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Supplementary Material

6. Theoretical Analysis

6.1. Proof of Proposition 1.

Proposition 1. Let Am™™ be the maximum value of
{Am;}r_,, and Am™" be the minimum value. Define
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6.2. Proof of Proposition 2.

Proposition 2. For w satisfying the three properties above,
we have the following approximation:
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Proof. Following the notation in the main paper, let
E[Am;] = L% | Am; and Var[Am;] = 02 Define

{e;}%_, such that Am; = E[Am;] + €;, thus E[¢;] = 0.
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since 7 is generally large enough such that < is pretty small.
Similarly, for the denominator, we have
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In fact, only [E[w?] is approximated, as w always satisfies
1"w = k, which implies that E[w;] = 1. On the other hand,
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From another perspective,
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6.3. Proof of Theorem 1.
Theorem 1. Suppose Assumptions | and 2 hold. We set the
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Then, it can be obtained that
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From Eq. 7, we get
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where 01,(G, G;) is the smallest singular value of matrix
G/ G, Denote 1 = [1,---,1]T as the length-k vector
whose elements are all 1. Note that we have
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Combine the above inequalities, we get
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For any fixed k, it can be concluded from Eq. 8, Eq. 9, and
Eq. 10 that
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Since the sequence L(f;) is monotonically decreasing,
we know the sequence 6; is in the compact sublevel set
{0]L£(0) < L(0p)}. Then, there exists a subsequence 0y,
that converges to 0* where we have gk(gfg*) =0and G,
denotes the matrix of multiple gradients at 6*. Therefore,
the gradients at 6* are linearly dependent, and 6* is Pareto
stationary.
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Figure 2. Comparison of MTL approaches on a challenging synthetic two-task benchmark [22, 30]. We visualize optimization trajectories
w.r.t. objectives value (£; and L2, top row), and cumulative objective w.r.t. parameters (6, and 62, bottom row). The starting points are
indicated by black dots (e), and the Pareto front (see Definition 1) is represented by thick gray lines ().

7. Experimental Details

7.1. Toy Example

Following [30, 34], we employ a two-task toy example pre-
sented in [22]. The two tasks £;(0) and L2(0) are defined
onf = (61, 92)T € R2,

L1(0) = f1(0)g1(0) + f2(0)h1(0)
L2(0) = f1(0)g2(0) + f2(0)h2(0),

where the functions are defined as follows:
f1(#) = max(tanh(0.565),0)
f2(0) = max(tanh(—0.565),0)
91(8) = log <max(|0.5(—91 ~7)
— tanh(—62)],5¢ — 6) ) +6
g2(0) = log (max(|0.5(—91 +3)
— tanh(—6,) + 2|, 5e — 6)) +6
hi(0) = ((—61 4+ 7)* +0.1(—6, — 8)*) /10 — 20
ha(0) = ((—61 — 7)% + 0.1(—6 — 8)%) /10 — 20.

Following [4, 23, 30], we use five distinct starting points
{(-8.5,7.5),(0,0),(9.0,9.0), (7.5, —0.5), (9.0, —1.0) }.
The Adam optimizer is employed with a learning rate of
1 x 1073, The 2D and 3D optimization trajectories are
shown in Fig. 2. On one hand, while other MTL methods
(Fig. 2a to 2d) exhibit oscillations around local minima,
leading to noisy optimization trajectories, our approach

can swiftly escape these regions of local minima through
guidance from the performance-informed weighting strat-
egy. On the other hand, approaches designed to find a
Pareto-stationary solution halt upon reaching the Pareto
front (e.g. Fig. 2a and Fig. 2b), but PIVRG continues to
transfer along the Pareto front and converges to a more
balanced Pareto-optimal solution.

7.2. Experimental Results with Standard Errors

We followed the experimental setup from [4, 23, 30], and
the results for the baseline methods are taken from their
original papers. PIVRG’s results along with standard errors
is presented in Table 6, 7 and 8.

Table 6. Results on CityScapes (2 tasks) and CelebA (40 tasks)
datasets. Each experiment is repeated over 3 random seeds and
the mean and stderr are reported.

CityScapes CelebA

Method Segmentation Depth Am(%) L Am(%) L
mloU T Pix Acct AbsErr] RelErr]

PIVRG (mean) 75.82 93.65 0.0126 27.87 -0.54 -0.96

PIVRG (stderr) +0.05 +0.04  £0.0002 +0.24 +0.34 +0.34

7.3. Additional Results on Performance Variance

In Fig. 3 and Fig. 4, we show that both w " w and Var[Am;]
decrease progressively throughout the optimization process,
validating the effectiveness of our dynamic weights which
serve as regularizers. In Table 10, 11 and 12, we com-
pare the detailed performance drop Am and performance
variance Var[Am;] with existing methods, the results show
that PIVRG not only achieves SOTA performance on vari-
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Figure 3. Performance Variance on QM9 dataset. Figure 4. The squared L norm of w, i.e. w ' w.

