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Due to the space limitation of the main text, we include
additional experiments, derivations, implementations, and
discussions in the supplementary material. We first conduct
additional ablation (Sec. 1) and comparison (Sec. 2) exper-
iments. Then, we logically derive DDPMs from a mod-
eling perspective, explaining some issues about applying
DDPMs to 3D tasks (Sec. 3). Next, the implementation
details (Sec. 4) and optimization process (Sec. 5) of our
method are presented. Finally, we discuss the limitations
of CNF (Sec. 6) and visualize additional results (Sec. 7).

1. Additional Ablation Study

1.1. Selection of FFM

Since excessive noise perturbations from the Noise Net-
work (NN) may harm the performance of the Conditional
Network (CN), the aim of the Feature Fusion Module
(FFM) is to adaptively filter the noise information, mak-
ing the feature augmentation in a reasonable way. To better
achieve the aim, we consider several ways of FFM: 1) Chan-
nel Mapping (CM) [13]. This preserves the channel infor-
mation of features from CN and NN, but lacks the effective
information filtering in the feature space. 2) Channel Cross-
attention (CCA) [25]. This filters information along the
channel dimension, but compresses the search space, mak-
ing filtering out effective information difficult at the point
level. 3) Spatial Cross-Attention (SCA) [23]. This precisely
searches for similar elements in the spatial dimension, but
the quadratic complexity for the input points. Fortunately,
the input point number at the bottleneck stage of the U-Net
is usually less than a thousand.

Tab. 1 exhibits the results on ScanNet. Benefiting
from the effective filtering for perturbations, spatial cross-
attention significantly outperforms other two ways.

∗Corresponding Author. https://github.com/QWTforGithub/CDSegNet

1.2. Inference Modes

Although CDSegNet can be considered a non-DDPM
during inference, CDSegNet can still follow the iterative in-
ference approach of DDPMs (the output is still dominated
by CN). Therefore, this can be divided into three inference
modes: 1) Single-Step Inference (SSI), semantic labels are
generated by CN through a single-step iteration in NN. 2)
Multi-Step Average Inference (MSAI), MSAI conducts T
step iterations in NN and averages T outputs produced by
CN. 3) Multi-Step Final Inference (MSFI), MSFI is deter-
mined by the output from the final iteration of CN.

Tab. 2 shows that the difference in performance among
SSI, MSAI, and MSFI is negligible. Thanks to CNF, the
impact of iterations is no longer significant for the results.
Meanwhile, since the noise system of DDPMs is retained
during training, CDSegNet still maintains the robustness to
data noise and sparsity.

Methods Performance Training Inference
mIoU mAcc allAcc Latency Latency

CM [13] 77.4 84.8 91.9 268ms 101ms
CCA [25] 77.5 85.0 92.3 272ms 107ms
SCA [23] 77.9 85.2 92.2 278ms 112ms

Table 1. Ablation study of FFM on ScanNet. The spatial cross-
attention exhibits the most optimal selection.

Methods mIoU mAcc allAcc
MSAI-100 77.9 85.3 92.1
MSAI-50 77.8 85.1 91.9
MSAI-20 77.8 85.1 91.9
MSFI-100 77.8 85.2 92.3
MSFI-50 77.7 85.1 92.1
MSFI-20 77.7 85.1 92.1
SSI 77.9 85.2 92.2

Table 2. Ablation study of different inference modes on ScanNet.
SSI demonstrates a better trade-off between performance and effi-
ciency.

1.3. Input for NN

According to Sec. 4.1 of the main text, NN is modeled as
a noise-feature generator to enhance the semantic features
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Input type mIoU mAcc allAcc
Semantic Label 77.7 85.1 92.2
Point Coordinate 77.6 85.0 92.1
Color+Normal 77.9 85.2 92.2

Table 3. Ablation study of input for NN on ScanNet.
Color+Normal, consistent with the input of CN, demonstrates the
best performance.

in CN. Nevertheless, we can still input semantic labels or
point coordinates into NN for the diffusion modeling (the
color and the normal as the inputs of CN).

Tab. 3 shows that using the color and the normal as the
inputs of NN, consistent with the input of CN, achieves the
best results. This demonstrates that the feature perturba-
tions from NN can effectively enhance the semantic features
in CN.

Methods Performance Robustness
mIoU mAcc allAcc τ=0.1 τ=0.5 τ=1.0

ScanNet [6]
PTv3 [24] 77.6 85.0 92.0 77.5 45.8 12.9
PTv3 + CNF 77.7 84.8 91.7 77.4 60.1 33.2

ScanNet200 [18]
PTv3 [24] 35.3 46.0 83.3 34.0 10.2 1.0
PTv3 + CNF 35.9 45.3 83.4 35.5 21.2 7.1

nuScenes [3]
PTv3 [24] 80.3 87.2 94.6 63.9 1.1 1.1
PTv3 + CNF 81.0 87.9 94.8 67.8 1.3 1.3

Table 4. The results of introducing CNF to PTv3. PTv3+CNF
shows a significant improvement in noise robustness.

