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1. Dataset Introduction

1.1. Collection

The rapid advancements in UAV and sensor technolo-
gies have enabled the collection of multispectral video se-
quences from UAV platforms. In this study, we employed a
multispectral camera, which captures 8 spectral bands in the
wavelength range of 390–950 nm, as illustrated in Tab. 1.
Additionally, the camera is capable of recording video at 5
frames per second, with a spatial resolution of 1280 × 960
pixels per frame. To ensure a diverse dataset, we performed
data collection across various scenarios and time periods, as
depicted in Fig. 1 (a) and (b). Moreover, the UAV captured
multi-angle views of several categories of common targets
of interest in different flight postures, as shown in Fig. 1 (c).
During the data collection process, the UAV maintained an
altitude ranging from 20 to 250 meters above ground level,
allowing for targets of varying sizes.

1.2. Processing

The multispectral camera adopts array distributed sensors
to capture data across different spectral bands. To ensure
accurate alignment of the multi-band data, we first perform
geometric correction on each individual channel, mitigating
parallax errors caused by variations in sensor positioning.
Given that geometric correction can alter the resolution of
each channel, we crop and retain the central 1200×900 pix-
els region of each frame. Additionally, the substantial dis-
tance between the UAV and the ground target exacerbates
the effects of solar radiation and atmospheric scattering on
sensors. To address these issues, we apply radiometric cor-
rection to calibrate the sensor responses and obtain accurate
spectral curves. After these corrections, each multispectral
image frame is represented as I ∈ R1200×900×8.

We engaged domain experts to to annotate the dataset us-
ing the DarkLabel 2.3 toolbox. For each frame, we provided
the target’s bounding box and status flags as ground truth.
The bounding box is represented as [xmin, ymin, w, h],
where (xmin, ymin) denote the coordinates of the upper-
left corner, and (w, h) indicates target shape. If the target
is fully occluded or temporarily out of view, the status flags
are set to 1, with the bounding box marked as [0, 0, 0, 0].
After thorough screening, we retained 250 video sequences,
totaling 42,671 frames and approximately 8,534 seconds.
Detailed dataset information is provided in Table 2.

We divide the train and test subsets primarily based on
the principle that the data across subsets is unbiased and

Table 1. The distribution of spectral bands collected by the used
multispectral camera.

Bands Start (nm) End (nm) Center (nm) Width (nm)
1 395 450 422.5 55
2 455 520 487.5 65
3 525 575 550 50
4 580 625 602.5 45
5 630 690 660 60
6 705 745 725 40
7 750 820 785 70
8 825 950 887.5 125

Figure 1. Eight target categories collected across various scenarios
and time periods.

consistently distributed. Initially, we randomly divide the
data into two subsets. Then we adjust them to ensure con-
sistency in terms of average frames across sequences, target
size distribution, and proportion of challenge attributes.

1.3. Challenge Attributes
To comprehensively evaluate state-of-the-art trackers, our
proposed MUST dataset have defined 12 key challenge at-
tributes that reflect the unique characteristics of multispec-
tral UAV tracking tasks. These attributes are: Partial Oc-
clusion (POC), Background Clutter (BC), Low Resolution
(LR), Similar Object (SOB), Scale Variation: (SV), Mo-
tion Blur (MB), Fast Motion (FM), Similar Color (SC), Out
of view (OV), Illumination Variation (IV), Full Occlusion
(FOC) and Camera Motion (CM), as summarized in Tab. 3.
Each video sequence in the dataset is annotated with multi-
ple challenge attributes, and Fig. 2 exhibits typical examples



Table 2. Properties of the Multispectral UAV Single Object Tracking (MUST) Dataset.

Name Video Duration Frames Resolution
Total Minimal Maximal Mean Spatial Pixels Spectral Range Band Numbers

MUST 250 8534 s 42671 42 790 171 1200 × 900 390 - 950 nm 8

Figure 2. Typical examples of each challenge attribute in the MUST dataset, with the zoomed-in target areas.

of each attribute.
These challenge attributes present significant difficulties

for traditional RGB-based trackers, whereas multispectral-
based trackers offer more effective solutions. For instance,
in the cases of Background Clutter and Similar Color, the
target often shares similar appearance characteristics with
surrounding objects and backgrounds, making them chal-
lenging to distinguish using RGB data alone. Moreover,
in scenarios involving occlusion or small target sizes, the
limited spatial features available in RGB images are in-
sufficient to maintain robust tracking, leading to tracking
drift. In contrast, multispectral data leverages spectral in-
formation that is inherently linked to the target’s material
composition, providing more stable and distinctive features
throughout the tracking process. These attributes highlight
the potential of multispectral data for improving UAV track-
ing performance in challenging scenarios.

