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Supplementary Material

1. Implementation Details

1.1. Hierarchical Semantic Correction Module

We illustrate the workflow of the proposed Hierarchical Se-
mantic Correction Module in fig 1 for clarity. This module
progressively integrates multi-scale features from the de-
noising U-Net decoder while enhancing cross-modal align-
ment between visual and textual representations.

Figure 1. The workflow of the proposed Hierarchical Semantic
Correction Module

Semantic Enhance Module: Text-to-image and image-
to-text attention mechanisms operate through scaled dot-
product attention computations: text-to-image attention
maps textual queries to visual key-value pairs to locate rel-
evant image regions, while image-to-text attention uses vi-
sual queries to attend to textual key-value pairs, enabling
effective cross-modal feature alignment and information ex-
change between modalities.

1.2. Regression Loss

We detail the regression loss used in our framework here,
which is proposed by CUT [18]. The loss function consists
of two terms: LSSIM which optimizes the structural similar-
ity in the foreground region, and the L2-like total variation
loss, LTV which maintains the consistency of background
regions. It can be expressed as:

Lreg = LSSIM + � · LTV, (11)
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where SSIM represents the structural similarity index, ac-
cessing the discrepency between the predicted (D) and
ground truth (Dgt) density maps, with APm indicating the
average pooling operation that scales down an image to

1
2m�1 of its original size. The Hadamard product (�) en-
ables element-wise multiplication, focusing the model’s at-
tention on dense regions identified by the binary segmenta-
tion map S

gt : Dgt
� 1e � 3. In addition, M is set as 3.

The total variation loss, LTV alongside the hyper-parameter,
�, set to 0.1, ensuring the model accurately captures crowd
density variations across the entire image.

2. Discussion
While conventional diffusion models typically employ a
multi-step denoising process, we strategically select z1

(small t) for denoising in our single-step denoising frame-
work. This choice is driven by a key insight: the noise
addition process inherently introduces uncertainty and po-
tentially disrupts the original image structure. As shown
in Theorem 1, the upper bound of difference between the
clean image z0 and diffused image zt is increasing by the
t. With t = 1, we prioritize the retention of original image
semantics for accurate object counting while maintaining
determinism.

Theorem 1 The L2 distance between the clean image and

noised image satisfies the bound with a probability of at

least 1� �, we have
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As we know k✏k
2 is Chi-squared distribution, by concen-

tration inequality [2], we have

P (k✏k2 � d+ 2
p

dr + 2r)  e
�r (14)
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Figure 2. Qualitative comparison of T2ICount with CLIP-Count [8] and VLCounter [9] on the FSC-147-S protocal.
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Therefore, we have

kz � ztk  (1�
p
↵̄t)kzk+

p
1� ↵̄tC (16)

with probability at least 1� �

3. Ablation Study
Effects of fine-tuning the U-Net: We empirically validate
whether the weights of the denoising U-Net can remain
frozen during training. The results are provided in Table 1.
We find that when the U-Net is entirely frozen, the model
shows poor performance after training. This is likely be-
cause the diffusion model was previously trained for image
generation and not for counting tasks. Therefore, there is
a domain gap between the pre-trained model and our spe-
cific task, which requires the U-Net to be fine-tuned to learn
domain-specific knowledge.

Table 1. Ablation study on freezing or fine-tuning the UNet

U-Net Frozen? Validation Test
MAE RMSE MAE RMSE

Yes 35.16 104.92 37.50 133.47
No 13.78 58.78 11.76 97.86

Ablation on the timestep t: Apart from the theoretical
analysis of using features from timestep t = 1, we empiri-
cally demonstrate how different timesteps influence count-
ing results in Tab 2. Generally, later (small) timesteps in
the reverse diffusion process demonstrate comparable per-
formance while preserving more informative features than
earlier timesteps (large).

Ablation on � in LRRC: We investigate the optimal bal-
ance between positive and negative samples in LRRC by
fine-tuning �. As shown in Tab 3, our experiments demon-
strate that doubling the weight for positive samples (� = 2)
in the loss function provides the most effective supervision,
outperforming other weighting strategies.



Table 2. Ablation study on the timestep t

t
Validation Test

MAE RMSE MAE RMSE
1 13.78 58.78 11.76 97.86

50 14.83 60.17 13.16 100.22
100 15.54 68.93 14.92 116.28
150 15.63 61.66 15.41 108.30
250 16.86 64.44 15.40 111.81
700 18.79 78.67 18.55 117.47

Table 3. Ablation study on the �

�
Validation Test

MAE RMSE MAE RMSE
0.5 15.82 64.81 15.45 102.96
1 14.42 63.37 13.00 109.76
2 13.78 58.78 11.76 97.86
4 16.75 68.55 15.91 125.36

4. Qualitative results
We provide with more qualitative comparisons between
our proposed model and two existing approaches (CLIP-
Count [8] and VLCounter [9]) on the protocol FSC-147-
S. Our method demonstrates superior text sensitivity, accu-
rately responding to specific counting queries, while these
two methods tend to count all objects indiscriminately, re-
gardless of the textual prompt.
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