
Reversing Flow for Image Restoration

Supplementary Material

6. Proof of Proposition 1

Here, we restate Proposition 1 from Sec. 3.1.

Proposition 1. Given a random process {zt | 0 ≤ t ≤ 1}
defined by

∂zt
∂t

= v(zt, t); 0 ≤ t ≤ 1, (12)

where v ∈ C1 is a velocity field, denote the mutual infor-
mation as MI(·, ·), then for any reference random variable
r and any 0 ≤ t1, t2 ≤ 1, we have

MI(zt1 , r) = MI(zt2 , r). (13)

To prove Proposition 1, we need the following lemma
which states that the mutual information is invariant to in-
vertible maps.

Lemma 1 ([43]). Given random variables X,Y , suppose
the involved mutual information exists and is finite and
F ,G are two invertible maps, then

MI(X,Y ) = MI(F (X),G(Y )). (14)

See the appendix of [43] for a proof of Lemma 1. Now
we can prove Proposition 1 using Lemma 1.

Proof of Proposition 1. Suppose Eq. (12) has unique solu-
tions, and the involved mutual information exists and is fi-
nite. Consider the flow Φ of Eq. (12), that is, Φ(z, s, t)
solves the following initial-value problem:{

∂zt

∂t = v(zt, t), 0 ≤ t ≤ 1

zs = z
, (15)

Symmetrically, consider the following ODE in reverse time:

∂z′
t

∂t
= −v(z′

t, 1− t); 0 ≤ t ≤ 1, (16)

its flow is denoted as Ψ(z, s, t) which solves the following
initial-value problem:{

∂z′
t

∂t = −v(z′
t, 1− t), 0 ≤ t ≤ 1

z′
s = z

, (17)

Consider ut = [zT
t , t]

T, it satisfies the following au-
tonomous (time-invariant) system:

∂

∂t
ut =

∂

∂t

[
zt
t

]
=

[
v(zt, t)

1

]
=

[
v(ut)
1

]
. (18)

Let U be the flow of Eq. (18), then, U(z, 0, t) =

[ΦT(z, 0, t), t]T. Symmetrically, consider wt = [z′
t
T
, 1 −

t]T satisfying the following autonomous system:

∂

∂t
wt =

∂

∂t

[
z′
t

1− t

]
=

[
−v(z′

t, 1− t)
−1

]
= −

[
v(wt)

1

]
.

(19)
Let W be the flow of Eq. (19), then, W (z, 0, t) =
[ΨT(z, 0, t), 1 − t]T. Comparing Eqs. (18) and (19), it can
be seen that they differ only in the sign of the right-hand
side. As a result, solving Eq. (18) obtains the same tra-
jectory in reverse time as solving Eq. (19) as long as their
initial conditions are compatible, that is, z′

s = Φ(z, 0, s).
Consequently, Φ and Ψ form a pair of invertible maps for
0 ≤ s < t ≤ 1:

Φ(Ψ(z, 1−t, 1−s), s, t) = Φ(Φ(z, t, s), s, t) = z. (20)

For any reference random variable r and any 0 ≤
t1, t2 ≤ 1, G := Φ(·, t1, t2) is an invertible map accord-
ing to Eq. (20). Take G to be identity map, X = r and
Y = zt1 in Lemma 1 gives Eq. (14).

7. Derivation of Entropy-Preserving Degrada-
tion Schedule

In Sec. 3.2, we propose the following entropy-preserving
degradation schedule:

αx
t = 1− t, σx

t = 1− αx
t (21)

σy
t = β · (1− t+ β)

−1
, σy

t = 1− αy
t , (22)

where β = 10 is a hyperparameter. The intuition is that the
entropy should remain constant for a reversible process. For
a discrete state space, this intuition holds because, accord-
ing to Proposition 1, for all 0 ≤ s < t ≤ 1 we have:

