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We first describe detailed processes of building the
prompt library and sampling strategies in our method:

• Appendix A: Details of building prompt library.
• Appendix B: Details of prompt sampling strategy.
• Appendix C: Details of group sampling strategy.

Then, we show more experiments to show the effective-
ness of our ProAPO:

• Appendix D: More implementation details.
• Appendix E: Results on different backbones.
• Appendix F: More comparisons with SOTA methods.
• Appendix G.1: Ablation of progressive optimization.
• Appendix G.2: More ablation of operators.
• Appendix G.3: More ablation of group sampling.
• Appendix G.4: Ablation of cost computation.
• Appendix H.1: Effect of shot numbers.
• Appendix H.2: Effect of scalar α in score function.
• Appendix H.3: Effect of sampled numbers in prompt

sampling.
• Appendix H.4: Effect of quality of prompt library.
• Appendix I: More qualitative results.

We also provide detailed results for experiments appear-
ing in the main paper:

• Appendix J.1: Results of transfering to adapter-based
methods.

• Appendix J.2: Results of transferring to different back-
bones.

• Appendix K.1: Analysis of single vs ensemble prompts.
• Appendix K.2: Improvement by iterative optimization.
• Appendix L.1: Ablation of edit and evolution operators.
• Appendix L.2: Ablation of two sampling strategies.
• Appendix L.3: Ablation of different score functions.
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A. Details of Building Prompt Library
A.1. Details of Building Template Library
The template library aims to collect a set of templates that
provide task-specific contextual information, which can ad-
dress issues of semantic ambiguity caused by class names.
It contains processes for collecting templates, generating
dataset domains, and adding dataset domains to templates.

Collecting templates. We utilize two ways to collect
templates. First, pre-defined templates, such as Template-
80 [29], FILIP-8 [41], and DEFILIP-6 [6] can be used. Sec-
ond, similar to PN [20], we query LLMs to create diverse
templates by the following prompt:

“Hi, ChatGPT! I would like your help to prompt for
image classification using CLIP. As a human-level
prompt engineer, your task is to create a set of Templates
like the following for visual classification. For example:

a photo of a {}.”

Generating dataset domain by LLMs. Inspired by pre-
vious description-based methods [22, 30], we query LLMs
to generate dataset domain information to provide task-
specific context. For this purpose, we use the prompt:

“Hi, ChatGPT! I would like your help in generating
dataset domain information for image classification
based on the dataset paper. A few words are good. Please
return directly without explanation.

{uploaded PDF}.”

Here, {uploaded PDF} represents the uploading of the
paper of the dataset to LLMs. Generated dataset domain
information is summarized in Tab. 1.

Adding dataset domain to templates. We supplement
templates with dataset domain information in the follow-
ing four ways: (1) Add “a type of {domain}”. (2) Re-
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Dataset Domain Information

IN-1K [7] real scenario; natural scene
Caltech [9] object; everyday objects; common items
Cars [17] car; vehicles; auto-mobile
CUB [37] bird; wildlife; ornithology
DTD [5] textures; patterns; surface; material
ESAT [13] land cover; remote sensing; satellite photo; satellite

imagery; aerial or satellite images; centered satellite
photo

FGVC [21] aircraft; airplane; plane; airliner
FLO [25] flower; floral; botanical; bloom
Food [2] food; dishes; cuisine; nourishment
Pets [27] pet; domestic animals; breed; dog or cat
Places [45] place; scene
SUN [40] place; scene
UCF [34] action; human action; human activities; person do-

ing

Table 1. Generated dataset domain information.

place “{class}” with “{domain}:{class}”. (3) Re-
place “photo” with “{domain}”. (4) Replace “photo” with
“{domain} photo”. Taking “a photo of a {class}” as an
example, we modify the templates with the above four ways
to add dataset domain information as follows:

1. a photo of a {class}, a type of {domain}.
2. a photo of a {domain}: {class}.
3. a {domain} of a {class}.
4. a {domain} photo of a {class}.

Here, {class} and {domain} denote category name and
dataset domain information, respectively.

A.2. Details of Building Description Library
Description Library aims to provide a set of visual descrip-
tions for each category, enhancing visual semantics for fine-
grained recognition in prompts. It contains processes for
generating visual descriptions and category synonyms and
integrating descriptions with the best templates.

Generating category synonym. Except for descrip-
tions, we also replace class names from the dataset with
their synonyms to create diverse class-specific prompts. For
this purpose, we use the following prompt to ask LLMs to
generate category synonyms:

“Hi, ChatGPT! I would like your help in generating
category synonyms. As a {domain} expert, I will
provide you with a category name. Your task is to
provide synonyms for the current category. If it has
subclasses, return them as well. Please return directly
without explanation.

