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Supplementary Material

1. Methodology Explanation and Supplement

1.1. Zero-Shot Performance of ViT-based EXCLIP
with the Split Strategy

As shown in Fig. 1, ViT-based EXCLIP models general-
ize better with the split strategy when dealing with high-
resolution input. We divide input images into 2× 2 splits as
the default setting for ViT-based models.

Figure 1. Zero-shot performance of EXCLIP models at different
input resolutions on the SVT and TTR datasets. * denote the ViT-
based EXCLIP models with 2× 2 splits.

1.2. More Explanation for Visual Context Dropout

Visual context dropout (VCD) dropouts the visual context in
the last attention layer when computing the local visual fea-
tures vl ∈ RN×NV ×E . From the perspective of scaled dot-
product attention, the global visual features vg ∈ RN×E

can be obtained by:
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where fq, fk, fv, C denote the linear transform for vg , vl,
vl, and the learned temperature respectively. In CLIP, the
query projection fq is only optimized for the global repre-
sentation vg . When we use the last attention layer to com-
pute vl, vg is replaced with vl, making the jointly optimized
representation space biased. From the other perspective,
CLIP encourages the model to learn discriminative features,
resulting in focused and Gaussian-like attention, which can
be approximated to one hot distribution. Based on the hy-
pothesis, the global presentation vg is within an approxi-
mate representation space with some transformed local fea-
tures in fv(v

l). Thus we directly use a one-hot-like proba-
bility distribution to generate an approximately aligned rep-

resentation vl, which can be simplified as:
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2. Supplementary Experiments
2.1. Datasets

Table 1. Statistics of the training and test datasets.
Dataset MLT5k SVT STR TTR PSTR OCTTR

#Images 5161 249 10000 300 1080 300
#Queries 17365 427 50 60 36 60

Multi-lingual Scene Text 5k (MLT5k) dataset [12] is a
subset of MLT2017 [6]. We follow [12] to construct the
dataset, resulting in 5161 images containing Latin texts.
Street View Text (SVT) dataset [13] has 349 images col-
lected from Google Street View. This dataset contains 100
and 249 images in the training and the test sets, respectively.
427 annotated words in the test set are taken as the queries.
IIIT Scene Text Retrieval (IIIT-STR) dataset [5] consists
of 50 query words and 10000 images. It is challenging due
to the variation of fonts, styles, and viewpoints, as well as
the large proportion of background images.
Total-Text Retrieval (TTR) dataset [15] originates Total-
Text [1] which consists of 1255 training and 300 test im-
ages. Following [12, 15], the query is selected from the
words in the test set by the frequency of instances. Specifi-
cally, words with an appearance frequency of less than 4 are
filtered, resulting in 60 queries.
Phrase-level Scene Text Retrieval (PSTR) dataset [16] is
a phrase-level STR dataset, in which a query contains 2 to 4
words. The text queries and images are collected from the
TextOCR dataset [9] and the Google image search engine.
36 query words and 1080 images are included in PSTR.
OCTT Retrieval (OCTTR) dataset originates from the
OCTT dataset [8] which focus on occluded text spotting.
OCTT comes from the test set of the Total-Text dataset,
which contains 300 images that at least one character is
weakly occluded following the same procedure described
in VisionLAN [14]. Despite the occluded text instances in
images, the annotations of the OCTTR dataset are the same
as those of the TTR dataset.

Together with the datasets mentioned in the main text,
the overall statistics of training and test datasets are sum-
marized in Tab. 1.



Table 2. Zero-shot performance of more contrastive models.
Method params (M) SVT IIIT-STR TTR Avg.

ZS

EVA01-g-14-plus-224 [10] 1366.62 66.99 62.75 38.3 56.01
EVA02-L-14-336 [10] 428.08 79.82 71.35 48.02 66.40
ViT-SO400M-14-SigLIP-384 [17] 877.96 79.24 76.86 47.97 68.02
ViT-L-16-SigLIP-384 [17] 652.48 79.16 74.91 46.56 66.88
ViT-B-16-SigLIP-512 [17] 203.79 80.43 78.80 46.97 68.73
BLIP-ViT-L-384 [4] 892.26 50.85 52.13 19.64 40.87

CAYN ViT-B-16-SigLIP-512 204.02 84.89 88.81 76.08 83.26

2.2. Implement Details

Following existing works [12, 15], we first filter the special
marks and keep characters and numbers in the text query.
Then all the queries are transformed to lowercase before
input into the model.

2.3. Experimental Results

2.3.1 Zero-Shot Performance of More CLIP Models

We evaluate representative eva-clip, siglip, and blip models
in Tab. 2. SigLIP-512 achieves the best performance and
can be further improved with CAYN, demonstrating resolu-
tion and CAYN matter.