Table 7. Results on NYU-v2 dataset (3 tasks). Each experiment is repeated over 3 random seeds and the mean and stderr are reported.

Segmentation Depth Surface Normal
Method mloU+  Pix Acct AbsErr| RelErr | Angle Dist |, Within ¢° 1 Am(%) |
Mean Median 11.25 22.5 30
PIVRG (mean) 39.90 65.74 0.5365 0.2243 2430 18.80  30.95 58.26 70.38 -6.50
PIVRG (stderr)  £0.43 +0.21  £0.0007 +0.0014 40.07 £0.09 +£0.12 +£0.18 =+£0.16 +0.24

Table 8. Results on QM-9 dataset (11 tasks). Each experiment is repeated over 3 random seeds and the mean and stderr are reported.

« €EHOMO €LUMO <R2 ) ZPVE U() U H G Cy

Method H Am(%) |
MAE |

PIVRG (mean) 0.125 0.226 94.80 81.98 1.41 387 5779 5790 58.09 57.86 0.085 33.6

PIVRG (stderr) £0.0022 +£0.0078 +2.829 +£1.349 +0.0301 =£0.0438 +0.68 =£0.72 +0.70 £0.68 =£0.0005 +2.31

Table 9. Detailed results on QM9 (11-task) dataset. Each experiment is repeated 3 times with different random seeds and the average is
reported.

2

METHOD I @ emomo evmo (R°)  ZPVE U U H G Co MR, Am(%) |
MAE |

STL 0.067 0.181 60.57 5391 0.502 4.53 58.8 64.2 63.8 66.2 0.072
LS 0.106 0.325 73.57 89.67 5.19 14.06 143.4 144.2 144.6 140.3 0.128 9.09 177.6
SI 0.309 0.345 149.8 135.7 1.00 4.50 55.3 55.75 55.82 55.27 0.112 5.55 77.8
RLW 0.113 0.340 76.95 92.76 5.86 15.46 1563 157.1 157.6 153.0 0.137 10.64 203.8
DWA 0.107 0.325 74.06 90.61 5.09 13.99 1423 143.0 143.4 139.3 0.125 8.82 175.3
uw 0.386 0.425 166.2 155.8 1.06 4.99 66.4 66.78 66.80 66.24 0.122 7.27 108.0
MGDA 0.217 0.368 126.8 104.6 3.22 5.69 88.37 89.4 89.32 88.01 0.120 8.91 120.5

PCGRAD 0.106  0.293 75.85 88.33 3.94 9.15 116.36 116.8 117.2 1145 0.110 7.27 125.7
CAGRAD 0.118 0.321 83.51 94.81 3.21 6.93 113.99 1143 1145 1123 0.116 8.18 112.8
IMTL-G 0.136  0.287 98.31 93.96 1.75 5.69 101.4 102.4 102.0 100.1 0.096 7.18 77.2
NASH-MTL  0.102 0.248 82.95 81.89 2.42 5.38 74.5 75.02  75.10 74.16 0.093 4.36 62.0
FAMO 0.15 0.30 94.0 95.2 1.63 4.95 70.82 71.2 71.2 70.3 0.10 5.73 58.5
FAIRGRAD 0.117 0.253 87.57 84.00 2.15 5.07 70.89 71.17 71.21 70.88 0.095 4.73 57.9

PIVRG 0.125 0.226 94.80 81.98 1.41 3.87 57.79 57.90 58.09 57.86 0.085 3.00 33.6




Table 10. Comparison of Am and performance variance for dif-
ferent methods on the NYUv2 dataset.

method LS SI RLW [20] DWA [26] UW [18]
Am(%) 559 4.39 778 3.57 4.05

Var[Am;]  259.13 247.77 205.32 191.93 190.73

method  MGDA [33] PCGrad [38] GradDrop [10]  CAGrad [22] IMTL-G [24]
Am(%) 138 3.97 3.58 0.20 0.76
Var[Am;]  68.65 173.67 204.45 137.94 124.03
method  Moco [14] Nash-MTL [30] ~ FAMO [23] FairGrad [4] PIVRG (Ours)
Am(%) 016 -4.04 -4.10 -4.66 -6.50
Var[Am;]  163.07 108.03 74.66 71.59 5221

Table 11. Comparison of Am and performance variance for dif-
ferent methods on the QM9 dataset.