User: I want to give the synonyms of {class}.
Assistant: ”

Method Prompts

DCLIP [23] Q: What are useful visual features for distin-
guishing a {class} in a photo?
A: There are several useful visual features to
tell there is a {class} in a photo:

CuPL-Base [28] Describe what a {class} looks like.
Describe a {class}.
What are the identifying characteristics of a
{class}?

CuPL-Full [28] Describe what a {class} looks like.
How can you identify a {class}?
What does a {class} look like?
Describe an image from the internet of a
{class}
A caption of an image of a {class}:

GPT4Vis [39] I want you to act as an image description expert.
I will give you a word and your task is to give
me 20 sentences to describe the word. Your
description must accurately revolve around this
word and be as objective, detailed and diverse
as possible. In addition, the subject of your de-
scription is a some kind of object photograph.
Output the sentences in a json format which key
is the the word and the value is a list composed
of these sentences. Do not provide any expla-
nations. The first word is “{class}”.

AdaptCLIP [31] What characteristics can be used to dif-
ferentiate {class} from other {domain}
based on just a photo? Provide an exhaus-
tive list of all attributes that can be used
to identify the {domain} uniquely. Texts
should be of the form “{domain} with
{characteristic}”.

Table 2. Prompts for generating visual descriptions.

Generating visual descriptions for each category.
Similar to previous description methods [23, 28, 31, 39], we
instruct LLM to generate visual descriptions for each cate-
gory by several prompts, which are summarized in Tab. 2.

Integrating descriptions with the best templates. We
use the following prompt to integrate descriptions with tem-
plates: “{template}. {description.}”.

After the above processes, we collect diverse visual de-
scriptions for each category c, denoted as VD(c). For each
group iteration, we select the descriptions for categories in
the specific group as the description library. Moreover, the
prompt sampling strategy also utilizes these descriptions for
class-specific initialization.

B. Details of Prompt Sampling Strategy

The detailed prompt sampling strategy is summarized in
Alg. 1. Visual descriptions of each class VD(c) are col-
lected by the above process (see Appendix A.2). We utilize



the candidate prompt P ∗
t with the best templates as an ini-

tial point. The RANDOMSAMPLE(·) operator denotes ran-
domly selecting a set of elements from a given set. We ran-
domly sample descriptions for each category to create mul-
tiple candidate prompts (Lines 2-8). After Tsample-times
steps, we select the candidate prompt P̂0 with the highest
score for description initialization (Line 9). It ensures that
subsequent optimization is around the optimal initial point.
We set Tsample = 32 for all datasets in the default setting.

Algorithm 1 Prompt Sampling Strategy.

Require: D ← {(x, y)}n: training samples, F : D×P →
R: score function, C: class labels, VD(c): visual de-
scriptions of class c, P ∗

t : the prompt candidate with the
best template

1: U ← {P ∗
t }

2: for i = 1 to Tsample do
3: Pi ← P ∗

t

4: for all class c ∈ C do
5: Pi ← Pi ∪ RANDOMSAMPLE(VD(c))
6: end for
7: U ← U ∪ {Pi}
8: end for
9: P̂0 ← argmaxP∈U F (D, P )

10: return the candidate prompt with the highest score P̂0

C. Details of Group Sampling Strategy
The detailed group sampling strategy is summarized in
Alg. 2. It contains processes of obtaining misclassified cat-
egories and selecting the worst and salient groups.
Obtaining misclassified categories. In Lines 1-8 of
Alg. 2, we collect misclassified set for each category by
MISCLASS(·) operator. Given an image x, if the prediction
pred(x) is not its corresponding label y, we will add pred(x)
to the misclassified set for category y. In fact, we also ab-
late the K-means clustering algorithm to group categories
(in Appendix G.3). Results show that the misclassified set
achieves better performance than the K-means algorithm.
Selecting the worst groups aims to select categories with
the lowest top-nwst accuracy and corresponding misclassi-
fied categories. We first compute the accuracy for each cat-
egory in Line 11. Then, we sort the categories by accuracy
and retain the top-nwst worst categories in Line 15. Finally,
nwst groups are added to the set G in Lines 18-20.
Selecting the salient groups aims to select categories with
the top-nsln performance gains and its misclassified cate-
gories after adding descriptions. In Line 13, we compute
the accuracy gains after adding the descriptions. Then, we
sort the categories by accuracy gain and retain the top-nsln

accuracy gain categories in Line 16. At last, nsln groups
are added to the set G in Lines 21-23.