H(zs) = MI(zs, zs) (Property of entropy) (23)
= MI(zt, zs) (r = zs in Eq. (13)) (24)
= MI(zs, zt) (Symmetry of MI) (25)
= MI(zt, zt) (r = zt in Eq. (13)) (26)
= H(zt) (Property of entropy). (27)



As approximations, assume that 1) HQ images follow uni-
form distribution U on [0, 1], which is the maximum-
entropy distribution on the normalized pixel range; 2) LQ
images follow the Dirac distribution at 0, which can be seen
as the extreme of image degradations. Then, according to
Eqs. (3) to (5) and y0 = 0,y1 ∼ N (0, I), we have

H(zt) = H(xt) +H(yt) (28)
= H(αx

t x0 + σx
t x1) +H(αy

t y0 + σy
t y1) (29)

= H((1− t)x0) +H(σy
t y1) (30)

= d ln(1− t) +
d

2
(1 + ln(2π)) + d lnσy

t , (31)

where d is the channel dimension. The last equality comes
from the fact that the entropy of U [a, b] is ln |b−a| and that
the entropy of N (µ,Σ) is d

2 (1 + ln(2π)) + 1
2 ln |Σ| [43].

Similarly,

H(zs) = d ln(1− s) +
d

2
(1 + ln(2π)) + d lnσy

s . (32)

Plugging Eqs. (31) and (32) into Eq. (27) gives

ln(1− t) + lnσy
t = ln(1− s) + lnσy

s . (33)

Let s = 0 and σy
0 = β > 0 in Eq. (33) gives the form of σy

t

as:

σy
t = β/(1− t). (34)

Eq. (34) is singular at t = 1, so we introduce β into the de-
nominator of Eq. (34), obtaining the final form in Eq. (22).
Fig. 6 shows the curves of the degradation schedule σy

t un-
der various β values. We fix β = 10 for all experiments
without tuning.

Figure 6. Degradation schedule σy
t with various β values.

Tab. 6 compares our degradation schedule with the con-
stant schedule and the linearly decaying schedule. Our
degradation schedule is consistently better than both alter-
natives, demonstrating the empirical effectiveness of our ap-
proach.

Table 6. Experiments about degradation schedules. The aver-
age performance on deraining/desnowing/denoising datasets is re-
ported.

Method PSNR SSIM
Constant 35.69 0.943
Linear 36.25 0.947
Ours 36.82 0.949

8. Datasets

We evaluate the performance of image restoration methods
on five major image restoration tasks, including desnowing,
draining, dehazing, denoising, and JPEG compression arti-
fact removal, using synthetic and real-world datasets. De-
tails of the datasets are given below according to their cor-
responding tasks:

Image Desnowing: Snow100K [60] is a synthetic snow re-
moval public dataset that includes synthetic snow images
and corresponding snow-free GT images. The simulated
snowflake particles contain a variety of different nozomura,
and also have different densities, shapes, trajectories, and
transparency in order to add variation. We used Snow100K-
l, which has the highest level of diversity, for the evaluation
method. Snow100K [60] contains 50000 images for train-
ing and 50000 images for testing. RealSnow [126] is a real-
world snow removal dataset that acquires image pairs from
background-static video. These images feature a variety of
urban and natural background scenes that contain varying
densities of snowfall and illuminations. RealSnow [126]
contains 61500 (crops) and 240 training and testing images.

Image Deraining: Outdoor-rain [49] is a synthetic rain re-
moval dataset, which render synthetic rain streaks and rain
accumulation effects based on the provided depth informa-
tion. These effects include the veiling effect caused by the
water particles, as well as image blur. Outdoor-Rain is a
set of outdoor rainfall datasets created on clean outdoor im-
ages. Outdoor-Rain [49] contains 8100 images for training
and 900 images for testing;. LHP [28] is a real-world rain
removal dataset. Real image pairs are acquired by keeping
the camera motionless to record real rain videos with static
backgrounds, which contains a variety of rainfall patterns
rain a variety of typical scenarios. LHP [28] contains 300
images for testing.