2. Asymmetric Attention
Our proposed UNTrack employs an asymmetric attention
structure to enable unified spectral-spatial-temporal feature
extraction. The attention calculation process is illustrated in
Fig. 3. Specifically, we model the relationship between em-
bedded query Q = [QP;QT;QS], key K = [KP;KT;KS],
and value V = [VP;VT;VS], generating the corresponding
attention maps. These maps are divided into nine distinct
blocks, each representing the interaction between different
tokens:
(1) Self-attention on Prompt;

(2) Cross-attention on Prompt with Template;
(3) Cross-attention on Prompt with Search;
(4) Cross-attention on Template with Prompt;
(5) Self-attention on Template;
(6) Cross-attention on Template with Search;
(7) Cross-attention on Search with Prompt;
(8) Cross-attention on Search with Template;
(9) Self-attention on Search.

Recent research has shown that each block plays an in-
consistent role in the tracking process [1, 3]. For exam-
ple, blocks 1, 5, and 9 correspond to the self-attention
results of the prompt, template, and search, respectively.
These blocks capture deep semantic information that signif-
icantly enhances tracking performance. Moreover, the core
of visual object tracking lies in accurately locating the tar-
get within search regions, a process that relies on effective
cross-information aggregation in block 8. Given that the
prompt encodes historical spectral information of the target,
block 7, representing the interaction between the search and
prompt, plays a crucial role in improving target discrimina-
tion, particularly in complex backgrounds.

In contrast, blocks 2 and 3 correspond to interactions be-
tween the prompt and other tokens, which tend to introduce
noise and pollute the spectral information, thereby nega-
tively affecting tracking accuracy. Blocks 4 and 6, which
focus on the template, irrelevant to the generation of track-
ing results and only add unnecessary computational over-
head. These blocks not only fail to aid in tracking, but also
increase the computational cost without improving perfor-



Figure 3. Illustration of asymmetric attention calculation.

Table 3. Detailed description of the challenge attributes.

Attribute Description

POC Partial Occlusion: The target is partially occ-
luded by objects.

BC Background Clutter: The background of the
target is cluttered.

LR Low Resolution: The target area is less than
100 pixels.

SOB Similar Object: Similar objects exist around
the target.

SV Scale Variation: The target changes signific-
antly in size or shape.

MB Motion Blur: The movement of the target
creates blur.

FM Fast Motion: The distance between targets in
two adjacent frames exceeds 20 pixels.

SC Similar Color: The target and background are
visually similar in color.

OV Out of View: The target moves out of view and
returns to view after a while.

IV Illumination Variation: The illumination state
of the environment around the target changes.

FOC Full Occlusion: The target is completely occ-
luded by other objects.

CM Camera Motion: The UAV platform appears
to be shaking or rotating.

mance. Consequently, we prune blocks 2, 3, 4, and 6 in the
asymmetric attention structure, resulting in a more compact
attention map that enhances tracking precision while reduc-
ing computational burden.

Table 4. Detailed description of the challenge attributes.

Infrared bands AUC (%) Pre (%)

Training from scratch 55.9 74.1
Replicating 59.7 79.2

3. Experiment Details
3.1. Parameter Reconstruction
In previous multispectral images processing, a prevalent
practice adopts the input layer weights of pre-trained RGB-
based networks to initialize those of multispectral-based
networks [2, 6]. However, this approach ignores the dif-
ferences between spectral bands, without considering the
prior information from the spectral camera. In this work,
we propose a simple yet effective parameter reconstruction
strategy that enables the use of RGB-based pre-trained pa-
rameters for multispectral vision tasks.