Algorithm 2 Group Sampling Strategy.

Require: D ← {(x, y)}n: training samples, F : D×P →
R: score function, C: class labels, VD(c): visual de-
scriptions of class c, P ∗

t : prompt candidate with the
best template, pred(x): prediction for image x

1: for all class c ∈ C do
2: MISCLASS(c)← ∅
3: end for
4: for all training sample (x, y) ∈ D do
5: if pred(x) ̸= y then
6: MISCLASS(y)← MISCLASS(y) ∪ {pred(x)}
7: end if
8: end for
9: for all class c ∈ C do

10: Select Class Images: DATA(c) ← {(x, y) | y =
c}(x,y)∈D

11: Compute Accuracy: ACC(c)← F (DATA(c), P ∗
t )

12: Add Descriptions: Pc ← P ∗
t ∪ VD(c)

13: Compute Accuracy Gain: ACCGAIN(c) ←
F (DATA(c), Pc)− ACC(c)

14: end for
15: Sort Class by Accuracy: Cwst, retaining the classes

with the lowest top-nwst accuracy
16: Sort Class by Accuracy Gain: Csln, retaining the

classes with the top-nsln accuracy gain
17: Initialize Group Set: G ← ∅
18: for all class c ∈ Cwst do
19: G ← G ∪ {MISCLASS(y)}
20: end for
21: for all class c ∈ Csln do
22: G ← G ∪ {MISCLASS(y)}
23: end for
24: return sampled groups G

Finally, we collect S = nwst + nsln groups for subse-
quent description optimization.

D. More Implementation Details
D.1. Hyperparameter Settings
In Tab. 3, we show the searched hyperparameter settings for
thirteen datasets. All results are average with four seeds.
Except for 1, 2, 3 as seeds like CoOp [47], we add 42 as our
fourth seed to further evaluate the stability of our method. In
the default setting, we use the same LLMs as the description
methods, i.e., GPT-3 [3] for CuPL [28] and DCLIP [23],
GPT-4 [26] for GPT4Vis [39] and AdaptCLIP [31].

D.2. More Related Work
Large-scale vision-language models like CLIP [29] have
shown promising performance on various tasks. They align
visual and textual spaces to a joint space via training on mil-



Dataset T M N α nwst nsln Tsample

IN-1K [7] 4 8 8 1e3 4 4 32
Caltech [9] 2 8 8 1e2 2 2 32
Cars [17] 4 8 8 1e4 4 4 32
CUB [37] 4 8 8 1e2 4 4 32
DTD [5] 4 8 8 1e3 4 4 32
ESAT [13] 4 8 8 1e3 3 3 32
FGVC [21] 4 8 8 1e3 4 4 32
FLO [25] 4 8 8 1e3 4 4 32
Food [2] 4 8 8 1e3 2 2 32
Pets [27] 2 8 8 1e4 2 2 32
Places [45] 4 8 8 1e2 3 3 32
SUN [40] 2 8 8 1e4 4 4 32
UCF [34] 4 8 8 1e3 3 3 32

Table 3. Hyperparameters settings for thirteen datasets.

lions of image-text pairs from the web. Other work [1, 6, 8,
14, 18, 19, 24, 35, 41] has furthered this paradigm to learn
more accurate semantic alignment in joint space. In this
work, we advance VLMs for downstream tasks by progres-
sively learning optimal class-specific prompts with minimal
supervision and no human intervention.

E. Results on Different Backbones
Settings. In Tab. 4, we show results of our ProAPO in
different backbones, including ResNet50, ResNet101, ViT-
B/32, ViT-B/16, ViT-L/14 for CLIP [29], ViT-B/32 for
OpenCLIP [4], ViT-B/16 for EVA02 [8], and ViT-B/16 for
SigLIP [43]. We compare our ProAPO with vanilla VLMs
and the SOTA description method CuPL [28].

Results. We see that our ProAPO consistently improves
vanilla CLIP and CuPL in thirteen datasets across all back-
bones. Compared to vanilla VLMs, our ProAPO enhances
them by at least 3.4% average accuracy in thirteen datasets.
Moreover, we see notable performance improvement on
several fine-grained datasets, such as DTD [5], ESAT [13],
FLO [25], and UCF [34]. It further verifies that class-
specific descriptions provide helpful knowledge for fine-
grained recognition. Besides, iterative optimization by our
ProAPO also enhances the description method CuPL.