2.3.2 Ablation Study on Incorrect Negatives Calibra-
tion and Different Sampling Strategies in ITM

The training data is constructed by generating image-text
pairs, in which the text is the word that occurs in the image.
In CLIP, texts or images from different matching pairs are
taken as negatives. However, although the training data is
randomly shuffled and the batch size is not large, a negative
pair generated in this way may be a matched pair and de-
press the optimization process. To calibrate the effect, we
introduce the use of the accurate matching label. Specif-
ically, negative label calibration (NLC) is achieved by ex-
cluding incorrect labeling examples from the sampling pro-
cess of the negatives.

Table 3. Comparison of variants of CAYN with different model
configurations on the SVT and TTR datasets. “NLC” is short for
negative label calibration. “US” and “HEM” denote uniform sam-
pling and hard example mining.

# Retrieval Reranking SVT TTRNLC NLC Sampling

0 × - - 81.98 66.54
1 ✓ - - 81.86 67.54
2 × ✓ US 85.29 73.01
3 × ✓ HEM 85.05 74.04
4 × × US 84.91 72.28
5 × × HEM 66.95 58.65
6 ✓ ✓ HEM 84.70 73.01

As shown in Tab. 3, using NLC in the retrieval stage
overall outperforms the one without NLC (comparing #0

with #1 ), bringing a 1.00% increase on TTR and a 0.12%
decrease on SVT. Without NLC, decreases of 0.32%/0.73
(comparing #2 with #4) with uniform sampling (US) and
18.10%/15.39% (comparing #3 with #5) with hard example
mining (HEM) are observed on the SVT/TTR datasets. The
results illustrate that NLC is important in the optimization
of reranking, especially for the HEM strategy. In general,
the utilization of the HEM strategy in the reranking stage
outperforms the one with the US (comparing #2 with #3),
bringing a 1.03% increase on the TTR dataset and a 0.24%
decrease on SVT. However, decreases of 0.35%/1.03%
(comparing #3 with #6) are found on SVT/TTR when fur-
ther combining NLC in the retrieval stage. We find that
removing NLC in the retrieval stage brings better hard neg-
ative examples, benefiting the optimization of the reranking
stage. Finally, we adopt the configuration #3 as the default
optimization setting.

2.3.3 Does Textual Context Dropout Work?

To validate this, we perform a context drop in the last at-
tention layer in textual encoders as in VCD and compare
it with the vision-only query in ITM (in Eq. (5) of the
main text). The performance drops from 72.80%/61.03%
(refer to Tab. 8 in the main text) to 66.88%/54.37% on the
SVT/TTR datasets. We find the reason lies in the casual at-
tention and strong sequential dependency within the CLIP
textual encoder. The decrease demonstrates that the align-
ment between the visual and textual modalities is further
depressed. So we keep the original attention for computing
the local textual feature tl ∈ RN×NT×E .

2.3.4 Choice of Hyper-Parameter λ

In Tab. 4, with the increase of λ, optimization focuses more
on image-text matching. It works well when λ is set to 1 or
2. We choose λ = 1 as the default value.

Table 4. Performance of different λ with CAYN-RN50.
λ 0.5 1.0 2.0 4.0

SVT 85.02 85.05 85.41 84.91
TTR 72.74 74.04 74.20 74.38
IIIT-STR 82.84 82.88 82.73 82.33



Table 5. Replacing VPA with other adapters in CAYN.
CAYN-RN50 Params SVT STR TTR Avg. CAYN-ViT-B-16 Params SVT STR TTR Avg.

CLIP-adapter [2] 0.52M 82.53 76.18 63.72 74.14 LST [11] 2.67M 71.57 66.96 60.07 66.20
VPA (Ours) 0.20M 85.05 81.79 74.04 80.29 VPA (Ours) 0.22M 77.44 79.73 68.45 75.21

Table 6. Comparison with subdivision-enhanced FDP-L.
Method Params Supv. SVT IIIT-STR TTR Avg. FPS

FDP-L (MM’24) 33.45M L+T 89.63 89.46 79.18 86.09 11.82
FDP-L* (MM’24) 33.45M L+T 91.18 91.49 82.02 88.23 3.04

CAYN-RN50x16 0.45M T 92.46 89.49 85.98 89.31 38.79
CAYN-RN50x16-768 0.45M T 92.72 90.91 86.90 90.18 28.78

Table 7. Statistics on Factors Considering the Model’s Efficiency.