Specifically, we assign a spectral band to each chan-
nel of the RGB-based parameters, following the defini-
tions provided by the CIE standard [4], which correspond
to the wavelengths: Red = 700.0nm, Green = 546.1nm,
Blue = 435.8nm. Following previous works, we interpo-
late pre-trained RGB-based weights to initialize the input
layer weights corresponding to visible bands. For infrared
bands, we replicate the pre-trained RGB-based red channel
weights, which are then assigned as the initial weights to
each infrared band. The reconstruction process can be for-
malized as follows:

WMi
=


WB(G−Mi) + WG(Mi − B)

G− B
, if Mi < G

WG(R−Mi) + WR(Mi −G)

R−G
, if G < Mi ≤ R

WR, if R < Mi

(1)



Figure 4. Success and Normalized Precision plots for state-of-the-art trackers on the MUST dataset.

Figure 5. Performance of the proposed UNTrack in scenarios with similar target and background colors. We sample points for template,
search, and background during tracking and visualize their spectral curves.

where R,G,B and WR,WG,WB represent the spectral
bands and weights corresponding to the red, green, and blue
channels in the RGB space. Mi and WMi

denote the i-
th spectral band and the corresponding channel weights in
MUST, where i = 1, . . . , 8.

Notably, we compared the performance of different in-
frared bands initialization approaches. As shown in Sec. 2,
we evaluate initializing infrared bands by training from
scratch instead of replicating. Without utilizing pre-trained
RGB-based weights as prior information, training infrared
bands from scratch reduces AUC by 3.8%.

Our proposed initialization strategy is universally appli-
cable, for example, it improves AUC of OSTrack256 by
12.4%, UNTrack by 11.9% and ZoomTrack by 9.3%. The
exception is ODTrack, Which embeds video-clip input as
the template but neglects spectral redundancy, resulting in
limited improvement. ODTrack’s inherent flaw leads to a
shift in suboptimal methods, from ODTrack to OSTrack384,
before and after initialization. Consequently, UNTrack has

performance discrepancy when compared with two subop-
timal methods before and after initialization.

3.2. Comparative Analysis
To further evaluate the performance of our UNTrack
against state-of-the-art trackers, we present the Success Plot
and Normalized Precision Plot on the MUST dataset in
Fig. 4. As shown, UNTrack outperforms the runner-up, OS-
Track [5], with a performance gain of 1.5% in success rate,
and demonstrates superior performance compared to other
trackers. This improvement is attributed to UNTrack’s com-
prehensive utilization of spectral information, which en-
ables it to effectively address complex tracking challenges.

3.3. Visualization Analysis
To highlight the potential of multispectral-based tracking,
we visualize UNTrack’s performance on a challenging sce-
nario characterized by the Similar Colors challenge at-
tribute. As shown in Fig. 5, when the target and background
exhibit similar colors, traditional RGB-based data fail to



distinguish them due to the lack of intensity differences
across the RGB channels, leading to poor performance. In
contrast, the spectral curves of the target and background
exhibit distinct differences, with the target’s spectral curve
remaining stable throughout the tracking process. Leverag-
ing this characteristic, UNTrack maintains accurate track-
ing by focusing on the target, even in situations where color
similarity complicates tracking in the RGB space.

References
[1] Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu.

Mixformer: End-to-end tracking with iterative mixed atten-
tion. In CVPR, pages 13608–13618, 2022. 2

[2] Zhenqi Liu, Xinyu Wang, Yanfei Zhong, Meng Shu, and Chen
Sun. Siamhyper: Learning a hyperspectral object tracker from
an rgb-based tracker. IEEE TIP, 31:7116–7129, 2022. 3

[3] Zikai Song, Run Luo, Junqing Yu, Yi-Ping Phoebe Chen,
and Wei Yang. Compact transformer tracker with correlative
masked modeling. In AAAI, pages 2321–2329, 2023. 2

[4] Andrew Stockman. Cone fundamentals and cie standards.
Current Opinion in Behavioral Sciences, 30:87–93, 2019. 3

[5] Botao Ye, Hong Chang, Bingpeng Ma, Shiguang Shan, and
Xilin Chen. Joint feature learning and relation modeling for
tracking: A one-stream framework. In ECCV, pages 341–357.
Springer, 2022. 4

[6] Jia-ju Ying, Shi-qu Yin, Wei-yong Yang, Hui Liu, and Xu
Li. Hyperspectral image target recognition based on yolo
model. In Sixth Conference on Frontiers in Optical Imaging
and Technology: Imaging Detection and Target Recognition,
pages 221–227. SPIE, 2024. 3


