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Supplementary Material

1. Additional Details
We provide more details of our RestorGS. Specifically,
we modify the diffi-gauss-rasterization used in the original
3DGS to render depth maps. To maintain a proper visual
perception, we set the exposure value to 0.4 to control the
brightness of the restoration results. The corresponding ab-
lation studies are shown in Fig. 2. The ablation results in
the main paper are evaluated using the average metrics in
the underwater scene. We also show the training details of
RestorGS in Algorithm 1.

Algorithm 1 Training steps of RestorGS.

Input: I(x): degraded image; θi: learnable degradation
factors; GI : Gaussian parameter {µj ,Σj , αj , SHj};
MLP : color MLP; fCNN : convolutional neural net-
work; β: scattering coefficient

Output: Ĵ(x): restored image; Î(x): rendered images; θG:
trained model;

1: Set the initialization parameters: λ1 = 10; λ2 = 0.001;
α1 = 0.001; α2 = 0.0005; total i = 15000;

2: for i = 1 to total i do;
3: Appearance Decoupling:
4: η, δ ←MLP (γ(µj), γ(SHj));
5: SHc

j ← η · SHj + δ;
6: SHd

j ← [θ0, θ1, · · · , θn];
7: GC ← {µj ,Σj , αj , SHc

j };
8: GD ← {µj ,Σj , αj , SHd

j };
9: Depth-Guided Modeling:

10: Ĵ(x), d̂(x)← rasterized(GC);
11: Fd ← rasterized(GD);
12: d̂norm(x)← norm(d̂(x));
13: Â(x)← e−βd̂norm(x);
14: L̂← fCNN [Fd, A(x)];
15: Î(x)← Ĵ(x) · Â(x) + L̂ · (1− Â(x));
16: end for
17: Ltotal ← Lre + λ1Lexp + λ2Ldepth;
18: Optimize the network with Ltotal;
19: return θG.

2. More Quantitative Comparisons
In Table 1 and Table 2, we further conduct quantitative
comparisons with 3DGS [2], Gaussian-DK [5], and Wa-
terSplatting [4] using the non-reference image quality as-
sessment metrics NIQE, MUSIQ, and PI. The experimental
results show that our RestorGS outperforms these schemes
in most of the metrics, verifying its significant advantages
in image recovery quality. It is worth noting that although

RestorGS slightly underperforms 3DGS in some specific
metrics, 3DGS is unable to effectively restore degraded im-
ages. The main reason is that 3DGS is only suitable for
high-quality scenes, which greatly limits its practical appli-
cation. In contrast, RestorGS can not only handle degraded
scenes, but also ensure that the restored image is closer
to the real scene in terms of detail retention, color repro-
duction, and overall naturalness. In addition, we compare
the average training time and FPS of the different methods
in Table 3. As mentioned in the main paper, our method
achieves high-quality restoration while enabling real-time
rendering speed. In Fig. 1, we also show the average quan-
titative scores of the different methods in underwater, night-
time and hazy scenes. It can be seen that our RestorGS sig-
nificantly outperforms existing methods.

3. More Ablation Results
We similarly conduct ablation studies for exposure loss. As
shown in Fig. 2, with the increase of the exposure value E,
the intensity of the luminance map is enhanced accordingly,
indicating the significant effect of exposure adjustment on
the image brightness. Meanwhile, the global brightness of
the restored image shows a decreasing trend with the in-
crease of the exposure value E. This is due to the comple-
mentary relationship between the brightness of the restored
image and the luminance map. It can be seen that when the
exposure value E is set to 0.4, the restoration results reach
an ideal balance between brightness and color correction,
and avoids overexposure or underexposure phenomenon to
mask the details. This result fully demonstrates that a rea-
sonable exposure value can promote a more natural restora-
tion of brightness and color.

4. More Visual Results
Visual Comparison. In Fig. 3, Fig. 4, and Fig. 5, we show
more visual comparison results to further validate the supe-
riority of our method. It can be clearly observed that exist-
ing methods usually face significant challenges in dealing
with degraded scenes with inconsistent viewpoints, result-
ing in residual effects in the scattering medium and inac-
curacies in light correction. Such residual effects can lead
to noticeable haze or blurring in the restored images, while
inappropriate light correction may trigger localized overex-
posure or underexposure of the images, significantly affect-
ing the quality of visual perception. In contrast, our method
is able to adaptively adjust the brightness and contrast, thus
avoiding the distortion problem and presenting a good vi-
sual perception.



