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7. Additional Explanation of Architecture
In this section, we provide additional preliminary knowl-
edge explanations for Sec. 3 and present a detailed training
algorithm of Siamese-Diffusion.

7.1. Architecture of Siamese-Diffusion
Numerous methods [31, 56, 59] based on pre-trained Stable
Diffusion [36] achieve fine control over synthesized images
using external HyperNetworks [17] to process structural in-
puts like segmentation masks, depth maps, and sketches.
T2I-Adapter [31] enables control with a lightweight fea-
ture extractor without updating Stable Diffusion’s param-
eters. Meanwhile, ControlNet [59] demonstrates that pre-
cise control over synthesized images is achievable regard-
less of whether the denoising U-Net decoder parameters are
updated. The key to the success of these methods lies in
ensuring the effective fusion of prior control features and
noisy image features in the latent space.

Although ControlNet [59] demonstrates that updating
the denoising U-Net decoder parameters is not essential
for achieving fine control, such updates can improve the
quality of synthesized images. In our proposed Siamese-
Diffusion framework, Mask-Diffusion leverages collabora-
tive updates from both the external network (comprising the
cascaded Dense Hint Input module and ControlNet) and
the denoising U-Net decoder parameters. This collabora-
tion ensures the effective fusion of mask features cm with
noisy image features zt in the latent space, enabling Mask-
Diffusion to operate independently during sampling.

Image-Diffusion relies exclusively on the external fea-
ture extraction network for unidirectional fusion with noisy
image features in the latent space. By leveraging Noise
Consistency Loss, the U-Net decoder parameters are ad-
justed, enhancing the fusion between mask-image joint
prior control features cmix and noisy image features zt. As
a result, Image-Diffusion, benefiting from the added im-
age prior control, achieves more accurate noise predictions
compared to Mask-Diffusion. Noise Consistency Loss fur-
ther propagates these benefits to Mask-Diffusion, refining
its parameters and enabling it to independently synthesize
images with enhanced morphological characteristics. The
“copy” operation in Fig. 2(a) and the shared cm in Eq. (5)
ensure that the differences in noise predictions between the
two processes are solely due to the additional image prior
control, stabilizing the propagation process.

Mask-Diffusion and Image-Diffusion share a unified
diffusion model. The Siamese architecture stands out from

Algorithm 1 Training algorithm of Siamese-Diffusion.

1: for Every batch of size N do
2: for (x0, y0) in this batch do
3: Sample:
4: ϵ ∼ N (0, I), t ∼ U({0, 1, ..., T})
5: Encode Image into Latent Space:
6: z0 = E(x0)
7: Encode Prior Controls into Latent Space:
8: ci = F(x0), cm = F(y0)
9: Mix Mask and Image Prior Controls:

10: cmix = wi · ci + wm · sg[cm]
11: Noise Image in the Latent Space:
12: zt =

√
ᾱtz0 +

√
1− ᾱtϵ

13: Calculate Mask Denoising Loss:
14: Lm = ∥ϵθ(zt, cm)− ϵ∥2
15: Copy the Parameter of Mask-Diffusion:
16: θ′ = DeepCopy(θ)
17: Calculate Image Denoising Loss:
18: Li = ∥ϵθ′(zt, cmix)− ϵ∥2
19: Calculate Noise Consistency Loss:
20: Lc = wc · ∥ϵθ(zt, cm)− sg[ϵθ′(zt, cmix)]∥2
21: Single-Step Sampling:
22: z′0 = zt−

√
1−ᾱtsg[ϵθ′ (zt,cmix)]√

ᾱt

23: Noise Image in the Latent Space:
24: z′t =

√
ᾱtz

′
0 +

√
1− ᾱtϵ

25: Calculate Augmented Mask Denoising Loss:
26: Lm′ = wa · ∥ϵθ(z′t, cm)− ϵ∥2
27: Update the Parameters:
28: L = Lm + Li + Lc + Lm′

29: end for
30: end for

traditional distillation models [19, 30], which require sep-
arate training of a teacher network with mask-image prior
control and a student network with mask-only prior con-
trol. Thus, the Siamese structure relies on fewer parameters,
making it more resource efficient for training.

