieg = Lssim + B - L1v, (11)

where

M
1
Losm =37 2 (1-ssmi(arn(Dos®). ap(DR059) ).

(12)
where SSIM represents the structural similarity index, ac-
cessing the discrepency between the predicted (D) and
ground truth (D9%) density maps, with AP,, indicating the
average pooling operation that scales down an image to
27%1 of its original size. The Hadamard product (®) en-
ables element-wise multiplication, focusing the model’s at-
tention on dense regions identified by the binary segmenta-
tion map S : D& > le — 3. In addition, M is set as 3.
The total variation loss, Lty alongside the hyper-parameter,
B, set to 0.1, ensuring the model accurately captures crowd
density variations across the entire image.

2. Discussion

While conventional diffusion models typically employ a
multi-step denoising process, we strategically select z;
(small ¢) for denoising in our single-step denoising frame-
work. This choice is driven by a key insight: the noise
addition process inherently introduces uncertainty and po-
tentially disrupts the original image structure. As shown
in Theorem 1, the upper bound of difference between the
clean image 2y and diffused image z; is increasing by the
t. With t = 1, we prioritize the retention of original image
semantics for accurate object counting while maintaining
determinism.

Theorem 1 The L2 distance between the clean image and
noised image satisfies the bound with a probability of at
least 1 — 0, we have

Iz = 2ell < (1 = Vay)llz] + V1 - &C

where C' := \/d+2,/dlog(1;+210g(1§

Proof:

Iz = zell = [lz = Varz — V1 — aue
<z =vVazll + VI—adel  (13)
= (L= Va)llz]l + VI — alle]

As we know ||¢||? is Chi-squared distribution, by concen-
tration inequality [2], we have

P(llel? > d+2Vdr +2r) < ™" (14)
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Figure 2. Qualitative comparison of T2ICount with CLIP-Count [8] and VLCounter [9] on the FSC-147-S protocal.

Lete™" = ¢, we have

1 1
P |le]| > \/d—|—2\/dlog5+210g5

<9 (15)
Therefore, we have
Iz =z < (1= Va)|zl| +vVI-aC  (16)

with probability at least 1 — §

3. Ablation Study

Effects of fine-tuning the U-Net: We empirically validate
whether the weights of the denoising U-Net can remain
frozen during training. The results are provided in Table 1.
We find that when the U-Net is entirely frozen, the model
shows poor performance after training. This is likely be-
cause the diffusion model was previously trained for image
generation and not for counting tasks. Therefore, there is
a domain gap between the pre-trained model and our spe-
cific task, which requires the U-Net to be fine-tuned to learn
domain-specific knowledge.

Table 1. Ablation study on freezing or fine-tuning the UNet

Validation Test
- 9
U-Net Frozen? —or =R MSE [ MAE RMSE
Yes 3516 10492 | 37.50 13347
No 1378 5878 | 1176  97.86

Ablation on the timestep ¢: Apart from the theoretical
analysis of using features from timestep ¢ = 1, we empiri-
cally demonstrate how different timesteps influence count-
ing results in Tab 2. Generally, later (small) timesteps in
the reverse diffusion process demonstrate comparable per-
formance while preserving more informative features than
earlier timesteps (large).

Ablation on « in Lrrc: We investigate the optimal bal-
ance between positive and negative samples in Lgrrc by
fine-tuning . As shown in Tab 3, our experiments demon-
strate that doubling the weight for positive samples (7 = 2)
in the loss function provides the most effective supervision,
outperforming other weighting strategies.



Table 2. Ablation study on the timestep ¢

. Validation Test
MAE RMSE | MAE RMSE
1 13.78 58.78 | 11.76 97.86
50 | 14.83 60.17 | 13.16 100.22
100 | 1554 68.93 | 1492 116.28
150 | 15.63 61.66 | 1541 108.30
250 | 16.86 64.44 | 1540 111.81
700 | 18.79 78.67 | 18.55 117.47

Table 3. Ablation study on the ~

Validation Test
7 'MAE RMSE | MAE RMSE
05| 1582 6481 | 1545 102.96
1 1442 63.37 | 13.00 109.76
2 | 13.78 58.78 | 11.76 97.86
4 | 16.75 68.55 | 1591 125.36

4. Qualitative results

We provide with more qualitative comparisons between
our proposed model and two existing approaches (CLIP-
Count [8] and VLCounter [9]) on the protocol FSC-147-
S. Our method demonstrates superior text sensitivity, accu-
rately responding to specific counting queries, while these
two methods tend to count all objects indiscriminately, re-

gardless of the textual prompt.
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