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Figure 7. t-SNE visualization of the LoRA Library and relative datasets in the CLIP embedding space. Similar domains are clustered
together, indicating areas with higher LoRA support and potentially stronger performance improvements. A maximum of 15,000 samples
per dataset is used for the t-SNE fit and only 15% of the total datapoints are used for plotting.



Introduction

In this supplementary document, we provide additional details and
analyses to support and extend the findings presented in the main
paper. Here we report additional details about the implementation
specifics, auxiliary experimental results, extensive ablation stud-
ies, discuss practical considerations for real-world deployment,
and offer additional qualitative examples that highlight the effec-
tiveness and robustness of our proposed method, SemLA. The rest
of this document is organized as follows:

• Section A details the implementation aspects of our method,
including training procedures, hyperparameters, model archi-
tecture modifications, and code availability for replication pur-
poses.

• Section B provides an in-depth analysis of the LoRA adapter li-
brary, including visualizations of the embeddings from training
samples using t-SNE, labeling of the adapters with natural lan-
guage using BLIP-2 [33] for the sake of interpretability, analy-
ses of adapter contributions dataset by dataset, and support score
analysis.

• Section C presents extensive ablation studies and performance
analyses. We explore the effectiveness of fully fine-tuned mod-
els versus LoRA adapters, conduct hyperparameter sensitivity
analysis, and assess alternative domain navigators such as DI-
NOv2 [48] versus CLIP.

• Section D showcases additional qualitative results across vari-
ous domains, further demonstrating the adaptability and efficacy
of our approach.

• Section E discusses pragmatic considerations for real-world
deployment of SemLA, including strategies to handle compu-
tational overhead, domain navigation in specialized domains,
scalability concerns, and methods to ensure efficiency and re-
liability in production environments.

A. Implementation Details

LoRA Training Details. We attach LoRAs to every
nn.Linear layer in the CAT-Seg architecture, except for CLIPs to-
ken embedding layer, as this parameter was not trained in the orig-
inal CAT-Seg implementation either. All LoRAs are trained with
the same LoRA configuration – i.e., rank r=8 and α=16. The train-
ing hyperparameters are largely the same as CATSeg with minor
modifications: compared to the original CAT-Seg implementation,
we use a base learning rate of 1e-4, weight decay of 1e-5, and 1000
warm-up iterations. For ACDC and MUSES adapters we use a
batch size of 2 and a warm-up factor of 0.01. For BDD and CS we
increase the batch size to 4 while keeping other hyperparameters
the same. For the remaining datasets, we increased the warm-up
factor to 0.1 while keeping other hyperparameters the same. All
the adapters were trained until convergence.

Code and Models. Full source code and documentation are
available in our project page https://thegoodailab.org/
semla.

B. Interpretability of the LoRA Library
B.1. t-SNE Visualization of the LoRA Library
Figure 7 presents a t-SNE [60] visualization of the LoRA adapters’
centroids and their associated datasets in the CLIP embedding
space. This visualization illustrates the distribution and relation-
ships among different adapters and domains, highlighting similar-
ities between them.

We observe that domains with similar visual characteristics are
positioned closely, such as foggy conditions or nighttime scenes.
This clustering validates the effectiveness of using CLIP embed-
dings for adapter selection.

B.2. BLIP for Labeling LoRA Adapters
To highlight the transparency and interpretability of our system,
we leverage the connection between the CLIP embedding space
and natural language. By processing the centroids of our LoRA
adapters with BLIP-2 [33], we obtain natural language captions
describing the domain encapsulated in each adapter’s training set.
This provides semantic insights into the content and characteristics
of the training set used for each adapter.

Table 4 reports, for each dataset, the caption provided by BLIP,
together with the answers to two simple questions “Where is this?”
and “Describe the environment in two words”, when processing
domain centroids. We can appreciate how both captions and an-
swers are strongly related to the content in each dataset, even
though retrieved information remains limited and coarse. Nev-
ertheless, the possibility of extracting natural language captions of
the LoRA centroids is an interesting feature, further motivating the
use of CLIP as our domain navigator.