2. Additional Comparative Experiments
2.1. Generalization for CNF on Indoor Benchmark

We also conduct the generalization experiments of CNF
on indoor benchmarks (ScanNet [6], ScanNet200 [18]).
Following the same setup as in Sec. 5.5 of the main text,
we simply consider PTv3 as CN and add NN and FFM of
CDSegNet to PTv3.

Tab. 4 shows this result. By introducing CNF, PTv3 has
significantly improved noise robustness. Simultaneously,
we can see that although the noise robustness has increased
significantly on ScanNet, the performance has only slightly
improved. This is because ScanNet represents a purer and
denser scene compared to ScanNet200 and nuScenes. This
verifies that CNF is more suitable for disturbed and sparse
scenes but is slightly inferior in relatively pure scenes.

2.2. Comparison on Test Set

We further provide the results on the test sets of ScanNet,
ScanNet200 and nuScenes. Sincerely and honestly, all mod-
els are uniformly trained on the training set and validated on
the validation set. The all comparison methods come from
the official released checkpoints. Due to the limitations of
the submission number and the checkpoint releases, we pro-
vided only a small set of results (all results on the test set
are from previous checkpoints).

On ScanNet and ScanNet200 test set. Tab. 5 shows the
results of our method compared with PonderV2 [26] and
PTv3 [24] on the test sets of ScanNet and ScanNet200. We
can clearly observe that, compared to the results on the val-
idation set, our method performs better on the test set. This
demonstrates that reasonable noise perturbations can effec-
tively enhance the generalization ability of models.

On nuScenes test set. As shown in Tab. 6, CDSegNet
significantly outperforms PTv3 on both the validation and
test sets. Notably, we found that PTv3 with CNF intro-
duced achieves a significant improvement on the test set,
even surpassing CDSegNet. This further demonstrates that
CNF enables models to inherit the sparse robustness from
DDPMs, enhancing the generalization ability of models in
sparse scenes (we sincerely reaffirm that we only trained on
the training set and validated on the validation set. Mean-
while, all checkpoints are downloaded directly from the of-
ficial website).

Methods Val (mIoU) Test (mIoU) Only Training Set? URL
ScanNet [6]

PonderV2 [26] 77.0 73.9 no Here
https://github.com/OpenGVLab/PonderV2/blob/main/docs/model zoo.md
PTv3 [24] 77.6 73.6 yes Here
https://huggingface.co/Pointcept/PointTransformerV3/tree/main/scannet-semseg-pt-v3m1-0-base/model
Ours 77.9 74.5 yes -

ScanNet200 [18]
PTv3 [24] 35.3 33.2 yes Here
https://huggingface.co/Pointcept/PointTransformerV3/tree/main/scannet200-semseg-pt-v3m1-0-base/model
PTv3+CNF 35.5 33.7 yes -
Ours 36.0 34.1 yes -

Table 5. The results on the ScanNet and ScanNet200 test set. Our
method demonstrates better performance on the validation set and
the test set.

Methods Val (mIoU) Test (mIoU) Only Training Set? URL
PTv3 [24] 80.3 81.2 yes Here
https://huggingface.co/Pointcept/PointTransformerV3/tree/main/nuscenes-semseg-pt-v3m1-0-base/model
PTv3+CNF 80.8 82.8 yes -
Ours 81.2 82.0 yes -

Table 6. The results on the nuScenes test set. PTv3+CNF demon-
strates a significant improvement compared with PTv3 on the test
set.

Methods Performance Robustness (mAcc)
mAcc CAmIoU IAmIoU τ=0.5 25%

PointNet [15]
Without CNF 93.2 77.9 83.2 37.3 70.6
With CNF 94.1 78.5 83.9 42.2 73.1

PointNet++ [16]
Without CNF 94.2 82.7 85.1 39.0 71.1
With CNF 95.1 83.5 86.0 44.6 73.9

Table 7. The instance segmentation results on ShapeNet [4]. With
the introduction of CNF, the performance and robustness of Point-
Net and PointNet++ have been improved significantly.

Other 3D tasks. We also introduce CNF into instance
segmentation task. Similar to the classification task in the
main text, PointNet [15] and PointNet++ [16] are selected
as backbones. Tab. 7 show that by introducing CNF, they
exhibit significantly improve the performance and robust-
ness.
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Figure 1. The visualization of the predefined diffusion process q(xt|xt−1), the inverse of the diffusion process q(xt−1|xt,x0), and
the trainable conditional generation process pθ(xt−1|xt, C). In the diffusion process q(xt|xt−1), the task target x0 is gradually noised
until x0 degrades to z (xT ). Meanwhile, the inverse of the diffusion process (the true Ground Truth in DDPMs) q(xt−1|xt,x0) can
be calculated by the predefined distribution in the diffusion process. Furthermore, the generation process pθ(xt−1|xt, C) gradually fits
the inverse of the diffusion process q(xt−1|xt,x0) until z (xT ) is restored to x0 conditioned on C = {c, t} (unconditional generation,
c = ∅, in the formula derivation of DDPMs, the time label t is usually ignored.).