method LS ST RLW [20] DWA [26] UW [18]
Am(%) 177.6 77.8 203.8 1753 108.0
Var[Am;] 59317.63 11807.60 77380.19 56660.16 18171.92
method  MGDA [33] PCGrad [38] CAGrad [22] IMTL-G [24] Nash-MTL [30]
Am(%) 120.5 125.7 112.8 712 62.0
Var[Am;] 20533.84 31570.73 18343.53 3309.90 10385.12

method FAMO [23] FairGrad [4] PIVRG (Ours)

Am(%) 58.5 5719 33.6

Var[Am;]  3963.84 7705.27 3196.32

Table 12. Comparison of Am and performance variance for dif-
ferent methods on the CityScapes dataset.

method LS s RLW [20] DWA [26] UW [18]
Am(%)  22.60 14.11 2438 2145 5.89
Var[Am;]  803.24 133.23 879.98 630.71 21.32

method MGDA [33] PCGrad [38] GradDrop [10] CAGrad [22] IMTL-G [24]
Am(%) 44.14 18.29 23.73 11.64 11.10
Var[Am;]  3588.05 466.50 871.26 220.86 261.86

method MoCo [14] Nash-MTL [30] FAMO [23] FairGrad [4] PIVRG (Ours)
Am(%) 9.90 6.82 8.13 5.18 -0.54
Var[Am;] 126.75 128.77 73.43 53.26 1.55

ous benchmarks but also produces the lowest performance
variance, indicating a fairer optimization.

8. Comparison With Other Methods

In this section, we present a concise overview of representa-
tive loss-based and gradient-based approaches used in mul-
titask or multiobjective optimization, and provide a brief
analysis of the characteristics of each method.

8.1. Loss-Based Methods

Linear scalarization (LS). LS aims to directly optimize the
average of all task losses. The optimization objective for LS
is given by

k
1
£(6) =min T 32 6:(0)

where /;(6) represents the loss for task . LS focuses
on minimizing the overall average loss, treating each task
equally without considering individual task difficulties or
imbalances.

Scale-Invariant (SI). The SI method aims to optimize the
logarithmic mean of all task losses. The optimization ob-
jective for Sl is given by

k
1
min ; log(£;(9)),

where ¢;(0) represents the loss for task i. The advantage of
SI is that it is invariant to any scalar multiplication of task
losses, allowing it to handle varying loss scales effectively.
Dynamic Weight Average (DWA) [26]. It is a heuristic for
adjusting task weights based on rates of loss changes. The
optimization objective is a weighted sum of all task losses,
where the weights are \;:

k
min ; Xili(0).

Similar to PIVRG, it also uses a softmax with tempera-
ture to determine the weights such that they sum to k. How-
ever, the softmax argument is w; ; = ¢; 4 /¢; _1, which con-
siders the relative change at the loss-level.

Random Loss Weighting (RLW) [20]. The optimization
objective of RLW is also a weighted sum of all task losses,
where the weights are \;:

k
min ; Aili(0).

Unlike previous methods, RLW simply samples from
a normal distribution and applies softmax to obtain the
weights. The authors found that even this simple modifica-
tion leads to better performance. They argue that RLW pro-
vides a higher probability of escaping local minima com-
pared to existing models with fixed task weights, resulting
in improved generalization ability.
Fast Adaptive Multitask Optimization (FAMO) [23].
FAMO aims to decrease all task losses at an equal rate at
each step as much as possible. The optimization objective
is:

iy =l
max min ————

1
— Z||deI?,
deR™ i€[k] ntgi,t 2 || t ||

where 7, is the current step size. By amortizing over
time, the authors propose a fast approximation to the solu-
tion, thus achieving highly competitive results while main-
taining efficiency.

8.2. Gradient-Based Methods

Multiple Gradient Descent Algorithm (MGDA) [33].
The MGDA algorithm is one of the earliest gradient ma-
nipulation methods for multitask learning. In MGDA, the



per step update d; is found by solving

d— = 2
max mfﬁgm || I

As a result, the solution d* of MGDA optimizes the worst
improvement across all tasks or equivalently seeks an equal
descent across all task losses as much as possible. However,
in practical applications, MGDA often encounters slow con-
vergence due to the potential for d* to be quite small. For
instance, if one task has a very small loss scale, the advance-
ment of other tasks becomes constrained by the progress
made on this particular task.