7.2. Dense Hint Input Module
As mentioned above, simultaneously updating the denois-
ing U-Net parameters enhances the quality of synthesized
images. However, Image-Diffusion compromises the fu-
sion between image prior control features ci and noisy im-
age features zt. In [56], high-density semantic image fea-
tures achieve unidirectional fusion with noisy image fea-
tures using a robust external network, without requiring col-



laborative updates to the denoising U-Net parameters. To
enhance the fusion between mask-image joint prior con-
trol features cmix and noisy image features zt, we substitute
the original sparse Hint Input module with a more powerful
Dense Hint Input module. Furthermore, [56] demonstrates
that a stronger external HyperNetwork can effectively ac-
commodate low-density semantic inputs (e.g., segmentation
masks). As a result, Mask-Diffusion and Image-Diffusion
share a unified external feature extractor in our approach.

7.3. Online-Augmentation
Typically, due to the low accuracy of noise prediction in
single-step sampling, diffusion models (e.g., [21, 44, 45])
rely on Predict-Correct (PC) multi-step sampling. How-
ever, using multi-step sampling during training is both time-
consuming and memory-intensive, as it requires storing gra-
dient information [27], which limits the feasibility of gen-
erating new sample pairs online to augment the training
set. By leveraging the advantages of the Siamese-Diffusion
training paradigm, single-step sampling can be used for on-
line augmentation in Mask-Diffusion.

7.4. Training Algorithm of Siamese-Diffusion
The detailed training algorithm of Siamese-Diffusion is pre-
sented in Algorithm 1. For simplicity, the prompt ct and
timestep t are omitted. E represents the encoder of VQ-
VAE [50], whose parameters are frozen. F represents the
external feature extraction network, consisting of the cas-
caded Dense Hint Input module and ControlNet, which are
jointly trained with the Diffusion model.

8. Test Set for Segmentation Models
This section provides detailed descriptions of the test
sets used to evaluate segmentation models across various
datasets, as discussed in Sec. 4.1.

Polyps Dataset: Following [14], evaluations are con-
ducted on five public polyp datasets: EndoScene [51]
(60 samples), CVC-ClinicDB/CVC-612 [2] (62 samples),
Kvasir [26] (100 samples), CVC-ColonDB [46] (380 sam-
ples), and ETIS [42] (196 samples). Overall represents the
weighted average results of these five test sets.

ISIC2016 & ISIC2018 Datasets: Evaluations are per-
formed on their official test sets.

Stain & Feces Datasets: As described in the main paper,
the Stain dataset (500 samples) and the Faeces dataset (458
samples) are divided into training, validation and test sets in
a 3:1:1 ratio, resulting in test sets of 100 and 92 samples.

9. Image Quality Comparison
This section provides additional quantitative and qualita-
tive analysis of image quality assessment results on other
datasets, as discussed in Sec. 5.1.

Table 7. Comparison of synthetic skin lesion (ISIC2016) image
quality generated by each respective mask-only method, evaluated
using FID [18], KID [3], CLIP-I [38], LPIPS [60], CMMD [25]
and MOS metrics.

Methods FID (↓) KID (↓) CLIP-I (↑) LPIPS (↓) CMMD (↓) MOS (↑)

T2I-Adapter [31] 234.474 0.1912 0.774 0.688 2.733 -
ControlNet [59] 68.327 0.0267 0.820 0.667 0.688 1.68
Ours 64.208 0.0299 0.827 0.657 0.733 1.96

Table 8. Comparison of synthetic skin lesion (ISIC2018) image
quality generated by each respective mask-only method, evaluated
using FID [18], KID [3], CLIP-I [38], LPIPS [60], CMMD [25]
and MOS metrics.

Methods FID (↓) KID (↓) CLIP-I (↑) LPIPS (↓) CMMD (↓) MOS (↑)

T2I-Adapter [31] 224.446 0.1751 0.796 0.672 2.621 -
ControlNet [59] 45.490 0.0286 0.809 0.672 0.794 1.22
Ours 44.036 0.0258 0.808 0.673 0.701 2.12

9.1. Quantitative Evaluation

For the five datasets, we use various image quality evalu-
ation metrics, including Fréchet Inception Distance (FID)
[18], Kernel Inception Distance (KID) [3], CLIP-Image
(CLIP-I) [38], Learned Perceptual Image Patch Similar-
ity (LPIPS) [60] and CLIP-Maximum Mean Discrepancy
(CMMD) [25]. Additionally, for medical datasets, we em-
ploy the Mean Opinion Score (MOS), calculated by averag-
ing experienced clinicians’ ratings of synthetic image qual-
ity. Distinct evaluation standards are applied to the Polyps
and Skin Lesion datasets based on clinician suggestions