3. Formula Derivation of DDPMs for 3D Tasks

In this section, we provide the theoretical support for
applying DDPMs to most existing 3D vision tasks. This
focuses on the logical modeling process of DDPMs, omit-
ting some derivation details that we consider unnecessary.
For example, to better understand the modeling process of
DDPMs intuitively, we believe that the derivation of the
Evidence Lower BOund (ELBO) can be skipped. Interested
readers can refer to [17] for the derivation of the ELBO un-
der specific conditions.

For a 3D task, given a data sample pair (c,x0), we aim
to train a generalized model fθ that takes c as the input and
produces an output x′

0 approximating x0. We can trans-
form the task into a conditional generation problem using
DDPMs. This performs an auto-regressive process [17, 21]:
a predefined diffusion process q (x0 → z) and a trainable
conditional generation process pθ (z → x0) under the guid-
ance of the condition c (see Fig. 1). Here, z represents an
implicit variable sampled from a predefined prior distribu-
tion Pnoise in DDPMs.

3.1. Diffusion Process

The modeled distribution and noise-adding pattern.
The diffusion process q is more critical in DDPMs, as this
defines the type of DDPMs. For example, [8] can be re-
ferred to as Gaussian or continuous DDPMs. Similarly, we
can also use the categorical distribution to model the diffu-
sion process, referred to as categorical or discrete DDPMs
[1]. Theoretically, any distribution can be used to model the
diffusion process, such as the Laplace distribution or the
Poisson distribution. Meanwhile, the noise addition pattern
is not limited to element-wise addition and multiplication.
This can also involve snowification and masking [2].

We derive this diffusion process based on [8], which in-
volves adding perturbations using a Gaussian distribution
through element-wise addition and multiplication.

The detailed derivation. The diffusion process q is
structured as a Markov chain, with each step governed by an
independent Gaussian distribution. This gradually destroys
the essential information until x0 degrades to z. Mean-
while, this process is only related to the Ground Truth (task

target) x0 and is independent of the condition (task input)
c. Formally, given a time label t ∼ U(T ) that controls the
noise level, the diffusion process can be computed by mul-
tiple conditional distributions q(x1:T |x0):

q(x1:T |x0) =
q(x0:T )

q(x0)

=
q(xT |x0:T−1)q(x0:T−1)

q(x0)
.

(1)

Meanwhile, according to the Markov property, the cur-
rent term xT is determined only by the previous term xT−1:

q(x1:T |x0) =
q(xT |xT−1)q(xT−1|x0:T−2)q(x0:T−2)

q(x0)

=
q(xT |xT−1)q(xT−1|xT−2)...q(x1|x0)���q(x0)

���q(x0)

=

T∏
t=1

q(xt|xt−1),

(2)

where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). βt is

a predefined and increasing variance factor.
The intuitive explanation. We can intuitively under-

stand this diffusion process. According to Fig. 1, x1 is
determined by x0, x1 ∼ q(x1|x0). Similarly, x2 is de-
termined by both x1 and x0, x2 ∼ q(x2|x1,x0). In this
way, xT ∼ q(xT |x0:T−1). Due to the independent and
identically distributed (i.i.d.) and Markov properties, this
process can be described as:

i.i.d. :

q(x1|x0)q(x2|x1,x0)...q(xT |x0:T−1)

Markov :

= q(x1|x0)q(x2|x1)...q(xT |xT−1)

=

T∏
t=1

q(xt|xt−1).

(3)
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The sampling differentiable. Furthermore, to make the
sampling process differentiable and ensure the sampling re-
sults under a specific distribution, a reparameterization trick
is applied [8]: xt = µt + σtϵt−1, ϵt−1 ∼ N (ϵt−1;0, I)
(this can be verified by the properties of random variable
that xt follows a Gaussian distribution with mean µt and
variance σ2

t I). Next, we can further simplify to compute
xt by setting αt = 1− βt, and αt =

∏T
t=1 αt:

xt =
√
1− βtxt−1 +

√
βtϵt−1

=
√
αtxt−1 +

√
1− αtϵt−1

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1ϵt−1) +

√
1− αtϵt

=
√
αtαt−1xt−2 +

√
αt − αtαt−1ϵt−1 +

√
1− αtϵt

Gaussian V ariable Additivity :

⇒ ϵ ∼ N (0, (at − atat−1) + (1− at))

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ

...

=
√
αtx0 +

√
1− αtϵ.

(4)

Therefore, according to Eq. 4, xt is only related to the
task target x0 and the time label t in the diffusion process,
while xt ∼ q(xt|x0) = N (xt;

√
αtx0, (1− αt)I).

That is, during the diffusion process, we can obtain
q(xt|xt−1) and q(xt|x0).