More interesting findings. We find that as the back-
bones of VLMs become larger, the performance improve-
ment by ProAPO gradually decreases. For example, from
ViT-B/32 to ViT-B/16 to ViT-L/14, the gain for CLIP is
from 5.7% to 5.6% to 5.0%. Moreover, similar results ap-
pear in different models with the same backbone, i.e., the
vanilla model with better results achieves a lower perfor-
mance increase. For example, from CLIP [29] to Open-
CLIP [4] on ViT-B/32 backbone, the gain is from 5.7% to
4.7%, and from CLIP [29] to EVA02 [8] to SigLIP [43], the
gain is from 5.6% to 4.0% to 3.4%. We argue that the model
with the higher result has more knowledge, which may be

affected less by prompt quality. Overall, our ProAPO con-
tinues to improve the performance of VLMs.

F. More Comparisons with SOTA Methods

In this section, we compare our ProAPO with more SOTA
prompt tuning methods. These methods adapt VLMs from
both visual and textual views.

Comparison of test-time prompt tuning methods.
In Tab. 5, our ProAPO outperforms SOTA test-time prompt
tuning methods on 11 datasets. Notably, we adapt VLMs
solely from the textual view, while TPT methods introduce
textual and visual views (i.e., augmented images), which
further verifies the effectiveness of our method.

Comparison of vector-based prompt-tuning methods
Since recent prompt-tuning methods adapt VLMs using
both visual and textual views, we combine ProAPO with an
adapter (i.e., APE [48]) for a fair comparison. (1) Higher
performance in low-shot. In Tab. 5, ProAPO consistently
outperforms these methods, which verifies that optimizing
prompts in natural language is more effective in low-shot
tasks. (2) Better transferability and interpretability. Un-
like vector-based prompt-tuning methods that search in a
continuous space, ProAPO benefits from the discrete nature
of natural language, leading to better interpretability and
easily transfers across different backbones (shown in ??).
(3) Lower performance in high-shot. However, in Tab. 11,
ProAPO shows a sub-optimal result compared to CoOp [47]
in high-shot settings. This is due to the limited language
search space and iteration steps.

Comparison of AWT [49]. First, since AWT uses aug-
mented visual and textual views to adapt VLMs, we com-
pare ProAPO with AWT under the augmented textual view
for a fair comparison. In Tab. 5, the result shows our
ProAPO improves AWT-text by 6.1% on average, verifying
that our progressive optimization improves prompt quality.
In addition, we introduce a common adapter-based method
to our ProAPO and compare it with AWT-Adapter in the
one-shot setting. We see that our ProAPO achieves compa-
rable results. These results suggest that ProAPO and AWT
are complementary.

Comparison of iCM [12]. iCM is somewhat similar
to ours, optimizing class-specific prompts with chat-based
LLMs. However, it uses the whole validation set as super-
vision. In Tab. 6, we see that our ProAPO outperforms iCM
significantly even under the one-shot supervision. This is
because our ProAPO address challenges in class-specific
prompt optimization by an offline generation algorithm to
reduce LLM querying costs, an entropy-constrained fitness
score to prevent overfitting, and two sampling strategies to
find an optimal initial point and reduce iteration times.
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CLIP [29] - ResNet50 57.9 84.5 53.9 44.7 38.8 28.6 15.9 60.2 74.0 83.2 38.2 58.0 56.9 55.6 53.4
CuPL [28] 61.2 88.3 55.3 48.7 49.5 38.2 18.9 67.0 80.1 86.1 41.2 63.1 63.3 61.1 58.5
ProAPO (ours) 61.5 90.3 58.0 50.7 52.3 51.7 21.1 75.1 81.8 88.7 41.8 63.7 66.0 64.6 61.8
∆ + 3.6 + 5.8 + 4.1 + 6.0 + 13.5 + 23.1 + 5.2 + 14.9 + 7.8 + 5.5 + 3.6 + 5.7 + 9.1 + 9.0 + 8.4

CLIP [29] - ResNet101 61.4 89.9 63.3 49.6 40.3 31.7 18.3 64.3 83.4 86.9 37.9 59.0 61.2 60.0 57.5
CuPL [28] 61.4 91.0 61.2 45.3 49.7 28.7 18.6 59.0 82.7 86.6 40.6 62.3 56.4 59.8 57.2
ProAPO (ours) 63.6 92.3 64.4 52.2 51.6 45.9 21.2 69.6 84.9 89.6 40.6 63.5 64.0 64.6 61.8
∆ + 2.2 + 2.4 + 1.1 + 2.6 + 11.3 + 14.2 + 2.9 + 5.3 + 1.5 + 2.7 + 2.7 + 4.5 + 2.8 + 4.6 + 4.3