Polyps Dataset: As shown in Tab. 1, the commonly used
non-human evaluation metrics have been discussed in the
main paper. Here, we focus on the MOS metric. Three pro-
fessional clinicians assess the quality of polyp images gen-
erated by SinGAN-Seg [47], ControlNet [59], our Siamese-
Diffusion, and real data. T2I-Adapter [31] and ArSDM [14]
are excluded based on clinicians’ suggestions due to their
unrealistic results. To ensure the reliability of the evalua-
tion results and minimize the fatigue of the clinicians, 50
image groups are randomly selected, each containing im-
ages synthesized using the same mask by the four methods
(including real images), totaling 200 polyp images. Clin-
icians view one image at a time, scoring it as “Real” (1
point) or “Synthetic” (0 point) and providing a confidence
score ranging from 1 to 10. Our method achieves the highest
MOS score of 0.587 with a confidence level of 6.04, demon-
strating superior quality in synthesized polyp images. 50
real images are used to assess preference, yielding MOS
score of 0.9 and confidence level of 6.17.

ISIC2016 Dataset: As shown in Tab. 7, we compare
the synthesized skin lesion image quality of T2I-Adapter
[31], ControlNet [59], and our Siamese-Diffusion. Al-
though KID [3] and CMMD [25] scores are slightly lower



than those of ControlNet [59], our method achieves the best
scores in FID [18], CLIP-I [38], LPIPS [60], and MOS,
demonstrating superior overall performance. About MOS
evaluation, one experienced clinician assesses the quality
of skin lesion images generated by ControlNet [59], our
Siamese-Diffusion, and real data. T2I-Adapter [31] is ex-
cluded for the same reason as in the Polyps dataset. Consid-
ering potential biases in single-evaluator assessments, these
results are presented as reference points rather than defini-
tive benchmarks. Following clinician suggestions, 50 image
groups are randomly selected, each containing images syn-
thesized using the same mask by the three methods (includ-
ing real images), totaling 150 skin lesion images. The clini-
cian views three images at a time and assigns rankings from
1 to 3 (highest). Our method achieves the highest MOS
score of 1.96. 50 real images are used to assess preference,
yielding an MOS score of 2.36.

ISIC2018 Dataset: As shown in Tab. 8, similar to the
ISIC2016 dataset, our method performs better overall. The
ISIC2018 dataset (2, 594 samples) contains significantly
more trainable data compared to the ISIC2016 dataset (900
samples), resulting in markedly improved FID [18] and KID
[3] scores. This observation supports the notion that in-
creasing the amount of training data for generative mod-
els can improve the quality of synthesized images. Incred-
ibly, T2I-Adapter [31] and ControlNet [59] achieve identi-
cal LPIPS [60] scores of 0.672, which are marginally better
than the 0.673 achieved by our Siamese-Diffusion. How-
ever, the visualization results in Fig. 10(b) contradict this
outcome, suggesting that LPIPS [60] may not reliably re-
flect alignment with human perception. The MOS evalua-
tion standards applied to the ISIC2018 dataset are the same
as those used for ISIC2016. Our method achieves the high-
est MOS score of 2.12. Additionally, 50 real images are
used to assess preference, yielding an MOS score of 2.66.

Stain & Faeces Datasets: As shown in Tab. 9 and
Tab. 10, we compare the synthesized image quality of DFM-
GAN [15], AnomalyDiffusion [23], T2I-Adapter [31], Con-
trolNet [59], and our Siamese-Diffusion. Our method out-
performs the others on both datasets, demonstrating the su-
periority of our approach. Shockingly, T2I-Adapter [31]
achieves the best CMMD [25] score on the Faeces dataset,
but discrepancies with the visualization in Fig. 11(c) high-
light potential limitations of the CMMD metric.

9.2. Qualitative Evaluation

In this section, we provide a qualitative analysis of syn-
thesized images from four datasets generated by different
methods. For sensitivity reasons, synthesized images for
the Faeces dataset are not displayed.

Polyps Dataset: Fig. 8 presents visualizations of polyp
images synthesized by different generative models. The
differences between each method have been discussed in

Table 9. Comparison of synthetic stain image quality generated by
each respective mask-only method, evaluated using FID [18], KID
[3], CLIP-I [38], LPIPS [60], and CMMD [25] metrics.