The inverse of the diffusion process. The inverse of
the diffusion process q(xt−1|xt,x0) does not imply the
generation process of DDPMs, which serves as the true
Ground Truth in DDPMs. This inverse process is deter-
mined by the diffusion process, defining the true poste-
rior distribution that the generation process is required to
fit, i.e., pθ(xt−1|xt, C) ≈ q(xt−1|xt,x0) (see Fig. 1).
q(xt−1|xt,x0) also indicates that the computation of the
inverse process necessarily involves the task target x0. Con-
sistent with the diffusion process, the inverse process also
follows i.i.d. and Markov properties. Meanwhile, the in-
verse process q(xt−1|xt,x0) can directly be calculated by
the inverse probability formula (Bayesian formula):

q(xt|xt−1,x0) =
q(xt−1|xt,x0)q(xt,x0)

q(xt−1,x0)

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)

Markov :

=
q(xt|xt−1)q(xt−1|x0)

q(xt|x0)
,

(5)

where q(xt|xt−1) = N (xt;
√
αtxt−1, (1 − αt)I),

q(xt−1|x0) = N (xt−1;
√
αt−1x0, (1 − αt−1)I), and

q(xt|x0) = N (xt;
√
αtx0, (1 − αt)I). These distribu-

tions are known in the derivation of the diffusion process.
Subsequently, by substituting q(xt|xt−1), q(xt−1|x0) and
q(xt|x0) into Eq 5, the mean µt and the variance σ2

t I of
q(xt|xt−1,x0) = N (xt;µt, σ

2
t I) can be obtain:

µt =

√
αt(1− αt−1)

1− αt
xt +

√
αt−1(1− αt)

1− αt
x0,

σ2
t =

1− αt−1

1− αt
(1− αt)I.

(6)

Meanwhile, in Eq. 6, we can observe that the variance
σ2
t I is a constant term (some works also set the variance as

a fitting term [7, 14]).
Next, due to the better performance observed in ex-

periment [8], x0 is considered to be replaced by ϵ, i.e.,
x0 = xt−

√
1−αtϵ√
αt

:

µt =
1

√
αt

(xt −
1− αt√
1− αt

ϵ). (7)

Notably, the initial value xT of xt can be directly sam-
pled from a prior distribution Pnoise (Gaussian distribution,
xT ∼ N (xT ;0, I)) during inference. Therefore, the only
unknown term is ϵ in Eq. 7.

3.2. Generation Process

The fitting target. The generation process defines the
generation mode of DDPMs: unconditional generation and
conditional generation. This takes the inverse of the diffu-
sion process as the fitting target, i.e., pθ(xt−1|xt, C) ≈
q(xt−1|xt,x0). To better fit the inverse process, each
step of the generation process is characterized by i.i.d. and
Markov properties.

We directly derive the fitting target of conditional
DDPMs, as unconditional generation (c = ∅) can be viewed
as a special case of conditional DDPMs solely conditioned
on the time label t (C = {c, t}).

The detailed derivation. Formally, given a set of condi-
tions C = {ci, t|i = 1..n} (”n” means the number of con-
ditions, this means that conditional DDPMs can perform the
multi-conditional generation), we can compute the reverse
process by the joint distribution pθ(x0:T , C):

pθ(x0:T , C) = pθ(x0|x1:T , C)pθ(x1:T , C)

Markov :

= pθ(x0|x1, C)pθ(x1|x2:T , C)pθ(x2:T , C)

= pθ(x0|x1, C)...pθ(xT |xT−1, C)p(xT , C)

= p(xT , C)

T∏
t=1

pθ(xt−1|xt, C)
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xT ∼ N (xT ; 0, I)

= p(xT )

T∏
t=1

pθ(xt−1|xt, C),

(8)

where pθ(xt−1|xt, C) = N (xt−1;µθ(xt, C), σ2
t I), as in

Eq. 7, the mean µt contains unknown variables during in-
ference, while the variance factor σ2

t is a constant term.
Next, according to Eq. 7, we can logically further refine

this fitting target:

pθ(xt−1|xt, C) ≈ q(xt−1|xt,x0),

⇒ µθ(xt, C) ≈ µt,

⇒ ϵθ(xt, C) ≈ ϵ.

(9)

According to Eq. 9, we can clearly recognize that as
long as the generation process can sufficiently fit the inverse
of the diffusion process, DDPMs can achieve the multi-
condition generation. Meanwhile, due to the inverse pro-
cess with a total of T steps, the final training objective is:

L(θ) =
1

T

T∑
t=1

DKL(q(xt−1|xt,x0)||pθ(xt−1|xt, C)),

=
1

T

T∑
t=1

||µt − µθ(xt, C)||2,

= Eϵ∼N (0,I)||ϵ− ϵθ(xt, C)||2.
(10)

Thus, we derive Eq. 1 of the main text.
The intuitive explanation. Similarly, we can also un-

derstand the generation process in a more intuitive way.
The generation process aims to fit the reverse process to
achieve the generalization of generation, due to the compu-
tation of q(xt−1|xt,x0) involving x0. According to Eq. 5
and Eq. 7, the fitting target of the generation process can
conduct two stages of simplification: fitting the distribution
q(xt−1|xt,x0) → fitting the distribution hyperparameter
µt → fitting the unknown variable ϵ. Meanwhile, due to
the inverse process with a total of T steps, thus the fitting
objective:

L(θ) =
1

T

T∑
t=1

||ϵ− ϵθ(xt, C)||2. (11)

For a more intuitive description, we express the expecta-
tion as a summation in Eq. 10.