CLIP [29] - ViT-B/32 62.1 91.2 60.4 51.7 42.9 43.9 20.2 66.0 83.2 86.8 39.9 62.1 60.9 61.8 59.3
CuPL [28] 64.4 92.9 60.7 53.3 50.6 50.5 20.9 69.5 84.2 87.0 43.1 66.3 66.4 64.9 62.3
ProAPO (ours) 64.7 94.4 61.7 55.4 53.5 63.0 23.0 74.3 85.3 91.0 43.3 66.6 69.0 67.9 65.0
∆ + 2.6 + 3.2 + 1.3 + 3.7 + 10.6 + 19.1 + 2.8 + 8.3 + 2.1 + 4.2 + 3.4 + 4.5 + 8.1 + 6.1 + 5.7

CLIP [29] - ViT-B/16 66.9 93.2 65.5 55.3 44.3 51.0 24.4 70.6 88.4 89.0 40.8 62.5 67.7 65.8 63.0
CuPL [28] 69.6 94.3 66.1 57.2 53.8 55.7 26.6 73.9 88.9 91.2 43.4 69.0 70.3 69.0 66.1
ProAPO (ours) 69.9 95.2 67.7 59.0 55.8 65.3 28.3 82.7 89.5 92.7 43.8 68.9 73.1 71.7 68.6
∆ + 3.0 + 2.0 + 2.2 + 3.7 + 11.5 + 14.3 + 3.9 + 12.1 + 1.1 + 3.7 + 3.0 + 6.4 + 5.4 + 5.9 + 5.6

CLIP [29] - ViT-L/14 73.5 95.1 76.8 62.5 52.1 61.5 33.4 79.5 93.1 93.3 40.7 67.6 75.0 72.8 69.5
CuPL [28] 76.7 96.2 77.6 61.4 62.6 62.4 36.1 79.7 93.4 93.8 43.8 73.2 78.3 75.5 71.9
ProAPO (ours) 76.8 97.1 78.8 65.1 64.8 74.3 38.3 87.3 93.9 94.6 44.4 73.4 80.1 78.1 74.5
∆ + 3.3 + 2.0 + 2.0 + 2.6 + 12.7 + 12.8 + 4.9 + 7.8 + 0.8 + 1.3 + 3.7 + 5.3 + 5.1 + 5.8 + 5.0

OpenCLIP [4] - ViT-B/32 66.2 94.7 88.2 65.6 51.3 49.4 23.0 71.2 82.4 90.7 41.5 68.1 65.0 68.2 65.9
CuPL [28] 66.7 94.4 86.6 65.9 62.4 50.1 25.5 69.5 81.7 90.8 43.3 69.1 65.8 69.3 67.1
ProAPO (ours) 67.0 95.8 88.7 67.3 65.1 66.0 27.5 81.8 83.2 91.9 43.4 69.7 70.2 73.3 70.6
∆ + 0.8 + 1.1 + 0.5 + 1.7 + 13.8 + 16.6 + 4.5 + 10.6 + 0.8 + 1.2 + 1.9 + 1.6 + 5.2 + 5.1 + 4.7

EVA02 [8] - ViT-B/16 74.6 97.2 79.2 60.8 49.7 68.0 24.6 75.6 89.5 92.2 42.9 70.7 68.6 71.8 68.7
CuPL [28] 75.4 96.7 79.2 61.8 59.1 61.7 27.5 75.2 89.3 92.1 44.0 72.5 71.9 72.8 69.7
ProAPO (ours) 75.5 97.0 80.0 62.8 61.3 74.2 29.7 89.1 89.6 93.5 44.5 72.5 75.2 76.2 72.7
∆ + 0.9 -0.2 + 0.8 + 2.0 + 11.6 + 6.2 + 5.1 + 13.5 + 0.1 + 1.3 + 1.6 + 1.8 + 6.6 + 4.4 + 4.0

SigLIP [43] - ViT-B/16 75.8 97.3 90.5 62.3 62.8 44.6 43.6 85.5 91.5 94.1 41.6 69.5 74.9 75.5 71.8
CuPL [28] 76.0 98.0 90.5 63.0 64.9 42.8 45.1 87.0 90.7 94.5 43.5 69.9 73.4 75.7 72.3
ProAPO (ours) 76.4 98.3 91.7 66.2 69.1 55.8 47.1 93.3 92.2 94.9 44.3 71.7 75.9 78.8 75.2
∆ + 0.6 + 1.0 + 1.2 + 3.9 + 6.3 + 11.2 + 3.5 + 7.8 + 0.7 + 0.8 + 2.7 + 2.2 + 1.0 + 3.3 + 3.4

Table 4. Results of our ProAPO on different backbones. Avg (11) and Avg (13) denote average results across 11 datasets (excluding
CUB [37] and Places [45]) and all 13 datasets, respectively. ∆ denotes performance gains compared to vanilla VLMs.

