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Table 1. Content Scene diversity of LPVQ dataset.

Table 2. Qualtity factors diversity of LPVQ dataset.

Scene ‘ Portrait  Landscape ~ Animation  Caption  Stage Food Crowd Person Factor ‘ Motion ~ Shake Noise Blur  Aircrafts Compression Bokeh  Exposure
Num | 5 10 5 3 10 3 4 6 Num | 8 5 4 5 4 4 7 4
1. Details of KVQ plicated task to annotate MOS for videos, as it requires a

1.1. Architecture of the Designed Backbone

Utilizing the FWA as a component, we concatenate it with
an FFN layer to obtain the fundamental block in the back-
bone, referred to as the Fusion Window Block. As illus-
trated in Fig. 3 of our paper, our backbone network follows
the advanced vision transformers [6, 9] and employs a four-
stage pyramid architecture. Since the preceding stages in
the pyramid structure extract localized high-frequency fea-
tures, we employ the basic modules of Swin-T to construct
the first two stages. The latter two stages are constructed us-
ing Fusion Window Blocks to capture high-level semantic
information and extract global visual saliency.

1.2. Implementation Details.

When applying the LPC, we divide the video into several
spatiotemporal cubes of size of [2,28,28]. We feed these
cubes separately into the network and calculate the loss
function based on the results obtained from reassembling
the cube outputs. k is set to 8 in the third stage and 4 in the
fourth stage. In all our experiments, the hyper-parameters
of A, and A, are set to 0.5 and 0.05. We use the Video
Swin Transformer [7] pretrained on Kinetics-400 [3] as the
backbone before training on VQA tasks. During training,
we use an AdamW optimizer with a weight decay Se-2 for
30 epochs. The learning rate is set to Se-4. All experiments
are conducted on 8§ NVIDIA V100 GPUs.

2. Details of LPVQ Dataset

Why choose images for annotations? As stated in In-
troduction of our paper, it is a time-consuming and com-
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large number of participants to ensure reliability [1]. In-
deed, annotating the local quality of spatiotemporal regions
in videos incurs even more challenging costs, thereby es-
calating the annotation expenses by approximately O(N?).
This renders the acquisition of extensive local quality anno-
tations nearly impracticable.

Considering the substantial cost of annotating videos, we
build a dataset using images as static videos for annotating
local quality. 2D images reflect spatial-level local percep-
tion ability. To maximize representativeness, all images in
LPVQ are meticulously selected video screenshots to cover
both temporal and spatial distortions. Tab. | and 2 show
the categories of scenes and low-quality factors in LPVQ,
along with the corresponding number of images. LPVQ
covers a wide range of scenes and low-quality factors to en-
sure representativeness and the selected coverage of tempo-
ral distortions (e.g., motion blur, shake) making it suitable
for evaluating videos.

Content Scope. LPVQ comprises a total of 50 images col-
lected from a typical short-form video platform, where each
image exhibits noticeable variations in quality across differ-
ent regions. As shown in Fig. |, images are meticulously
selected to ensure diverse coverage of creation modes and
content scenes, including scenery, stars, television dramas,
games, and other scenes. The scope is broad with 34,000
annotations to ensure reliability.

Annotation Process. We evenly divide each image into
non-overlapping grid regions of 7 x 7. Following the stan-
dard subjective procedure in ITU-R BT 500.13 [2], we as-
sign a subjective quality rating ranging from 1 to 5 points



Table 3. Annotation criteria for subjective labeling scores from 1 to 5 [8].

Score \ Annotation criteria

1 Bad ‘ The visual information within the image content becomes challenging or impossible to distinguish.

2 Poor The primary content remains distinguishable but exhibits pronounced noise, block artifacts, and blurriness,
along with substantial jitter and lag.

3 Fair The primary content is reasonably clear, but it includes noticeable distortions such as conspicuous noise,
visual blurring, minor localized glare, or distinct edge sharpening. Additionally, the image exhibits a
markedly blurry background texture.

4 Good The images feature a clear primary subject, free from substantial noise or visual blurring, and devoid of
apparent distortions such as jitter or glare. However, they exhibit limited overall textural complexity.

5 Excellent The primary object is characterized by exceptional clarity, devoid of noise, block artifacts, blurriness, jitter,
glare, or lag. It presents a high-quality spectacle distinguished by lucid textural elements.
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(a) Examples in the proposed LPVQ
dataset distribution

(b) The histogram of the MOS

Figure 1. Examples and the overall MOS distribution in the pro-
posed LPVQ dataset. Please zoom in for a better view. (Fig. 5 of
our paper)

(interval of 0.5) to each patch, with the involvement of 14
professional visual researchers in the standard environment
for annotation. Following the protocol of KVQ [8], Tab. 3
provides the rating guidelines, outlining the scoring rules.

After a glance at the entire image, all participants se-
quentially score each patch while other patches are oc-
cluded to avoid visual interference. Participants adhere to
the same criteria and are specifically instructed to evaluate
only the low-level quality perception aspects within each
patch, such as distortion or sharpness, without considering
the content or semantics of the patch. All annotations un-
dergo a data-cleaning process after scoring for reliability.
We calculate the mean of human opinions for each region as
the final MOS. The MOS distribution in Fig. 1(b) demon-
strates that it exhibits a normal distribution encompassing
all quality levels. LPVQ will be open-sourced with detailed
descriptions.