B.3. Adapter Contributions
Figure 8 shows the adapter weight distribution for all datasets
composing our benchmark involved in the leave-one-out experi-
ments. The parameters used in this experiment are τ = 0.01 and
top-K = 7. The weights represent the relative contribution of
each adapter to the fused model, highlighting their respective roles
in the overall composition.

These pie charts provide insights into how different adapters
contribute to the final model for specific target domains, demon-
strating the effective combination of knowledge from relevant
adapters.

B.4. LoRA Support Score Analysis
We analyze the relationship between the LoRA support score and
mIoU performance. We define LoRA support score for a test im-
age xt:

Support Score(xt) =
∑
i∈K

wi

∥et − ci∥2
, (15)

where wi is the weight assigned to adapter i, et is the CLIP
embedding of the test image, ci is the centroid of adapter i, and K
is the set of top-K selected adapters.

We compute the support score for a sample of images and plot
it against their corresponding mIoU scores. Figure 9 shows that
images with higher support scores tend to have higher mIoU, con-
firming that the LoRA support score is a good predictor of segmen-
tation performance. We also notice that for low values of support



Dataset Caption: Question: Where is this? Answer: Question: Describe The environment in two words? Answer:

bdd the view from the driver’s seat of a car on a street in san francisco, ca, june 2018 the city of los angeles, california The environment in two words is the environment in which it is located.
idd road in kolkata, india, photo by person a street in bangalore, India city, road, traffic jam
nyu a view of the kitchen in the house i’m renting in san francisco, ca, in summer 2008 the house i grew up in, in san francisco, california, usa blue and white
acdc-rain the rain is coming down hard, but the streets are dry, and the cars are moving along the road berlin, germany, street view, rain rain
acdc-fog a view from the driver’s seat of a car on a highway on a foggy morning in kiev, ukraine the highway in bordeaux, france, on a foggy day in october 2018 foggy, rainy, cloudy, misty
muses-snow-day the view from the driver’s seat of a car on a city street with buildings in sight the city of berlin, germany, on a rainy winter day Rainy day in vienna, austria, with trees and buildings
coconutL person a small town in the middle of nowhere, nyc, usa The environment is where the person lives, works, and plays.
acdc-night street at night in kiev, ukraine, with traffic lights and a car on the road austria dark and light, city, traffic
a150 the blue house a house in the middle of the woods The environment is where the person lives, works, or plays.
Cityscapes street view of berlin, germany berlin, germany, in the year 2014 city, street, road, traffic light
pc59 person the house of the person in the picture blue sky, green grass
muses-fog-day a view from the driver’s seat of a car on a rainy day in bordeaux, france a foggy day in bordeaux, france, driving on the autoroute foggy, rainy, misty
muses-clear-day the car driving on the street in the city berlin, germany, in the year 2040, a virtual reality simulation city, road, street
acdc-snow street in krasnodar, russia, april 2019 austria snow, winter
muses-fog-night the road at night, with car lights visible the road in the dark, in the middle of nowhere, at night dark and light
muses-clear-night the car on the road at night, with city lights in the background austria night, city, traffic, street lights
mv street view of kuala lumpur, malaysia, with the city’s main road visible australia urban, city, cityscape
muses-snow-night a view of the city from a car’s windshield at night, with city lights and snow visible a city in the uk, in wintertime, with a car driving on the road snow, rain, night, city

Table 4. Text generation results using BLIP-2 [33]. For the image embedding, the average embedding across all images from each
dataset was computed. Then different prompts were given to the model, as presented at the top of the table.
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Figure 8. Adapters weight distribution for each benchmark dataset. Each pie chart is divided into sections proportional to the average
contribution provided by each adapter based on CAT-Seg leave-one-out adaptation settings.

score (e.g. below 0.09), an improvement in support score does not
strictly imply a stronger improvement in mIoU, showing that the
underlying relation is likely not linear.

Overall, this analysis validates our assumption that proximity
in the CLIP embedding space, combined with the weighting mech-
anism, is an effective heuristic for adapter selection.

C. Ablations and Analysis
C.1. Hyper-parameters Study
We conduct ablations over τ and K, the two hyper-parameters
controlling our system at test time.

• Number of Adapters (K): Increasing K includes more
adapters in the fusion, potentially providing more context but
risking the introduction of unrelated knowledge while increas-
ing the LoRA merging computational overhead.