3.3. How do we introduce DDPMs to 3D tasks?

According to Sec. 3.1 and Sec. 3.2, we can apply
DDPMs to most existing 3D tasks. For example, in the
point cloud semantic segmentation task, c means the seg-
mented point cloud, and x0 represents the semantic label
(see Fig. 2). In the diffusion process, the semantic label x0

is gradually noised until x0 degenerates into z. Meanwhile,
in the generation process, the semantic label x0 is gradually
reconstructed until z is restored to the desired x0 under the
condition of the segmented point cloud c. This achieves
point cloud semantic segmentation tasks. DDPMs also can
be introduced into other 3D tasks in a similar manner.

Figure 2. Applying DDPMs to the point cloud semantic segmenta-
tion task: the semantic label x0 is gradually perturbed with noise
during the diffusion process and slowly reconstructed during the
generation process conditioned on the segmented point cloud c.

3.4. Why is the performance of DDPMs determined
by the noise fitting quality?

According to Eq. 5, the generation process of DDPMs
fits the reverse of the diffusion process at all time steps.
Meanwhile, in Eq. 7, the noise ϵ is an unknown in distribu-
tion mean µt. Therefore, the generation process of DDPMs
essentially fits the unknown noise ϵ (see Eq. 9). This means
that the higher the the noise fitting quality, the better the
generation result of DDPMs will be.

3.5. Why are DDPMs robust to noise in the modeled
distribution?

From the gradient of the data distribution. [17] pro-
vides an intuitive explanation from the gradient of data dis-
tribution. Under stochastic differential equations (SDEs),
the target noise in conditional DDPMs can be converted into
and from the score that means the gradient of data distribu-
tion by a constant factor α = − 1√

1−αt
[22]:

αϵθ(xt, C) = sθ(xt, C) ≈ ∇xt logPt(xt). (12)

This means that the predicted noise guides the trans-
formation between the two distributions (see Fig. 1), i.e.,
xt

ϵt−1−→ xt−1, ϵt−1 = ϵθ(xt, C) ∼ Pnoise(ϵt−1|xt, C).
Perturbing C inevitably affects the generation quality of
ϵt−1, thus directly affecting the quality of the transforma-
tion between xt and xt−1. When the distribution of the per-
turbation is identical or similar to the distribution of ϵt−1,
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Figure 3. (a) describes the five components that make up CDSegNet: the Initialization Module, the Encoder, the Feature Fusion Module
(FFM), the Decoder, and the Head. Meanwhile, (b) shows the overall framework of CDSegNet, where both the Noise Network (NN) and
the Condition Network (CN) consist of three parts: the Encoder, the Decoder, and the Head.

the impact on the generation of ϵt−1 is relatively small;
otherwise, it is greater. Therefore, DDPMs are robust to
the modeled distribution noise. Meanwhile, the closer the
noise distribution is to the modeled distribution, the better
the noise robustness; otherwise, this deteriorates.

From the noise samples and the noise fitting. In the
main text, we provide a simpler explanation that is con-
sistent with the source. Since DDPMs can see multi-level
noise samples xt and fit the noise target ϵ from the mod-
eled distribution during training, DDPMs can adapt to re-
lated distribution noise during inference compared to non-
DDPMs.

3.6. Why DDPMs require more training and infer-
ence iterations than non-DDPMs?

This is because DDPMs require fitting more intermediate
samples than non-DDPMs. For a sample pair {c,x0}, the
training object of DDPMs is:

Lθ =
1

T

T∑
t=1

||yt−1 − fθ(xt, c)||2, (13)

where fθ indicates a neural network with sufficient fitting
ability. yt−1 represents ϵ at corresponding the time label
t in Eq. 11 (we omit the time label t as part of the in-
put). This means that DDPMs require fitting T targets, i.e.
x0 = {yt−1|t = 1...T}, due to the significant error of fit-
ting distributions with a large difference when using a single
step or a small number of steps [12, 21, 22].

Meanwhile, this also makes that DDPMs require to iter-
ate T steps to achieve the accurate result during inference:

y
′

t−1 = fθ(xt, c), t ∈ [1, T ], (14)

where y
′

t−1 means the predicted noise in DDPMs. Ac-
cording to Eq. 14, DDPMs require T steps to converge
({y′

i−1|i = 1...T}).

However, non-DDPMs only necessitate one step (the in-
put xt=∅, while T=1) for the training and inference:

Lθ = ||y0 − fθ(∅, c)||2, y
′

0 = fθ(∅, c), (15)

where the target y0=x0, while y
′

0 means the predicted x0.

Therefore, under the same setting, DDPMs are bound
to conduct more training and inference iterations than non-
DDPMs.

3.7. Why can the CNF of DDPMs achieve single-step
inference?

According to Sec. 3.4, the performance of DDPMs de-
pends on the noise fitting quality in NN. This necessitates
multiple iterations, as the significant errors occur in a single
step. Although reducing the number of iterations can ac-
celerate the sampling process [12, 21], this introduces two
limitations: a loss of accuracy [12, 21, 22] and a decrease
in diversity (less noise introduced resulting in less random-
ness [21]). Fortunately, except generation tasks, most 3D
tasks focus on the certainty of the results. CNF considers
CN rather than NN as the task-dominant network, cleverly
avoiding extensive iterations from DDPMs. Meanwhile,
since NN still see noise samples and fits the noise during
training, models retain the robustness from DDPMs.