3. Additional Experimental Results

3.1. VQA Evaluation Results

Inference time. We deploy our KVQ and other baseline
models on an NVIDIA V100, processing 8-second 1080p
videos to compare the inference times required by different

Table 4. Inference time (avg. of 20 runs).

Setting | VSFA  PVQ Lieral Fast-VQA KVQ
Time (/s) | 11.14  13.79 27.6 0.045 0.056

Table 5. Ablation study on the saliency map.

Method LSVQie LSVQios0p | KoNViD-lk | LIVE-VQC
ethods SRCC/PLCC | SRCC/PLCC | SRCC/PLCC | SRCC/PLCC

wio multi-scale map | 0.895/0.896 | 0.812/0.844 | 0.888/0.890 | 0.816/0.839
w multi-scale map | 0.896/0.897 | 0.814/0.846 | 0.890/0.892 | 0.820/0.843

Table 6. Ablation study on the region selected input.

Inout LSVQest LSVQiosop | KoNViD-1k | LIVE-VQC
P SRCC/PLCC | SRCC/PLCC | SRCC/PLCC | SRCC/PLCC
Random Crop | 0.872/0.874 | 0.737/0.777 | 0.878/0.875 | 0.810/0.836
Center Crop | 0.882/0.884 | 0.765/0.803 | 0.885/0.885 | 0.810/0.836
Fragments | 0.801/0.892 | 0.808/0.841 | 0.887/0.8889 | 0.808/0.834
Ours | 0.896/0.897 | 0.814/0.846 | 0.890/0.892 | 0.820/0.843

methods. As shown in Tab. 4, KVQ achieves breakneck
speed comparable to Fast-VQA [10], far surpassing other
baseline methods (e.g., VSFA [5], PVQ [11], Li et al. [4]).

Effectiveness of the multi-scale saliency map. We en-
semble the multi-scale saliency maps acquired from each
block for the final saliency map. We compare the multi-
scale approach with the method of solely using prediction
heads, and the results are shown in Tab. 5. The perfor-
mance improvement after incorporating multi-scale infor-
mation validates the rationale behind this structural design,
which integrates hierarchical features similar to the HVS.

Comparison with different region selected input. After
resizing videos to a consistent size, KVQ inputs them into
the model. This approach ensures that the input videos con-
tain a complete spatial structure, allowing for better percep-
tion of high-level semantics for attention allocation. Our



Table 7. Number of correlated windows.

. LSVQest LSVQiog0p | KoNViD-1k | LIVE-VQC
SRCC/PLCC | SRCC/PLCC | SRCC/PLCC | SRCC/PLCC

[4,2] | 0.894/0.894 | 0.810/0.841 | 0.887/0.888 | 0.815/0.840
[8,4] | 0.896/0.897 | 0.814/0.846 | 0.890/0.892 | 0.819/0.842

Table 8. Comparison under different resolution inputs.

Resolution | LSVQest LSVQiosop | KoNViD-1k | LIVE-VQC

i SRCC/PLCC | SRCC/PLCC | SRCC/PLCC | SRCC/PLCC
224 x 224 | 0.883/0.884 | 0.786/0.822 | 0.870/0.872 | 0.805/0.834
448 x 448 | 0.896/0.897 | 0.814/0.846 | 0.890/0.892 | 0.819/0.842

Table 9. Ablation of FWA on the proposed LPVQ dataset.

Inter-sample Intra-sample
Method ‘ SRCC | PLCC ‘ SRCC | PLCC
IWA | 0572 | 0553 | 0570 | 0.579
CWA | 0565 | 0557 | 0549 | 0553

FWA | 0.614 | 0.616 | 0.612 | 0.657

model dynamically selects correlated regions and performs
attention allocation to extract global saliency. We com-
pare our approach with the other 3 methods of region selec-
tion types with defined static patterns for input: randomly
cropping regions, center cropping regions, and the sampled
fragments proposed in [10], which randomly samples mini-
patches within the uniformly divided grids. As illustrated
in Tab. 6, KVQ outperforms other types by preserving the
complete spatial structure for global saliency extraction.

Number of correlated windows. 1In our paper, we employ
the attention mechanism to compute the windows correla-
tions. We select the top-k windows with the highest corre-
lations. As shown in Tab.7, larger & in the third and fourth
stages improves performance. A larger k£ implies that each
window can establish long-distance connections with more
regions, thereby enhancing attention allocation.

Comparison with Input Resolutions. Our KVQ calcu-
lates global quality by perceiving visual attention allocation
and local texture. Therefore, we believe that preserving the
detailed features is also crucial for evaluating video qual-
ity, especially for high-resolution videos where reducing the
resolution can lead to a loss of local details. Taking this into
consideration, we set the resolution of the input videos to
448 x 448. We compare videos adjusted to different res-
olutions, and the results in Tab. 8 demonstrate that higher
resolutions correspond to better performance.

3.2. Local Perception on LPVQ Dataset

Effectiveness of the FWA module on LPV(Q. We validate
the assistance of the FWA module for local perception on

the LPVQ dataset. All models are trained on VQA tasks
and undergo zero-shot validation on the LPVQ dataset. In
Tab. 9, we present the results of applying FWA compared to
using IWA or CWA individually. The combined utilization
of IWA and CWA outperforms using either module indi-
vidually. We attribute this to the FWA’s capability to allo-
cate long-range attention and precisely assess global-wise
saliency, allowing for better decoupling of visual correla-
tions from local perception maps and resulting in more ac-
curate predictions.
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