Table 1. Quantitative comparison on the SeaThru-NeRF dataset [3]. The best and second-best score are marked as red and yellow ,
respectively. ↓: lower is better, ↑: higher is better.

Method Curacao IUI3 Red Sea Panama J.G. Red Sea
NIQE↓ MUSIQ↑ PI↓ NIQE↓ MUSIQ↑ PI↓ NIQE↓ MUSIQ↑ PI↓ NIQE↓ MUSIQ↑ PI↓

3DGS [2] 2.931 59.378 2.132 3.101 60.002 2.225 3.601 53.086 2.380 2.726 55.865 1.957
Gaussian-DK [5] 3.925 48.923 4.187 3.667 60.388 2.604 4.124 52.807 3.616 4.460 36.989 4.227
WaterSplatting [4] 2.975 58.741 3.362 3.337 57.948 2.854 3.327 49.883 3.637 3.531 56.452 2.878
Ours 2.695 61.222 2.083 2.704 62.377 2.340 3.739 55.376 3.072 3.054 58.562 2.180

Table 2. Quantitative comparison on the Gaussian-DK dataset [5]. The best and second-best score are marked as red and yellow ,
respectively. ↓: lower is better, ↑: higher is better.

Method Bicycle Dormitory Street Kitchen
NIQE↓ MUSIQ↑ PI↓ NIQE↓ MUSIQ↑ PI↓ NIQE↓ MUSIQ↑ PI↓ NIQE↓ MUSIQ↑ PI↓

3DGS [2] 4.130 60.771 3.416 4.464 67.981 3.986 2.703 64.915 2.498 4.010 69.504 3.167
Gaussian-DK [5] 5.193 66.781 3.978 5.087 72.223 3.661 2.986 70.557 2.569 5.125 74.606 3.800
WaterSplatting [4] 4.953 62.841 4.275 5.248 70.661 3.736 2.895 68.834 2.894 4.827 68.036 3.465
Ours 4.081 68.372 4.172 4.914 73.974 3.633 2.529 71.064 2.975 4.538 74.931 3.307

Table 3. Comparison of average training time and FPS. ↓: lower
is better, ↑: higher is better.

Ablation Training Time↓ FPS↑
SeaThru-NeRF [3] 12h 0.08
3DGS [2] 22.6min 162
Gaussian-DK [5] 28.4min 69
WaterSplatting [4] 23.8min 48
Ours 34.4min 52

Visualization Results. We further visualize more examples
of the learned depth map, attenuation map and illumination
map in Fig. 6. Note that despite some noise in the depth
map, 3D scene restoration relies more on the complemen-
tarity of multi-view depth than absolute accuracy in a single
view. It can be seen that each physical component can accu-
rately reflect the degradation change with scene depth. This
reveals the physical mechanism of Eq. (9) that the trans-
mitted light decreases with the increase of scene depth after
medium attenuation.

5. Limitation and Future Work

Although our RestorGS has achieved superior capabilities
in restoring 3D degraded scenes, it may suffer from lim-
itations when dealing with extremely severe degradation
situations. The primary reason is that these severely de-
graded scenes are usually accompanied by the superposi-
tion of multiple complex factors, such as extremely dense
scattering media, extreme lighting conditions (e.g., over-
exposure or complete darkness), and extremely blurred or
missing depth information. These factors can dramatically
increase the difficulty of image restoration and scene recon-
struction, posing significant challenges to existing models.

To address these issues, one potential solution is to seam-
lessly combine large-scale pre-trained 2D image restoration
models with 3DGS. By utilizing the strong image restora-
tion capabilities of 2D models to complement 3DGS, it is
expected to address the shortcomings when dealing with ex-
tremely degraded scenes. However, this approach inevitably
increases the computational complexity significantly, espe-
cially in application scenarios that require real-time pro-
cessing. Therefore, achieving a balance between recovery
performance and model complexity is an important direc-
tion for future work.
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Figure 1. Average scores of different methods in underwater, nighttime and hazy scenes.
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Figure 2. Ablation studies of exposure loss. As the exposure value increases, the intensity of the luminance map increases while the
brightness of the restored image decreases.
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Figure 3. Qualitative comparison of different methods on the SeaThru-NeRF [3] dataset.
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Figure 4. Qualitative comparison of different methods on the Gaussian-DK dataset [5].
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Figure 5. Qualitative comparison of different methods on the Mip-NeRF360 [1] dataset.
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Figure 6. More Visualization. The learned physical components can accurately reflect the degradation distribution.


	Additional Details
	More Quantitative Comparisons
	More Ablation Results
	More Visual Results
	Limitation and Future Work