We do not deny NCF of DDPMs, which thrives in gen-
erative tasks. Our goal is to provide a new way of applying
DDPMs to 3D tasks, hoping to expand the application scope
of DDPMs. In fact, generation tasks require diversity, while
other tasks focus on certainty. CNF actually sacrifices the
result diversity to enhance the performance certainty.
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Figure 4. 1⃝ GD+CD (the auxiliary network as a Gaussian diffusion, the dominant network as a non-DDPM, CNF), 2⃝ Baseline (the
auxiliary network as a non-DDPM, the dominant network as a non-DDPM, non-DDPMs), 3⃝ CN+GD (the auxiliary network as a non-
DDPM, the dominant network as a Gaussian diffusion, NCF), 4⃝ GD+GD (the auxiliary network as a Gaussian diffusion, the dominant
network as a Gaussian diffusion, NCF), 5⃝ CN+CD (the auxiliary network as a non-DDPM, the dominant network as a categorical diffusion,
NCF), and 6⃝ GD+CD (the auxiliary network as a Gaussian diffusion, the dominant network as a categorical diffusion, NCF).

4. Implementation

4.1. Model Hyperparameters

In this section, we describe the implementation details
of CDSegNet. CDSegNet is built on top of PTv3 and is
depicted in Fig. 3. For subsequent pooling and denoising,
the initialization module serializes the point cloud and con-
ducts the time and position embeding. Meanwhile, both the
Noise Network (NN) and the Conditional Network (CN),
each composed of an encoder, a decoder, and a head, fit
the noise and the task target (semantic labels), respectively.
Moreover, FFM directs the noise information from NN to
CN, enhancing the semantic features in CN. The detailed
parameters of the network architecture of CDSegNet are
described in Tab. 8, while the training hyperparameters
for each benchmark (ScanNet, ScanNet200, nuScenes) are
shown in Tab. 9.

We used 4 NVIDIA 4090 GPUs to train CDSegNet on
ScanNet, ScanNet200 and nuScenes, which took approxi-
mately 21 hours, 21 hours and 29 hours, respectively. Addi-
tionally, we also tried to train CDSegNet on ScanNet using
a single NVIDIA 3090 GPU, which took approximately 65
hours (batch size=2, this still can achieve 77.9 mIoU).

4.2. Combinations for Conditional DDPMs

As mentioned in Sec. 4.1 of the main text, CN and NN
allow us to transcend the limitation of non-DDPMs and
DDPMs. This means that NCF and CNF can use any type
of DDPMs [2]. This only requires CN (the non-DDPM
process) to be the dominant backbone in CNF, while NCF
is dominated by NN (the DDPM process) (see Fig. 4 and
Fig. 5). For example, in Fig. 5 of the main text, CD+DD
(NCF) indicates that NN and CN are modeled as a Gaussian
diffusion [8] and a categorical diffusion [1], respectively.
Therefore, this can produce various combinations of condi-

Config Parameter
Serialization Pattern Z + TZ + H + TH
Patch Interaction Shift Order + Shuffle Order
Time Embeding Cos-Sin (128)
Positional Embeding xCPE (32)
MLP Ratio 4
QKV Bias True
Drop Path 0.3
NN Stride [4,4]
NN Encoder Depth [2,2]
NN Encoder Channels [64,128]
NN Encoder Num Heads [4,8]
NN Encoder Patch Size [1024,1024]
NN Decoder Depth [2,2]
NN Decoder Channels [64,64]
NN Decoder Num Heads [4,4]
NN Decoder Patch Size [1024,1024]
NN Skip Connection Element Addition
CN Stride [2,2,2,2]
CN Encoder Depth [2,2,6,6]
CN Encoder Channels [64,128,256,512]
CN Encoder Num Heads [4,8,16,32]
CN Encoder Patch Size [1024,1024,1024,1024]
CN Decoder Depth [2,2,2,2]
CN Decoder Channels [64,64,128,256]
CN Decoder Num Heads [4,4,8,16]
CN Decoder Patch Size [1024,1024,1024,1024]
CN Skip Connection Channel Concatenation
FFM Position Encoding xCPE (128,512)
FFM Feat Scale 1.0
FFM Depth [1,]
FFM Channels [512,]
FFM Num Heads [32,]
FFM Patch Size [1024,]

Table 8. The parameters of network framework for CDSegNet.

tional DDPMs. The above combination (NCF, 3⃝, 4⃝, 5⃝,
6⃝) is the same as the network framework of Baseline ( 2⃝)

and CDSegNet (CNF, 1⃝). We provide implementations for
all combinations.
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ScanNet [6] ScanNet200 [18] nuScenes [3]
Config Parameter Config Parameter Config Parameter
Optimizer AdamW Optimizer AdamW Optimizer AdamW
Scheduler Cosine Scheduler Cosine Scheduler Cosine
LR 0.002 LR 0.002 LR 0.002
Block LR 0.0002 Block LR 0.0002 Block LR 0.0002
Weight De. 0.005 Weight De. 0.005 Weight De. 0.005
Batch Size 8 Batch Size 8 Batch Size 8
Epoch 800 Epoch 800 Epoch 50
Loss St. GLS Loss St. GLS Loss St. GLS
Task Num 2 Task Num 2 Task Num 2
Target ϵ Target ϵ Target ϵ
T 1000 T 1000 T 1000
Schedule Cosine Schedule Linear Schedule Linear
Range [0,1000] Range [1e-1,1e-5] Range [1e-2,1e-3]

Table 9. The training hyperparameters of CDSegNet for different
benchmarks.