Image Dehazing: Dense-Haze [4] is a synthetic defogging
dataset with dense and homogeneous haze scenes. It con-
tains haze images and corresponding clean images of vari-
ous outdoor scenes. Dense-Haze [4] contains 49 images for
training and 6 images for testing. NH-HAZE [5] is a realis-
tic image dehazing dataset with non-homogeneous hazy and
haze-free paired images. The non-homogeneous haze has
been generated using a professional haze generator that im-



itates the real conditions of haze scenes. It contains various
outdoor scenes. NH-HAZE [5] contains 49 images for train-
ing and 6 images for testing, totaling 55 outdoor scenes.

Real Denoising: SIDD [1] is a realistic denoising dataset,
which captured real noisy images using five representative
smartphone cameras and generated their ground truth im-
ages. SIDD [1] contains 288 images for training and 32
images for testing.

Defocus Deblur: DPDD [2] is a synthetic defocus deblur-
ing dataset, which capture a pair of images of the same static
scene at two aperture sizes which are the maximum (widest)
and minimum (narrowest) apertures possible for the lens
configuration. Focus distance and focal length differ across
captured pairs in order to capture a diverse range of defocus
blur types. DPDD [2] contains 350 images for training and
76 images for testing.

JPEG Artifact removal: The training dataset is collected
from DIV2K and FLICKR2K [3] containing 900 and 2650
images, respectively. The testing dataset includes LIVE1
[87] which contains 29 testing images, and BSD500 [6]
which contains 500 testing images.

9. Implementation Details

Figure 7. Model architecture.

All experiments adopt the same U-Net architecture from
[31] as the backbone. The input to the U-Net is the xt start-

ing from x1 as the LQ image. The output of the U-Net is
the velocity vθ(xt,yt, t). We remove the class-label condi-
tioning and condition the model on yt via an adapter [73]
as illustrated in Fig. 7. The adapter processes yt with a
stack of residual blocks [29], each downsampling the fea-
ture maps of yt to align with the spatial size of the feature
maps of the corresponding in the U-Net. The feature maps
are fused with the corresponding feature maps of the U-Net
by AdaLN [33]. The output layer of each residual block is
initialized to zero, so the overall model is equivalent to the
U-Net initially.

The model is trained with a batch size of 8. We use the
AdamW optimizer [61] with β1 = 0.9 and β2 = 0.999.
The initial learning rate is 1e-4 and decayed to 1e-6 via co-
sine annealing [62]. The input images are normalized to the
range of [−1, 1] and randomly cropped to 256× 256 during
training. The model is trained on each dataset with eight
NVIDIA A100 GPUs for 400K iterations.

10. Discussion of Different Approaches
Image restoration is modeled as paired image-to-image
translation from LQs to HQs. Historically image restora-
tion methods are one-step models that map LQs to HQs
with one single step of inference. Diffusion-based mod-
els, however, are multi-step models that map refine LQs
in one or more iterative steps. Similar to diffusion-based
methods, our ResFlow allows multistep image restoration
that both improves the quality of restored HQ and boosts
training (because each step only requires partially restoring
the image). Different from diffusion-based methods, Res-
Flow models HQ-to-LQ degradation by deterministic paths
(normalizing flows), which is both easier to learn and more
efficient to sample from LQ to HQ. CDPMS [74], RDDM
[57], etc. extend diffusion models by modifying the start-
ing point or diffused variables (e.g. introducing residuals).
However, they still suffer from low training and sampling
efficiency due to stochastic degradation paths of diffusion
models. Our ResFlow introduces deterministic degradation
paths to solve this problem and achieves superior perfor-
mance. Note that all the methods we discuss and com-
pare with, including our ResFlow, are learned by super-
vised training using paired LQ and HQ images. Learning
image restoration models with unpaired images is still an
open problem.