Method Parameters Time Consumption GPU Memory Usage
Tuned/Total Training Inference Training/Inference

CAYN-RN50 0.20/102.21M 44min 80.13FPS 9.37/1.13GB
CAYN-RN50x4 0.31/178.62M 48min 53.22FPS 12.49/1.83GB
CAYN-RN50x16 0.45/291.43M 88min 38.79FPS 18.29/2.83GB
FDP-L*(reproduced) 33.45/324.43M 571min 4.33FPS 33.12/6.39GB

2.3.5 Choice of Reranking Image Number K

As shown in Tab. 8, reranking brings consistent improve-
ment across different K values. Though carefully tuning K
may achieve better performance, we set K to 32, proving to
work well on both datasets.

Table 8. Comparison of different choices of K in reranking on the
SVT and TTR datasets regarding mAP (%).
K 2 4 8 16 32 64 128

SVT 83.41 85.36 85.47 85.75 85.05 84.89 84.60
TTR 67.45 68.66 69.72 71.88 74.04 74.54 74.09

2.3.6 Replacing VPA with Other Adapters

Unlike general PET methods, VPA aims to compensate for
visual position information in high-resolution representa-
tion (placed after “Img2Tokens” rather than other positions
in Fig.5 and evaluated in Tab.5 of the main text), which mat-
ters for STR. Tab.5 shows VPA outperforms CLIP-adapter
by 4.10%/10.53% on SVT/TTR in the retrieval-only set-
ting. In Tab. 5, replacing VPA with CLIP-adapter or LST in
CAYN results in significant decreases of 6.15% or 9.01% in
average mAP (SVT/STR/TTR) and increased parameters,
demonstrating the superiority of VPA.

2.3.7 Comparison with Subdivision-Enhanced FDP-L
(FDP-L*)

In Tab. 6, besides the fewer tuned parameters and weaker
required labels, CAYN can outperform FDP-L variants on
SVT/TTR and is comparable to them on IIIT-STR. With
an increasing resolution of 768 and a reranking number of
96, CAYN can be further improved to an average mAP of

90.18%. Direct subdivisions do not work well on CAYN
due to severe scale mismatch in train/test (Fig.4 of main
text) and semantic destruction from text cutting.

2.3.8 Discussing the Proposed PFCA with that in Text-
Video Retrieval (TVR) Methods

Unlike the attention in TVR which directly extends the con-
trastive relation from images to frames, PFCA explores the
transferable contrastive relation from inter-image to intra-
image together with VCD for STR, which is crucial for per-
ceiving visual text and is absent in TVR.

2.3.9 More in-Depth Analysis on Efficiency

Besides the training and inference time, we supplement
the total parameters and memory usage for comprehen-
sive analysis in Tab. 7 on a NVIDIA GeForce RTX 4090
GPU. Compared with FDP-L*, CAYN models require low
sources for training (<2H & <20GB) due to a relatively
short path for gradient propagation and achieve a low
proportion of tuned parameters and fast inference speed,
demonstrating that CAYN can be both parameter- and
memory-efficient.

2.4. Flexibility on Phrase-Level Text Retrieval

To demonstrate the flexibility of the proposed method, we
evaluate CAYN-RN50 on the PSTR dataset. As shown in
Tab. 9, the proposed CAYN achieves 92.42% mAP and
outperforms TDSL [12] and FDP-S [16] under the same
RN50 backbone, demonstrating the flexibility and potential
of the CAYN to deal with queries with more complex se-
mantics. Besides, CAYN-R50 runs the fastest at 79.62 FPS
among these methods. When scaling the model size, CAYN



RN50x4 achieves 95.60% at 52.88 FPS, and the perfor-
mance tends towards saturation with RN50x16 (95.90%).

Table 9. Comparison with existing methods on the PSTR dataset.
Method mAP FPS

Gomez et al. [3] 68.01 42.45
TDSL [12] 89.40 11.34
FDP-S [16] 92.28 45.11

CAYN-RN50 (Ours) 92.42 79.62
CAYN-RN50x4 (Ours) 95.60 52.88
CAYN-RN50x16 (Ours) 95.90 38.54

2.5. Robustness on Occluded Text Retrieval

We construct OCTTR from the OCTT dataset [7], which
includes occluded and deformed text and originates from
Total-Text. OCTTR shares the same GT with TTR except
for images. In Tab. 10, CAYN outperforms existing meth-
ods significantly and shows good robustness against occlu-
sion, demonstrating explicit OCR process can be omitted by
unleashing cross-modal semantic knowledge from CLIP.