Figure 5. We try several combinations for conditional DDPMs
built on the baseline on ScanNet in (a). The model of CNF ( 1⃝)
and baseline ( 2⃝) only perform a step inference. Meanwhile, the
models of NCF ( 3⃝, 4⃝, 5⃝, 6⃝) use DDIM for 100 inference steps.
(b) shows the inference time cost of CNF and NCF under the base-
line. To effectively evaluate the inference cost, the models of CNF
and NCF do not use test augmentation, and the voxel size of the in-
put point cloud is 0.001m (i.e., no fragmentation inference). CNF
achieves better performance with fewer iterations.

For modeling the Gaussian distribution, we follow [8],
which simply employs MSE loss in NN to approximate the
noise ϵ. Meanwhile, for modeling the categorical distri-
bution, x0 is used as the fitting target, and we employ KL
divergence loss and cross-entropy loss in NN, similar to [1].

4.3. Integration of CNF into PointNet and Point-
Net++

Fig. 6 illustrates the framework of introducing CNF to
PointNet and PointNet++. We use a additional PointNet++
to model the diffusion process and employ the FFM of CD-
SegNet as a noise filter. For PointNet, CNF is applied after
the feature pooling stage. Meanwhile, for PointNet++, we
introduce CNF at the bottleneck stage of the U-Net.

5. Optimization for CNF
Benefiting from a dual-branch framework, CNF has two

fitting objectives: the noise fitting (NN) and the task-
target fitting (CN). Therefore, CNF can be optimized from
two perspectives: DDPMs and multi-task learning. Using
PTv3+CNF on nuScenes as an example, we gradually ex-
hibit the entire optimization process of CNF, aiming to pro-

Figure 6. The framework of applying CNF to PointNet and Point-
Net++. We use a additional PointNet++ to model the diffusion
process and FFM of CDSegNet as a noise filter.

vide a guidance for future applications (All optimization
processes are from previous checkpoint. However, this
does not affect the performance improvement results).

Baseline. Our baseline is PTv3+CNF, which is trained
on nuScenes. This simply uses PTv3 as CN, with the addi-
tional inclusion of FFM and NN of CDSegNet. The net-
work architecture and hyperparameter settings of CN in
PTv3+CNF are entirely consistent with PTv3.

Tab. 10 shows the comparison results between the base-
line and PTv3. The baseline (this directly introduces CNF
onto PTv3 without any optimization) demonstrates a sig-
nificant improvement in noise robustness. This is because
the multi-level feature perturbations from NN enhance the
noise adaptability of PTv3. Meanwhile, the baseline per-
forms worse than PTv3 in terms of overall performance.
This means that unreasonable noise perturbations harm the
performance of CN.

Methods Performance Robustness
mIoU mAcc allAcc τ=0.1

PTv3 [24] 80.3 87.2 94.6 63.9
Baseline 79.6 86.9 94.1 66.8

Table 10. The results of the baseline and PTv3 on nuScenes.

The skip connection mode in the Decoder. We exper-
imented with different skip connection modes in the De-
coder: Element-Wise Addition (Baseline), Element-Wise
Multiplication (EWM), and Channel Concatenation (CC).

Tab. 11 shows that CC achieves the better performance.
Some works [9, 20] have demonstrated that in DDPMs,
the Decoder typically generates high-frequency informa-
tion, i.e., the details of the generated results. This re-
quires feature fusion to retain as much information as pos-
sible. Channel concatenation effectively preserves informa-
tion from the skip features and the backbone features though
the expansion of the channel dimension. However, element-
wise addition and multiplication causes the elements of the

8



skip features and the backbone features at the same spatial
location to share the same number of channels, which may
limit the ability of models to capture details.

We chose the model with the skip connection mode CC
as the baseline.

Methods Performance Robustness
mIoU mAcc allAcc τ=0.1

Baseline 79.6 86.9 94.1 66.9
EWM 79.3 85.9 93.5 66.5
CC 79.8 87.0 94.2 67.1

Table 11. The results of the different skip connection modes in the
Decoder on nuScenes.

The skip feature scaling in the Decoder. Varying val-
ues of t lead to oscillations in the loss values for DDPMs,
which hinders the effective convergence of models. Some
works [9, 19, 22] suggest that adjusting the skip feature
scaling in the decoder can effectively address this issue:

F = cat(FSF × sf, FBF ) (16)

where FSF means the skip features from the Encoder, while
FBF represents the backbone features from the Decoder. sf
indicates the scaling factor. Fig. 7(a) illustrates this detail of
the skip feature scaling in the Decoder.