G. More Ablation Results

G.1. Ablation of Template and Description Opti-
mization

In Tab. 7, we ablate key components in template and de-
scription optimization on the ResNet50 backbone.

(1) Ablation of Template Optimization. In the main
paper (Sec. 4.3), we show that prompt ensembling is better
than a single prompt. Moreover, dataset domain informa-
tion also plays a significant role in template optimization.
Without domain information, we see a performance drop in
our ATO by an average of 1.0% (from 58.3% to 59.3 %) on
thirteen datasets. This is because domain information pro-

vides contextual information, which can mitigate issues of
semantic ambiguity caused by class names.

(2) Ablation of Description Optimization. Without la-
bel synonyms to increase description diversity, a perfor-
mance degradation appears by an average of 1.4% (from
60.4% to 61.8%) on thirteen datasets. It verifies the effec-
tiveness of optimization class names, which are usually ig-
nored in previous description methods [23, 28, 31, 39].

(3) Template VS Description Optimization. Com-
pared with template optimization, we see a notable per-
formance improvement with description optimization, es-
pecially in CUB [37], DTD [5], ESAT [13], FLO [25],
and UCF [34] datasets. It demonstrates that optimizing
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Vanilla CLIP [29] 66.9 93.2 65.5 44.3 51.0 24.4 70.6 88.4 89.0 62.5 67.7 65.8

Test-Time Prompt Tuning Methods

TPT [33] 69.0 94.2 66.9 47.8 42.4 24.8 69.0 84.7 87.8 65.5 68.0 65.5
DiffTPT [10] 70.3 92.5 67.0 47.0 43.1 25.6 70.1 87.2 88.2 65.7 68.2 65.9
PromptAlign [32] 71.4 94.0 68.5 47.2 47.9 24.8 72.4 86.7 90.8 67.5 69.5 67.3
Self-TPT-v [50] 73.0 94.7 68.8 49.4 51.9 27.6 71.8 85.4 91.3 68.2 69.5 68.3

Vector-based Prompt Tuning Methods

UPT [42] 69.6 93.7 67.6 45.0 66.5 28.4 75.0 84.2 82.9 68.8 72.0 68.5
CoCoOp [46] 69.4 93.8 67.2 48.5 55.3 12.7 72.1 85.7 91.3 68.3 70.3 66.8
MaPLe [15] 69.6 92.6 66.6 52.1 71.8 26.7 83.3 80.5 89.1 64.8 71.8 69.9
ALIGN [38] 69.8 94.0 68.3 54.1 53.2 29.6 81.3 85.3 91.4 69.1 74.4 70.1
PromptSRC [16] 68.1 93.7 69.4 56.2 73.1 27.7 85.9 84.9 92.0 69.7 74.8 72.3

Description-Based Methods

w/o adapters
CuPL [28] 69.6 94.3 66.1 53.8 55.7 26.6 73.9 88.9 91.2 69.0 70.3 69.0
AWT-text [49] 68.9 95.2 66.0 52.0 52.6 26.1 74.5 89.4 91.2 68.4 69.8 68.6
ProAPO (ours) 69.9 95.2 67.7 55.8 65.3 28.3 82.7 89.5 92.7 68.9 73.1 71.7
ProAPO w/ AWT-text 69.4 95.3 67.8 54.3 67.1 27.4 82.1 89.6 93.2 68.5 73.1 71.6

w/ adapters
AWT-Adapter [49] 72.1 95.1 73.4 59.4 76.3 33.9 85.6 85.9 92.9 72.7 78.4 75.1
ProAPO w/ APE [48] 71.3 95.8 70.9 60.6 72.4 33.2 91.4 89.9 93.4 71.0 77.6 75.2

Table 5. Comparison of our ProAPO with more SOTA methods under one-shot supervision. Avg (11) denote average results across
11 datasets.

Module (ViT-B/32) IN-1K Caltech CUB DTD ESAT FLO SUN UCF Avg (8)

Vanilla CLIP 62.1 91.2 51.7 42.9 43.9 66.0 62.1 60.9 60.1

Automatic Prompt Optimization Methods

iCM [12] (w/ validation set) 64.5 92.7 56.1 51.4 56.3 72.2 66.2 67.0 65.8
ProAPO (w/ 1-shot) 64.7 94.4 55.4 53.5 63.0 74.3 66.6 69.0 67.6

Table 6. Comparison of our ProAPO with iCM [12]. Avg (8) denotes average results across 8 datasets.

class-specific prompts can find discriminative information
for fine-grained classification.