Methods FID (↓) KID (↓) CLIP-I (↑) LPIPS (↓) CMMD (↓)

DFMGAN [47] 242.780 0.1619 0.712 0.781 3.733
AnomalyDiffusion [59] 165.732 0.0791 0.763 0.778 1.296
T2I-Adapter [31] 209.260 0.1371 0.765 0.778 1.296
ControlNet [14] 123.818 0.0298 0.769 0.731 1.213
Ours 115.546 0.0206 0.773 0.719 1.183

Table 10. Comparison of synthetic faece image quality generated
by each respective mask-only method, evaluated using FID [18],
KID [3], CLIP-I [38], LPIPS [60], and CMMD [25] metrics.

Methods FID (↓) KID (↓) CLIP-I (↑) LPIPS (↓) CMMD (↓)

DFMGAN [47] 299.032 0.2156 0.639 0.760 6.369
AnomalyDiffusion [59] 220.003 0.1181 0.733 0.754 2.232
T2I-Adapter [31] 207.814 0.1118 0.778 0.651 1.264
ControlNet [14] 166.567 0.0843 0.765 0.651 1.701
Ours 143.736 0.0485 0.786 0.643 1.337

the main paper. Additional examples further demonstrate
that our method produces images with rich morpholog-
ical characteristics, validating the superiority of our ap-
proach. Notably, the “editing-like” approach of SinGAN-
Seg [47] generates minimal artifacts when the mask varies
slightly, aligning with human perception when viewed with-
out zooming in. However, when the mask undergoes signifi-
cant variations, the artifacts become extremely pronounced,
undermining the realism of the synthesized images.

ISIC2016 & ISIC2018 Datasets: Fig. 9 and Fig. 10
present visualizations of skin lesion images generated by
various models, revealing phenomena similar to those ob-
served in the Polyps dataset. T2I-Adapter [31] generates
unrealistic images with a uniform “style”. Compared to
ControlNet [59], our method demonstrates superior perfor-
mance in mask alignment, morphological texture, and color,
validating the effectiveness and superiority of our approach.

Stain Dataset: Fig. 11 presents visualizations of stain
images synthesized by various models. DFMGAN [15]
cannot control the synthesis with the specified masks and
performs poorly when data is scarce. AnomalyDiffusion
[23] demonstrates poor alignment of the mask and stain,
especially when the mask area is small. T2I-Adapter [31]
generates images with a unified background “style” and
exhibits low content density. In terms of content density,
our method outperforms ControlNet [59], generating richer
content, which corresponds to the richness of morpholog-
ical characteristics in medical images, thus validating the
effectiveness and superiority of our approach.

10. Qualitative Analysis of Each Component
In this section, we present additional images illustrating the
impact of each component, as shown in Fig. 12, to further
substantiate the conclusions drawn in Sec. 5.3.1.



Figure 8. (a) Examples of real polyp images. (b)–(g) Examples of synthetic polyp images generated by each respective method. “M”
denotes that mask-only prior control, while “M+I” denotes mask-image joint prior control. The synthetic polyp images generated by our
method achieve competitive fidelity while also exhibiting diversity (Zoom in for better visualization).



Figure 9. (a) Examples of real skin lesion (ISIC2016) images. (b)–(d) Examples of synthetic skin lesion images generated by each
respective method. The synthetic skin lesion images generated by our method achieve competitive fidelity while also exhibiting diversity
(Zoom in for better visualization).

Figure 10. (a) Examples of real skin lesion (ISIC2018) images. (b)–(d) Examples of synthetic skin lesion images generated by each
respective method. The synthetic skin lesion images generated by our method achieve competitive fidelity while also exhibiting diversity
(Zoom in for better visualization).



Figure 11. (a)–(e) Examples of synthetic stain images generated by each respective method are shown. DFMGAN [15] cannot control the
synthesis with the specified masks. The synthetic stain images generated by our method exhibit higher semantic density, meaning richer
content, which corresponds to the rich morphological characteristics in medical images. Additionally, these synthetic stain images achieve
competitive fidelity while also demonstrating diversity (Zoom in for better visualization).



Figure 12. Visualizing the impact of different components on the synthesis of polyp images (Zoom in for better visualization).
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