Tab. 12 shows that reducing the proportion of skip fea-
tures in the decoder of NN makes training more stable and
enhances the generative capability of models. Meanwhile,
Fig. 7(b) further supports this viewpoint, as the training loss
curve becomes smoother when using this trick.

We chose the model with the skip feature scaling
√
2 as

the baseline.

Methods Performance Robustness
mIoU mAcc allAcc τ=0.1

Baseline 79.7 86.9 94.1 67.1
SL [9] 79.8 86.8 94.2 67.5√
2 [22] 80.0 87.0 94.3 67.6

Table 12. The result of the skip connection scaling in the Decoder
on nuScenes.

The noise schedule range. We found in our experiments
that the noise schedule range is critical to the performance
of CNF. This is because the noise schedule range can con-
trol the perturbation degree from NN for CN.

Tab. 13 shows the results of different noise schedule
ranges (the baseline means the noise schedule range is
[0.0001,0.02]). As mentioned in Sec. 5.6 of the main text,
in sparse and perturbed scenes, we should choose a noise
schedule with a smaller range.

The loss strategy. CNF with two branches can also be
optimized from a multi-task perspective. This can further

Figure 7. (a) shows the detail of the skip feature scaling. Mean-
while, (b) demonstrates a comparison of the training loss between
the baseline, the skip feature scaling SL (ScaleLong) [9] and the
skip feature scaling

√
2 [22].

Methods Performance Robustness
mIoU mAcc allAcc τ=0.1

Baseline 80.0 87.0 94.3 67.6
[0.001,0.005] 80.3 87.3 94.4 67.7
[0.002,0.003] 80.5 87.5 94.4 67.5

Table 13. The results of the different noise schedule ranges on
nuScenes.

constrain unreasonable perturbations of NN, due to the con-
vergence speed difference between NN and CN. As men-
tioned in Tab. 9 of the main text, we tried several loss strate-
gies: : 1) Equal Weighting (EW, Baseline). This means that
the losses of all tasks use the same weight. 2) Random Loss
Weighting (RLW) [11]. The random weight are assigned to
the losses of all tasks. 3) Uncertainty Weights (UW) [10].
This utilizes a learnable weight to balance the losses of all
tasks. 4) Geometric Loss Strategy (GLS) [5]. This miti-
gates the convergence differences of multiple tasks through
a geometric mean weight.

Tab. 14 shows that GLS achieves the best results. GLS
can alleviate the difference in convergence speed between
NN and CN, making the noise perturbation from NN more
reasonable.

Methods Performance Robustness
mIoU mAcc allAcc τ=0.1

Baseline 80.5 87.5 94.4 67.5
RLW [11] 80.4 87.5 94.3 67.5
UW [10] 80.6 87.7 94.7 67.6
GLS [5] 80.8 87.8 94.8 67.8

Table 14. The results of the different loss strategies.

6. Limitations
In the main text, CNF demonstrates excellent results

across various tasks, such as segmentation and classifica-
tion. However, during the design and experimentation pro-
cess, we also identified some limitations of CNF.
• Indirectly inheriting the robustness from DDPMs. To

avoid the extensive training and inference iterations from
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DDPMs, CNF uses CN as the task-dominant network.
This also results in only indirectly inheriting the robust-
ness from DDPMs. Therefore, under the same setting
(e.g., both models of NCF and CNF achieve the same task
performance), we believe that the robustness of CNF will
be lower than that of NCF.

• Limited robustness to noise. As mentioned in Sec. 5.3
of the main text, the robustness of CNF is limited to noise
from the modeled or approximate distribution, but sensi-
tive to noise far from the modeled distribution.

• Requiring more parameters. CNF requires additional
NN and FFM, resulting in requiring more parameters.
Nevertheless, this also enhances the generalization of
models, alleviating overfitting, as shown in Fig. 8. PTv3-
big and Our-CN, with more parameters compared to
PTv3, show lower training loss curves, but exhibit worse
generalization performance on ScanNet. In comparison,
our method shows the lower training loss curve and the
better performance. Meanwhile, CNF can demonstrate
outstanding performance in outdoor scenes, as outdoor
scenes are more sparse and perturbed compared to indoor
scenes. Tab. 15 shows that PTv3, with CNF introduced
and amounting to only about half the parameter count of
PTv3-big, exhibits better performance.

• Difficult to apply to generative tasks. Our goal is to
propose a new network framework that lowers the thresh-
old for applying DDPMs to various 3D tasks. However,
this appears to be difficult to apply to generative tasks,
as the introduction of randomness in CN is indirect. This
may result in a lack of diversity in the generated outcomes
(see Sec. 3.7). We suggest to still use NCF of DDPMs in
generation tasks.

7. More Visualization Results
We display additional visual results of semantic segmen-

tation in Fig. 9, Fig. 10 and Fig. 11.
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Figure 9. The visualization on ScanNet. The black dashed box indicates a misannotation in the Ground Truth that we believe exists.

Figure 10. The visualization on ScanNet200. The black dashed box indicates a misannotation in the Ground Truth that we believe exists.

Figure 11. The visualization on nuScenes.
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