• Temperature (τ ): Regulates the weighting of adapters based on
their distances. Lower τ emphasizes closer adapters; higher τ
promotes a more uniform weighting.

Figure 10 shows a heatmap of overall performance across dif-
ferent values of K and τ . Performance peaks at K = 7 and
τ = 0.01, balancing relevance and diversity in adapter selection.

C.2. Distance Metrics Comparison
We compare Euclidean distance (used in SemLA) against alterna-
tive distance measures, specifically cosine similarity and Maha-
lanobis distance. As shown in Table 5, cosine similarity – which
would be a natural choice for CLIP embeddings – yields aligned
performance with Euclidean distance, which is expected given
CLIP embeddings exhibit almost uniform norms, making cosine
similarity essentially a monotonic function of Euclidean distance.
Conversely, Mahalanobis distance performs worse since covari-



0.06 0.08 0.10 0.12 0.14
support score

10

0

10

20

30

m
Io

U
 im

pr
ov

em
en

t ACDC
CS
BDD
NV
A150
IDD
PC59
NYU
COCONutL
linear fit

Figure 9. Correlation between LoRA support score and mIoU. Higher support scores correlate with better segmentation performance.

Method ACDC MUSES CS BDD MV A150 IDD PC59 NYU COCONutL* h-meanrain snow fog night clear (d) clear (n) rain (d) rain (n) fog (d) fog (n) snow (d) snow (n)
Uniform [35] 67.40 66.35 69.71 49.98 58.28 55.78 54.70 45.09 73.75 45.16 61.02 49.08 62.18 58.19 31.51 37.25 38.83 63.06 48.93 (67.62) 51.89
SemLA with Euclidean (ours) 67.71 68.95 71.92 51.73 61.09 60.06 57.60 47.35 72.97 52.38 67.28 55.92 63.91 57.30 31.12 38.18 40.16 64.75 51.35 (67.26) 54.16
SemLA with Cosine 67.76 68.67 72.52 51.24 61.55 60.22 57.76 47.03 73.03 48.10 66.82 56.67 63.53 57.52 30.24 38.10 39.80 64.65 50.93 (67.31) 53.70
SemLA with Mahalanobis † 59.94 63.18 67.70 45.90 56.26 50.54 48.96 36.71 75.74 34.93 56.84 35.89 57.30 56.54 30.03 37.85 39.78 64.43 50.55 (67.69) 47.87

Table 5. Ablation study – Distance Metrics Comparison (CAT-Seg [10]). Comparing SemLA with alternative distances. On MUSES,
(d) and (n) stand for day and night. ( ) means excluded from h-mean. † For Mahalanobis, source domains where the covariance cannot be
computed are excluded from the library. The parameters for Cosine, Mahalanobis, and Late Fusions ( τ and K ) are tuned independently
to achieve the best results with each variant.
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Figure 10. Hyper-parameters Study. Impact of K (number of
adapters) and τ (temperature) on overall performance (mIoU).

ance estimation becomes numerically unstable for domains with
limited samples (fewer than 500 samples), necessitating the exclu-
sion of some adapters and thus degrading performance. Overall,
Euclidean distance emerges as the simplest, most robust choice for
our method.

C.3. Full Fine-Tuning (FFT)
We explore whether our library could be constructed using fully
fine-tuned models instead of LoRA adapters. Table 6 reports the

results achieved either by deploying and fusing fully fine-tuned
models or LoRA adapters in our library. While aggregating fully
fine-tuned models is a known practice to merge different knowl-
edge – as explored in [35] – the results indicate no benefits over
our LoRA-based approach. Moreover, storing and merging full
models is significantly more computationally expensive than op-
erating with adapters, introducing a sizable overhead at inference
time. Full fine-tuning is more prone to overfitting, especially on
smaller datasets, whereas LoRA adapters are lightweight and can
be trained effectively with limited data. This reinforces our choice
of using LoRA adapters, which are modular, efficient, and easily
combinable.

C.4. Domain Navigators: DINO vs. CLIP

SemLA uses CLIP [51] to navigate into the LoRA Library and
pick the most relevant adapters to combine. However, different
visual encoders could serve the same purpose. In Table 7, we test
the use of an alternative domain navigator – DINO v2 [48] – and
compare the performance achieved by SemLA variants using this
latter or CLIP.