G.2. More Ablation of Operators

To further explore whether each operator has a role in
searching the optimal result, we show the number of each
operator causing the new optimal score during the iterations
in Tab. 8. We see that each operator in iterative optimization
may generate a better prompt. It further demonstrates that
each operator is helpful in ProAPO. Notably, the crossover
operator has the highest times to update the optimal score,
which demonstrates that it makes the model search for the
optimal prompt faster with limited iterations.

G.3. More Ablation of Group Sampling

In Tab. 9, we ablate how to select categories in the group
sampling strategy. We consider the settings for optimiz-
ing all categories in one group, selecting random categories
and the best categories with their misclassified categories
in groups. In rows a)-c) of Tab. 9, we see notable per-
formance degradation compared to full ProAPO. It further
demonstrates that optimizing salient and worst groups can
achieve comparable results with all categories and save iter-
ation costs. Moreover, we also consider replacing misclas-
sified categories with a K-Means clustering algorithm. A
performance drop appears in row d), which verifies the ef-
fectiveness of selecting misclassified categories in groups.
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Vanilla CLIP 57.9 84.5 53.9 44.7 38.8 28.6 15.9 60.2 74.0 83.2 38.2 58.0 56.9 55.6 53.4

Template Optimization Methods

PN [20] 59.6 89.1 56.2 - 44.8 49.0 18.1 67.2 78.3 88.1 - 61.0 60.2 61.1 -
ATO (w/o dataset domain) 60.4 88.9 56.8 47.0 45.0 43.7 17.9 67.4 79.9 87.8 40.0 61.2 61.5 61.0 58.3
ATO 61.3 89.4 57.4 49.2 45.4 46.4 18.4 68.1 80.5 88.5 40.2 61.8 63.9 61.9 59.3

Description Optimization Methods

ProAPO (w/o synonyms) 61.5 89.7 58.3 49.7 46.6 46.8 20.5 74.6 81.0 88.8 40.9 62.3 64.8 63.2 60.4
ProAPO (ours) 61.5 90.3 58.0 50.7 52.3 51.7 21.1 75.1 81.8 88.7 41.8 63.7 66.0 64.6 61.8

Table 7. Ablation of template and description optimization. Avg (11) and Avg (13) denote average results across 11 datasets (excluding
CUB [37] and Places [45]) and all 13 datasets, respectively. ATO denotes our automatic template optimization algorithm.

Dataset Add Del Rep Cross Mut Total

IN-1K [7] 3 4 5 5 2 19
Caltech [9] 5 5 6 12 3 31
Cars [17] 7 8 5 8 3 31
CUB [37] 9 4 10 6 2 31
DTD [5] 5 3 8 8 2 26
ESAT [13] 2 4 6 8 1 21
FGVC [21] 6 2 6 5 3 22
FLO [25] 5 3 11 5 4 28
Food [2] 5 3 4 5 2 19
Pets [27] 4 2 5 6 2 19
Places [45] 3 2 8 12 4 29
SUN [40] 4 2 3 5 2 16
UCF [34] 5 6 8 6 2 27

Sum 63 48 85 91 32 319

Table 8. Number of times for each operator that update the
optimal score. Total denotes the total number of iterations when
achieving the highest score.

G.4. Ablation of Cost Computation
In Tab. 10, we detail the time each process consumes on
ImageNet. Compared to previous LLM-generated descrip-
tion methods, we similarly query LLMs one-time to gener-
ate descriptions (i.e., process of building prompt library). In
addition, we introduce iterative processes to refine prompts
and two sampling strategies to save costs. With a few ad-
ditional costs (15 min v.s. 60 min), our ProAPO improves
previous methods by at least 2.7% on average. This further
verifies the efficiency of our method.

H. More Hyperparameter Analysis
H.1. Effect of Shot Numbers
In Tab. 11, we show the effect of the number of training
samples per category. Specifically, we conduct experiments
with 1, 2, 4, 8, and 16 shots. Moreover, we introduce the

performance of the optimal prompt searched in the test set
as the upper bound of ProAPO. Compared with CoOp [47],
ProAPO achieves remarkable performance when shots≤ 2,
which demonstrates the effectiveness of our method under
low-shot settings. Since we only adapt VLMs in a training-
free way, the performance increases finitely as the training
samples increase. We attribute two key directions for fur-
ther performance improvement in high-shot settings. First,
our result is still far from the upper bound (66.1 % in 16
shots VS 67.2 % for the upper bound). We need to improve
the prompt generation algorithm and the score function to
find better candidate prompts within the limited iterations.
Second, the upper bound of our ProAPO is much smaller
than the prompt tuning method. We need to use a larger
natural language search space (e.g., more diverse descrip-
tions, or more query times of LLMs) to further increase the
upper bound of the optimal result.

