
Towards Consistent Multi-Task Learning:
Unlocking the Potential of Task-Specific Parameters

Supplementary Material

6. Experimental Details
To ensure the reliability of the experimental results and al-
leviate the influence of random errors, the results presented
in the main text follow the methodology of prior works
[3, 22, 29], where each experiment is run three times with
different random seeds, and the average value is reported.
Table 5, 7 and 8 below present the specific performance of
ConsMTL across different benchmarks, including the cor-
responding standard errors.

Fig. 5 shows the cosine similarity matrices of gradients
for the shared representation z at different training stages,
including the first 60 epochs and the 300th epoch at the
end of training, for (1) the conventional MTL method LS
(linear scalarization), which optimizes L =

∑k
i=1 ℓi; (2)

upper-level optimization only, which is discussed in Sec-
tion 3.2; and (3) introducing lower-level optimization for
task-specific parameters, i.e., ConsMTL. In the early stages
of training, different tasks are more easily aligned for col-
laborative optimization, and the introduction of lower-level
optimization significantly enhances the cosine similarity of
gradients from different tasks. This effectively mitigates
gradient conflicts, allowing the shared parameters to learn
a more unified representation. Towards the end of training,
the gradient similarity stabilizes or even decreases, with the
gradient directions becoming linearly correlated along the
Pareto frontier, consistent with the observation in [16]. At
Epoch 300, when the training has largely converged, Con-
sMTL still maintains a certain level of gradient similarity,
indicating that task-specific parameters are better equipped
to capture task-specific information, which aligns with the
fundamental design goal of MTL. This fully demonstrates
the potential of our method and its contribution to the MTL
community.

Table 5. Results on CityScapes (2 tasks) and CelebA (40 tasks)
datasets. Each experiment is repeated over 3 random seeds and
the mean and stderr are reported.

Method

CityScapes CelebA

Segmentation Depth
∆m% ↓ ∆m% ↓

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓
ConsMTL (mean) 75.57 93.32 0.0131 26.41 -0.59 -1.42
ConsMTL (stderr) ±0.66 ±0.10 ±0.0002 ±0.25 ±0.28 ±0.37

7. Detailed Computational Overhead
To analyze the additional computational overhead intro-
duced by lower-level optimization, we conducted experi-

ments on NYUv2, QM9, and CelebA, reporting the per-
epoch computational time. The results, shown in Table 6,
demonstrate that lower-level optimization introduces only
marginal overhead. All experiments are performed on a sin-
gle NVIDIA 4090 GPU.

Table 6. Detailed per-epoch computational overhead on different
datasets. “ULO only” means using only upper-level optimization.

Method NYUv2 QM9 CelebA

ULO only 5.7min 4.5min 15.9min
ConsMTL 6.4min 5.6min 17.8min



Table 7. Results on NYU-v2 dataset (3 tasks). Each experiment is repeated over 3 random seeds and the mean and stderr are reported.

Segmentation Depth Surface Normal

Method mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Dist ↓ Within t◦ ↑ ∆m% ↓
Mean Median 11.25 22.5 30

ConsMTL (mean) 40.33 65.32 0.5491 0.2151 24.35 18.80 31.06 58.28 70.31 -6.72
ConsMTL (stderr) ±0.15 ±0.20 ±0.007 ±0.0015 ±0.034 ±0.18 ±0.09 ±0.23 ±0.19 ±0.21

Table 8. Results on QM-9 dataset (11 tasks). Each experiment is repeated over 3 random seeds and the mean and stderr are reported.

Method µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv ∆m% ↓
MAE ↓

ConsMTL (mean) 0.115 0.202 82.69 67.58 1.61 3.33 48.84 49.04 49.07 49.63 0.077 23.2
ConsMTL (stderr) ±0.0013 ±0.0051 ±0.69 ±2.55 ±0.049 ±0.072 ±1.17 ±1.13 ±1.09 ±1.16 ±0.0005 ±2.03

(a) Epoch=0 (a) Epoch=20 (a) Epoch=40 (a) Epoch=60 (a) Epoch=300

Figure 5. The cosine similarity matrix of gradients for shared representation z across different tasks during training on QM9 (11-task).
Negative values are clipped to 0. The top row represents the conventional MTL method LS (linear scalarization). The middle row represents
the case using only upper-level optimization, which can be considered as a naive gradient-based method. The bottom row introduces lower-
level optimization for task-specific parameters, i.e., ConsMTL.