An interesting method that draws similarity with our
ResFlow is Cold Diffusion [10], which tackles image gener-
ation. Cold Diffusion also inverts the degradations applied
to the images that it is trained to generate (similar to the
HQ images). However, the crucial difference between Cold
Diffusion and ResFlow is that Cold Diffusion only requires
the generated images to be natural, while ResFlow focuses
on LQ-to-HQ restoration and also require HQ to preserve
LQ’s information. The “generation paths” of Cold Diffu-



sion are bounded only on one end; but the degradation paths
of ResFlow (Equation (1)) are bounded by both LQ and HQ.
Put the difference in implementation, during training, dur-
ing training, Cold Diffusion learns to estimate the noise-
free images; while ResFlow learns to estimate the velocity
of degradation flow and introduces an auxiliary variable to
ensure reversibility (Equations (9) and (10)). During infer-
ence, Cold Diffusion iteratively estimates noise-free images
and degrades them with less intensity; while we solve Equa-
tions (1) and (3) from t = 1 to 0 by Euler integration (that
is, accumulating velocity × step size).

11. Addition Experimental Results
Computational costs. Diffusion models are notoriously
slow because they require dozens or even hundreds of infer-
ence steps. However, our ResFlow can generate high qual-
ity restored in as few as two or even one step. Compared
with diffusion-based models such as WeatherDiff [76],
we consistently achieve better performance (e.g., 32.82 vs
28.38 PSNR↑ for deraining) with a significantly lower com-
putational cost of 592.44 vs. 2634.8 GFLOPs↓ and 420.8s
vs. 2488.8s latency↓.
Extra visualizations. We provide more visualization re-
sults on the synthesized and real-world datasets as shown in
Figs. 8 and 9. Synthesized datasets contain Desnowing, De-
raining, Dehazing, and Single-image Defocus Deblurring
results on Snow100K [60], Outdoor-Rain [49], Dense-Haze
[4], and DPDD [2] datasets. Real-world datasets contain
Dehazing results on NH-HAZE [5], Denoising results on
SIDD [1], Deraining results on LHP [28], and Desnowing
results on RealSnow [126]. Extra visualizations on DPDD
[2] is shown in Fig. 10, our method significantly outper-
forms Restormer [115] perceptually.

Figure 11 shows the impact of auxiliary variables on the
generated results. After optimizing Equations (9) and (10),
ResFlow learns a deterministic coupling from the joint dis-
tribution of the auxiliary variable and LQ, to that of the
HQ. Conceptually, the auxiliary variable is mapped to the
“information difference” between HQ and LQ. When there
are multiple possible HQs for an LQ, sampling an auxiliary
variable and evaluating Equation (6) will produce a unique
velocity, leading to a unique HQ, thus disambiguating the
velocity and HQ. Figure 11 is an example of how different
auxiliary variables (Aux.) lead to different HQ via different
velocities, where blue boxes highlight the differences.



Input Output Reference Input Output Reference

H
az

e
S

no
w

R
ai

n
D

ef
oc

us
 B

lu
r

Figure 8. Visual results of synthesized datasets.

Input Output Reference Input Output Reference

H
az

e
S

no
w

R
ai

n
D

ef
oc

us
 B

lu
r

Figure 9. Visual results of real-world datasets.



Figure 10. Extra single-image defocus deblurring results on the DPDD [2] dataset. The part of the image is methodized to observe the
local details clearly. From top to bottom: input blurry images, the predicted images obtained by Restormer [115] and our ResFlow.

Figure 11. Extra single-image defocus deblurring results on the DPDD [2] dataset. The part of the image is methodized to observe the
local details clearly. From top to bottom: input blurry images, the predicted images obtained by Restormer [115] and our ResFlow.


	Introduction
	Related Work
	Method
	Reversing Flow for Image Restoration
	Parameterization
	Optimization and Inference

	Experiments
	Settings
	Main Results
	Ablation Study

	Conclusion
	Proof of prop:mi
	Derivation of Entropy-Preserving Degradation Schedule
	Datasets
	Implementation Details
	Discussion of Different Approaches
	Addition Experimental Results

