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1. More Details for the Method
1.1. Implementation Details

Multi-view Generation For training the multi-view
canonical image generation model, we first pre-train our
RGB-Normal DiT model on in-the-wild video clips. To
supervise the normal map output, we utilize Sapiens [3],
an off-the-shelf normal estimation prior, to generate pseudo
ground-truth normals from in-the-wild data. The model is
trained using the Adam optimizer [4] with a learning rate
of 2 × 10−4 and a batch size of 1. We employ 16 Nvidia

1Equal contribution.
2Corresponding author.

A100 80G GPUs for training, with the pre-training process
comprising 100,000 optimization iterations. Subsequently,
the model is fine-tuned on a synthetic dataset using the
same hyperparameters, performing an additional 50,000 it-
erations of optimization. To preserve the model’s generaliz-
ability, we adopt a data-mixing strategy during fine-tuning,
assigning a 10% probability to sampling in-the-wild data
and a 90% probability to synthetic data.

3D Reconstruction from Inconsistent Images. In the
multi-view reconstruction phase, after obtaining the de-
formed coarse mesh from the original SMPL-X as the ini-
tialization for 4DGS, we first performed 3,000 iterations of
optimization the 3DGS parameters. Sequentially, we con-
tinue to conduct 4,000 iterations of optimization in the tem-
poral dimension to address multi-view inconsistency. In
the multi-view reconstruction phase, we initialize with a
deformed coarse mesh derived from the original SMPL-X
model for the 4DGS process. The first step is optimizing
the 3DGS parameters over 3,000 iterations. Subsequently,
we perform 4,000 iterations of optimization considering the
temporal dimension to address multi-view inconsistency.

1.2. RGB-Normal Diffusion Transformer

Figure S3 illustrates the architecture of our multi-view dif-
fusion transformer model for canonical image and normal
map generation. For simplicity, we omit SPML-X condi-
tioning in the figure. Both ‘I-DiT-E’ and ‘N-DiT-E’ denote
two independent DiT encoder blocks conditioned on im-
age and normal input, respectively, while ‘I-DiT-D’ and ‘N-
DiT-D’ refer to two independent decoders responsible for
generating multi-view canonical images and normal maps.
Additionally, ‘I-N’ within the intermediate DiT blocks rep-
resents a multi-modal attention module that effectively en-
codes joint image and normal features.
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Figure S1. Visual comparison of animation results for the reconstructed 3D avatars. Best viewed with zoom-in.

1.3. Coarse Shape Initialization
We optimize the following objective function to obtain the
initial coarse mesh M′ for 3DGS initialization:

Linit = λmask · Lmask + λn · Lnormal

+ λlap · Llap(M′) + λedge · Ledge(M′).
(1)

where λmask = 1.0, λn = 0.5, λlap = 0.1, and λedge =
0.05.

Figure S2 demonstrates the coarse mesh results recon-
structed from the generated images. As illustrated in the
figure, the coarse mesh provides only a rough geometric
surface, with several noticeable artifacts remaining on its
surface.

1.4. Skinning-based Animation
We model large body motions using linear blend skinning
(LBS) transformations based on the SMPL-X [6] model.
Specifically, given an SMPL body with shape parameter β
and pose parameter θi in the i-th frame, a point p on the
body surface in canonical space with skinning weights w(p)
can be warped to camera view space via the skinning trans-
formation W .

Notably, the skinning weights w(p) are only defined for
points on the SMPL-X surface. To handle shapes with large
deformations (e.g., skirts) and to better facilitate the warp-
ing of arbitrary points in canonical space to the camera

(a) Input (b) The normal map of Coarse Mesh

Figure S2. Sample results for the about coarse mesh reconstruction
from multi-view images.

view, we employ the diffused skinning strategy [5] to prop-
agate the skinning weights of the SMPL-X body vertices to
the entire canonical space. These weights are stored in a
voxel grid of size 256 × 256 × 256. Skinning weights for
arbitrary points are then obtained through trilinear interpo-
lation.

1.5. More Details for the Synthetic Dataset

We leverage a combination of public synthetic 3D datasets
to render multi-view images for fine-tuning the multi-view
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Figure S3. The architecture of the joint RGB-Normal Diffusion Transformer designed for generating multi-view canonical images and
normal maps. For simplicity, SPML-X conditioning is omitted from the depiction.
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Figure S4. Effectiveness of pre-training on in-the-wild videos.

canonical image and normal generation model. These
datasets include 2K2K [1], Thuman2.0, Thuman2.1 [7], and
CustomHumans [2], along with commercial datasets such
as Thwindom and RenderPeople. In total, we utilize 6,124
synthetic human scans.

For the synthetic data, we render each object from 30
different viewpoints by rotating the object. To improve the
quality of multi-view reconstruction, images are rendered at
varying elevations, which helps to regularize the optimiza-
tion of the 3D Gaussian Splatting (3DGS) method. Specifi-
cally, the elevation range oscillates between −20◦ and 20◦,
following a sine function over a cycle of 30 views.