On average, the two perform comparably, with CLIP embed-
dings slightly outperforming DINO ones in guiding adapter se-
lection on average, likely due to their joint text-image embedding
space capturing semantic information more effectively. Nonethe-
less, this experiment proves that SemLA is not bound to use CLIP
as the domain navigator, although this latter provides nice proper-
ties in terms of explainability – as showcased in Section B.2.



Method ACDC MUSES CS BDD MV A150 IDD PC59 NYU COCONutL* h-meanrain snow fog night clear (d) clear (n) rain (d) rain (n) fog (d) fog (n) snow (d) snow (n)
Zero-shot [10] 46.53 48.04 47.09 37.93 44.43 39.29 38.95 27.78 53.73 25.35 43.56 33.29 47.11 47.95 25.69 37.83 35.39 63.33 49.38 (68.26) 39.39
Oracles (LoRA) 70.94 69.22 69.98 51.55 69.36 57.09 54.28 52.11 75.85 61.26 66.25 54.35 67.47 60.06 49.57 53.99 64.34 68.68 61.90 (70.44) 61.05
Oracles (FFT) 70.97 72.02 73.78 53.09 70.49 58.20 55.57 53.18 74.90 62.64 65.83 58.67 70.35 61.03 50.56 52.84 66.38 68.43 64.36 (68.36) 62.38
Uniform [35] (FFT) 69.01 67.91 73.28 51.71 61.44 57.28 54.99 43.13 74.14 36.91 57.81 52.99 62.29 58.05 30.62 36.34 39.73 62.60 48.09 (65.29) 51.43
SemLA (FFT) 69.54 72.07 73.20 52.87 62.78 59.49 57.44 45.59 74.24 53.22 64.54 56.75 65.52 58.28 28.44 31.26 41.33 62.01 46.02 (63.64) 52.79
SemLA (LoRA) 67.71 68.95 71.92 51.73 61.09 60.06 57.60 47.35 72.97 52.38 67.28 55.92 63.91 57.30 31.12 38.18 40.16 64.75 51.35 (67.26) 54.16

Table 6. Ablation study – Full Fine-Tuning vs LoRA Adaptation (CAT-Seg [10]). We use full fine-tuned models instead of LoRA
adapters and measure the impact on performance over our 20-domain benchmark in leave-one-out setting. On MUSES, (d) and (n) stand
for day and night. ( ) means excluded from h-mean. SemLA (LoRA) with τ = 0.05, and top-K = 5; SemLA (FFT) with τ = 0.01, and
top-K = 9.

Method ACDC MUSES CS BDD MV A150 IDD PC59 NYU COCONutL* h-meanrain snow fog night clear (d) clear (n) rain (d) rain (n) fog (d) fog (n) snow (d) snow (n)
Zero-shot [10] 46.53 48.04 47.09 37.93 44.43 39.29 38.95 27.78 53.73 25.35 43.56 33.29 47.11 47.95 25.69 37.83 35.39 63.33 49.38 (68.26) 39.39
Oracles 70.94 69.22 69.98 51.55 69.36 57.09 54.28 52.11 75.85 61.26 66.25 54.35 67.47 60.06 49.57 53.99 64.34 68.68 61.90 (70.44) 61.05
Uniform [35] 67.40 66.35 69.71 49.98 58.28 55.78 54.70 45.09 73.75 45.16 61.02 49.08 62.18 58.19 31.51 37.25 38.83 63.06 48.93 (67.62) 51.89
SemLA (DINOv2) 68.40 68.26 73.57 51.18 61.94 59.58 56.06 48.43 73.81 52.60 67.42 56.33 64.04 58.23 31.02 37.45 40.12 64.40 50.52 (67.63) 54.14
SemLA (CLIP) 67.71 68.95 71.92 51.73 61.09 60.06 57.60 47.35 72.97 52.38 67.28 55.92 63.91 57.30 31.12 38.18 40.16 64.75 51.35 (67.26) 54.16

Table 7. Ablation study – CLIP [51] vs DINOv2 [48] for domain navigation (CAT-Seg [10]). – We generate the weights for merging
the LoRAs based on features extracted from DINOv2 or CLIP, and evaluate the impact on performance over our 20-domain benchmark in
a leave-one-out setting. On MUSES, (d) and (n) stand for day and night. ( ) means excluded from h-mean.