Projecting Gradient Descent (PCGrad) [39]. PCGrad ini-
tializes U1i>c = g; ¢, then for each task i, PCGrad loops over
all task j # 4:

—
. - Vpe G . T
i i PC Yyt : 7
Upc <= Upc — 7”4 ”2 gjt if vpc g <O.
Jst

In the end, PCGrad produces d; = % Zle Vhe. Due to the
construction, PCGrad will also help improve the “worst im-
provement” across all tasks since the “conflicts” have been
removed. However, due to the stochastic iterative procedu-
ral of this algorithm, it is hard to understand PCGrad from
a first principle approach.

Conflict-averse Gradient Descent (CAGrad) [22]. In CA-
Grad, d; is found by solving

max ming; ,d s.t.
dER™ ig[k] 9i

ld = Vel <cllVeo,
where {p; = % Zle 4; +. CAGrad aims to determine an
update d; that maximizes the “worst improvement” while
ensuring that the overall average loss decreases. By adjust-
ing the hyperparameter ¢, CAGrad can replicate the behav-
ior of MGDA when ¢ — oo and revert to the standard aver-
aged gradient descent when ¢ — 0.

Impartial Multi-Task Learning (IMTL-G) [24]. IMTL-
G finds d; such that it shares the same cosine similarity with
any task gradients:

Vi # 7, d;r Git _d‘r Gj,t
llgi.¢l lgj.ell”
k
Zwiytgim for some w; € Sy.
i=1

and d; =

The constraint that d; = Zle w; +gi,¢ is for preventing the
problem from being under-determined. We can view IMTL-
G as the equal angle descent, where the objective is to find
d such that

Vi # j, cos(d, gi,t) = cos(d, gj.¢)-

Nash-MTL [30]. Nash-MTL finds d, by solving a bargain-
ing game treating the local improvement of each task loss
as the utility for each task:

k

9 dt
doeRm | <e? Zl bt

Note that the objective of Nash-MTL implicitly assumes
that there exists d; such that V ¢, g;':tdt > 0, otherwise
we reach the Pareto front. In our proposed PIVRG, we also
adopt this assumption.

«a-Fair Resource Allocation (FairGrad) [4]. FairGrad is
inspired by fair resource allocation in communication net-
works. They treat the optimization in MTL as a resource
allocation problem and apply the a-fairness framework:

k u,;(d)lia
Ua(d) — {Zi—l -«

ifa>0,a#1
S log(ui(d)) ifer=1

They also consider g, d as the utility of task 4. By intro-
ducing the a-fair framework, FairGrad achieves different
types of fairness at the gradient level, yielding surprising
results. It is noteworthy that most existing methods can also
be categorized under the a-fair framework. For instance,
LS is a special case when a = 0, Nash-MTL corresponds
to @« = 1, and MGDA is a special case as « approaches
infinity. Similar to these methods, the basic optimization
objective in (2) can also be viewed as a special case of a-
fairness. However, our derivation is from the perspective
of minimizing the average optimization steps for tasks, and
this is not our main contribution.

8.3. Advantages of Our Method

Through the analysis of the aforementioned methods, we
found that since loss-based methods cannot obtain the accu-
rate gradient for each task, they primarily achieve fairness
at the loss level through various scaling and weighted aver-
aging of the loss. A major idea of gradient-based methods
is to alleviate gradient conflict during the optimization pro-
cess to achieve fairness at the gradient level. Additionally,
some gradient-based methods use the first-order Taylor ex-
pansion to design utility functions, approximating the loss
difference with g, d, thereby incorporating loss-level infor-
mation.

However, only our proposed PIVRG considers utiliz-
ing the variance of performance drop as a fairness indi-
cator to represent fairness in the optimization process of
MTL. Extensive experiments demonstrate that PIVRG not
only achieves state-of-the-art performance but also realizes
further fair optimization, mitigating the common task im-
balance phenomenon observed in previous methods. Inte-
grating our dynamically designed weighting strategy based
on performance-level information into existing methods can



significantly enhance their performance and reduce the vari-
ance of performance drop, achieving more equitable results.
This further confirms the potential of our method and its
contribution to the MTL community.

8.4. Discussion with Task Grouping Techniques

Task grouping [15, 36] provides another perspective for
MTL. In our approach, we aim to use a single model that
performs well across multiple tasks simultaneously. How-
ever, task similarity is not uniform across all tasks, and
some tasks may be better suited to be trained together while
others are not. This leads to a trade-off: by discarding
tasks with lower similarity, tasks with higher similarity can
be optimized more effectively. [15] can effectively deter-
mine which tasks should be trained together. However, af-
ter grouping, each task group requires a separate model for
training, which incurs additional time and memory over-
head. Notably, our method is orthogonal to task grouping
techniques. After performing task grouping, our method
can be applied to train the tasks within each group, poten-
tially leading to better results.