2. More Details for the Ablation Study

Body Identity The bodily proportions of the human figure
depend on the human body model predicted by the off-the-
shelf method. Figure S6 demonstrates that the reconstructed
3D human can adapt to different human body conditions.
Multi-view Reconstruction from Varying Inputs We
conducted an ablation study on multi-view reconstruction
with varying inputs, which revealed that simply reducing

Table S1. Results of 3DGS and 4DGS with different input views.
10 Views 20 Views 30 Views

Metrics 3DGS 4DGS 3DGS 4DGS 3DGS 4DGS

FID ↓ 120.52 79.196 112.841 76.086 114.645 77.879
PSNR ↑ 20.868 22.513 21.424 22.519 21.910 22.954
SSIM ↑ 0.867 0.882 0.873 0.887 0.877 0.893
LIPIS ↓ 0.131 0.113 0.119 0.108 0.120 0.109

3DGS 4DGS 3DGS 4DGS 3DGS 4DGS
Input (a) 10 Views (b) 20 Views (c) 30 Views

Figure S5. Novel-view result of 3DGS/4DGS with varying inputs.

Figure S6. Controlling body size conditioned on different shapes.

the number of views does not resolve the associated issues
due to inconsistencies among frames; in fact, it may even
degrade the results, as shown in Table S1 and Figure S5.
This experiment empirically demonstrates that continuously
increasing the number of input images for 4DGS recon-
struction, does not yield infinite improvements in the qual-
ity of the reconstruction, with an optimal empirical range
identified to be around 24 to 30 images.

3. More Results
3.1. Comparison of animation results
As is visualized in Fig. S1, our method produces accurate
and photorealistic animation results than the baseline meth-
ods.

3.2. Pre-training on In-the-wild Data
Figure S4 underscores the critical role of pre-training on
in-the-wild data. Models pre-trained on diverse and real-



world datasets demonstrate substantially enhanced gener-
alization capabilities compared to models trained without
pre-training, verifying the training strategy of our method.

3.3. Animation Results
Figure S7–Figure S8 showcase the animation results of in-
put human images with diverse appearances and a wide
range of poses. Our method demonstrates the ability to gen-
erate animations that are both robust and photorealistic, pre-
serving fine details of the human appearance while ensuring
smooth and natural motion transitions. These results high-
light the generalizability and effectiveness of our approach
in handling varying levels of complexity in human avatars.

3.4. Reconstruction and Animation from Any Input
Figure S11 and Fig. S12 illustrate reconstructions and ani-
mation results from a diverse set of images collected from
the internet. Notably, the reference image is a non-human
image input, demonstrating the model’s still maintain orig-
inal diffusion model’s generalizability.

3.5. Canonical Shape Reconstruction
To further validate the effectiveness of the proposed
method, we provide additional results for canonical shape
reconstruction from single images. Figure S13–Fig. S15
present reconstruction results on the DeepFashion dataset,
showcasing accurate recovery of canonical shapes from
fashion images. Meanwhile, Figure S16–Fig. S18 illustrate
reconstructions from a diverse set of images collected from
the internet, demonstrating the model’s adaptability to vari-
ous image sources and styles.



Reference Animation results

Figure S7. Visual results of human animation results (Part I) from any input. Best viewed with zoom-in.



Reference Animation results

Figure S8. Visual results of human animation results (Part II) from any input. Best viewed with zoom-in.



Reference Animation results

Figure S9. Visual results of human animation results (Part III) from any input. Best viewed with zoom-in.



Reference Animation results

Figure S10. Visual results of human animation results (Part IV) from any input. Best viewed with zoom-in.



Reference Multi-view Reconstruction

Figure S11. Visual results of canonical shape reconstruction from “Any Input”. Best viewed with zoom-in.



Reference Multi-view Reconstruction

Figure S12. Visual results of canonical shape reconstruction from “Any Input”. Best viewed with zoom-in.



Reference Multi-view Reconstruction

Figure S13. Visual results of canonical shape reconstruction (Part I). Best viewed with zoom-in.



Reference Multi-view Reconstruction

Figure S14. Visual results of canonical shape reconstruction (Part II). Best viewed with zoom-in.



Reference Multi-view Reconstruction

Figure S15. Visual results of canonical shape reconstruction (Part III). Best viewed with zoom-in.



Reference Multi-view Reconstruction

Figure S16. Visual results of canonical shape reconstruction (Part IV). Best viewed with zoom-in.



Reference Multi-view Reconstruction

Figure S17. Visual results of canonical shape reconstruction (Part V). Best viewed with zoom-in.



Reference Multi-view Reconstruction

Figure S18. Visual results of canonical shape reconstruction (Part VI). Best viewed with zoom-in.
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