D. Additional Qualitative Results
Figure 11 presents additional qualitative segmentation results
comparing the zero-shot baseline, uniform merging, and SemLA
across different domains. These examples further confirm the ef-
fectiveness of our method in adapting to diverse and challenging
domains without any additional training being conducted.

E. Discussion: Real-World Deployment
While SemLA demonstrates strong performance in controlled ex-
perimental settings, deploying it in real-world applications intro-
duces additional challenges and considerations. In this section, we
discuss practical aspects related to the use of CLIP as a domain
navigator and propose strategies to address potential limitations.

CLIP as a Domain Navigator for Specific Domains. Al-
though CLIP has shown remarkable generalization capabilities
across diverse domains – as evidenced by our extensive 20-domain
benchmark – it may struggle in niche or highly specialized do-
mains [67]. When bringing SemLA into production for such spe-
cific use cases, it is important to account for this potential limi-
tation. If the target domain is well-scoped, using a fine-tuned do-
main navigator, with better semantic understanding, might provide
better performance.

Alternatively, a hierarchical approach could be explored: a
general CLIP model can provide a coarse understanding of the do-
main, identifying then a domain-specific CLIP expert. The expert
is then tasked with computing the LoRA distances more precisely.

Efficiency in Production Environments. In production-
intensive applications, dynamically loading and unloading dedi-
cated LoRA adapters for each individual input image may be im-
practical due to computational overhead. While this overhead is
significantly lower than the one introduced by retraining the model
at test time – as required by most traditional test-time adaptation

methods – it is still non-negligible. For applications that do not re-
quire real-time processing, such as batch processing of large vol-
umes of images (e.g., processing data accumulated over 24 hours),
a practical approach involves pre-computing the CLIP embeddings
for all images. The images can then be clustered based on their
embeddings, and a batch centroid can guide the fusion of relevant
LoRA adapters for the entire batch. This reduces the frequency
of adapter loading and improves efficiency by applying the same
fused model to similar images. In contrast, real-time applications
in the field of robotics and autonomous driving cannot rely on
batch processing due to their immediate response requirements.
In these cases, we propose implementing a debouncing mecha-
nism that triggers adapter swapping only when there is a signifi-
cant change in the domain. Specifically, the system can monitor
the CLIP embeddings of incoming images—or use an exponential
moving average (EMA) of these embeddings—and compare them
to the embeddings associated with the currently active adapters. If
the embedding distance exceeds a predetermined threshold, indi-
cating that a new domain has been encountered, the system trig-
gers the retrieval and fusion of new adapters. This approach en-
sures that the model adapts only when necessary, minimizing com-
putational overhead while maintaining adaptability. This strategy
is analogous to concepts proposed in domain-adaptive systems like
HAMLET [3], where adaptation occurs only upon detecting do-
main shifts. Furthermore, in a real-world deployment, the pre-
diction process can be presented with an average LoRA distance
metric. As shown in our analysis, this metric provides an addi-
tional source of confidence estimation by indicating how well the
selected adapters align with the target domain. Such a heuristic
contributes to the study of model calibration and can be valuable
for downstream tasks—effectively informing whether to trust the
model’s predictions in critical applications.

Scalability and Model Calibration. Scaling SemLA to
handle a vast number of adapters introduces challenges in iden-
tifying and addressing library weaknesses. Automated strategies
for recognizing gaps in the library – such as monitoring frequent
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Figure 11. Additional qualitative results. The datasets displayed are ACDC Fog, BDD, Cityscapes (CS), and NYU. For each dataset,
images are shown in order: Input Image, Zero-Shot, Uniform Merging, SemLA (Ours), Ground Truth. Our method produces more accurate
and detailed segmentations across various domains.

occurrences of high embedding distances – can prompt the train-
ing of new adapters to fill these gaps. Integrating a LoRA sup-
port score into the system allows for continuous monitoring of
the model’s performance relative to the domain coverage of the
adapter library. This not only enhances scalability but also im-
proves the system’s robustness and reliability in dynamic environ-
ments.