Table 10. Occluded and deformed text retrieval on OCTTR.
Method TTR OCTTR ∆

Gomez et al. (ECCCV’18) 66.02 63.93 2.09
TDSL (CVPR’21) 76.38 72.78 3.60

CAYN-RN50 (Ours) 74.04 69.32 4.72
CAYN-RN50x4 (Ours) 81.90 79.53 2.37
CAYN-RN50x16 (Ours) 85.98 84.44 1.54

2.6. More Visualization Results

2.6.1 Visualization of Retrieval Results

As shown in Fig. 2, CAYN can accurately retrieve scene
text with different scales and shapes as well as complex se-
mantics, demonstrating the effectiveness and robustness of
the proposed method.

2.6.2 Visualization of Attention Maps

As shown in Fig. 3, PFCA enables the CLIP models to fo-
cus on the region in document images corresponding to the
query text. In this way, an implicit localization is performed
with PFCA elegantly, making the STR free of an explicit
localization process. In addition to the effectiveness and ef-
ficiency brought to reranking, PFCA provides a direct ref-
erence for the interpretability of scene text retrieval.

We can observe that the attention map of accurately lo-
calized regions tends to be concentrated and Gaussian-like.
The reason may be that the conservative language-image
pre-training encourages the model to focus on the most dis-
criminative features. Interestingly, in attention maps with

phrase-level queries, we find the attention map tends to fo-
cus on the word with concrete meanings, e.g., “yourself” in
“do it yourself” and “original” in “the original”.

2.7. Failure Case Analysis

We perform failure case analysis on the four datasets and
analyze the queries with the ten lowest APs. The typi-
cal failure cases can be summarized in Fig. 4: 1) Incor-
rect annotation. We find there exist missing labels in ex-
isting datasets, especially in the SVT dataset, as shown in
Fig. 4(a). 2) Tiny scale. As shown in Fig. 4(b), tiny scale,
as well as low quality, brings serious challenges, which are
also shared by other scene text extraction and understand-
ing tasks. 3) Extreme shape. Due to the lack of curved
texts in training, as shown in Fig. 4(c), it’s difficult for the
model to perceive nearly vertical and reversed curved text
instances. 4) Semantic bias. As shown in Fig. 4(d), the
query with “technology” performs much worse than “in-
stitute”, even though “institute” and “technology” always
occur together within the phrase “indian institute of tech-
nology” in the IIIT-STR dataset.

To better illustrate this phenomenon, we provide a visu-
alization of attention maps of PFCA. As shown in Fig. 5, the
attention maps with the query “technology” are less accu-
rate or concentrated than those with “institute”, which qual-
itatively explains the bad performance for the query “tech-
nology”.

We attribute the reason to the semantic bias in CLIP
models, which may be caused by imbalanced data distri-
bution in the training datasets. Another phenomenon we
observed is that content words tend to perform better than
function words, consistent with the conclusion in FDP [16].
The reason may lie in the dominant role of content words
in the semantics of sentences in the CLIP textual encoder,
which tends to correspond to a concrete entity. However, it’s
a common issue that is shared in the CLIP-based method.

Among all datasets, the SVT is relatively sparse, where
a query matching one image occurs frequently, and miss-
ing retrieving the query easily depresses the overall perfor-
mance. Compared with the other three datasets, the perfor-
mance of the PSTR dataset is much better. Even the lowest
AP with the query “bud light” achieves an AP of 75.57%.
We guess the reasons are that 1) the phase-level provides
more specific semantics and 2) a phrase-level query con-
tains at least one content word.

2.8. Limitation

Due to the semantic bias in CLIP, in which Latin text domi-
nates the pre-training data, the performance on multilingual
scene text and out-of-vocabulary (OOV) words is not good
enough. However, this characteristic originates from CLIP.
We’d like to explore the improvement in future work.



Dataset Query Retrieval Results

SVT

“street”

“museum”

IIIT-STR

“accenture”

“nokia”

TTR

“restaurant”

“company”

PSTR

“bank of 
america”

“have a nice 
day”

Figure 2. Visualization of the top-5 retrieval results from CAYN-RN50 on the SVT, IIIT-STR, TTR, and PSTR datasets. The correct results
are highlighted in green, while the incorrect ones are highlighted in red.



Dataset Query Visualized Attention Maps

SVT

“hotel”

“the”

IIIT-STR

“coffee”

“school”

TTR

“market”

“shop”

PSTR

“do it 
yourself”

“the 
original”

Figure 3. Visualization of the attention maps in the parameter-free cross-attention (PFCA) with CAYN-RN50 on the SVT, IIIT-STR, TTR,
and PSTR datasets. The input images are padded to the same shape as stated in the main body of the submission.
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