H.2. Effect of Scalar in Score Function

In Tab. 12, we show the effect of α in ??. We see that
performance improves as the α increases. This is because
the entropy constraint provides more information to select
better candidate prompts. We see a stable result when
α ∈ [5e2, 5e3], which means a better trade-off between ac-
curacy and entropy constraint. However, a high α may be
biased to the train set, thus harming the performance.

H.3. Effect of Sampled Numbers in Prompt Sam-
pling Strategy

In Fig. 1, we show the effect of sampled numbers Tsample of
Alg. 1. The Tsample = 0 means that the prompt sampling
strategy is not used. As the number of Tsample increases,
we see a slight performance gain when Tsample < 4. After
Tsample ≥ 4, a consistent improvement appears because the
initial search point achieves a higher score than the baseline.
We achieve stable results when Tsample ≥ 32.
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Times

CuPL 64.4 92.9 60.7 53.3 50.6 50.5 20.9 69.5 84.2 87.0 43.1 66.3 66.4 64.9 62.3 -

a) w/ all categories in one group 64.5 93.3 60.9 53.5 51.6 52.2 22.2 70.8 84.5 87.9 42.3 66.7 69.4 65.8 63.1 20 min
b) w/ random selected group 64.3 93.7 61.8 55.2 48.7 59.5 22.6 72.9 85.2 90.8 42.6 65.4 68.4 66.7 63.9 15 min
c) w/ performance best group 64.1 93.0 61.2 54.4 47.4 56.8 20.7 68.2 85.1 88.6 42.4 65.0 65.4 65.0 62.5 15 min
d) w/ K-Means algorithm 64.6 93.8 61.8 55.1 49.4 59.6 22.8 74.0 85.3 90.7 42.7 65.4 69.0 67.0 64.2 17 min

ProAPO (full model) 64.7 94.4 61.7 55.4 53.5 63.0 23.0 74.3 85.3 91.0 43.3 66.6 69.0 67.9 65.0 15 min

Table 9. More ablation of group sampling strategy. We ablate the ways for selecting salient groups. Times denotes the time that ProAPO
runs on ImageNet with the default setting.

Process Build Library Sample Strategy Template Optim. Description Optim.

Times 60 min 3 min 1.6 min 10.4 min

Table 10. Computation cost analysis in the ImageNet dataset.

Dataset Module TF Number of training samples UB

(RN50) 1 2 4 8 16

Avg (11) CoOp [47] ✗ 59.6 62.3 66.8 69.9 73.4 -
ProAPO ✓ 64.6 65.0 65.4 65.8 66.1 67.2

IN-1K CoOp [47] ✗ 57.2 57.8 60.0 61.6 63.0 -
ProAPO ✓ 61.5 61.6 61.5 61.6 61.6 61.7

Caltech CoOp [47] ✗ 87.5 87.9 89.6 90.2 91.8 -
ProAPO ✓ 90.3 90.4 90.6 90.7 91.0 91.1

Cars CoOp [47] ✗ 55.6 58.3 62.6 68.4 73.4 -
ProAPO ✓ 58.0 58.5 58.8 58.9 59.1 60.8

DTD CoOp [47] ✗ 44.4 45.2 53.5 60.0 63.6 -
ProAPO ✓ 52.3 52.7 53.0 53.4 53.6

ESAT CoOp [47] ✗ 50.6 61.5 70.2 76.7 83.5 -
ProAPO ✓ 51.7 53.5 55.6 57.4 58.3 62.2

FGVC CoOp [47] ✗ 9.6 18.7 21.9 26.1 31.3 -
ProAPO ✓ 21.1 21.0 21.2 21.2 21.3 21.5

FLO CoOp [47] ✗ 68.1 77.5 86.2 91.2 94.5 -
ProAPO ✓ 75.1 75.6 76.4 76.7 77.8 79.1

Food CoOp [47] ✗ 74.3 72.5 73.3 71.8 74.7 -
ProAPO ✓ 81.8 82.0 82.1 82.2 82.3 82.9

Pets CoOp [47] ✗ 85.9 82.6 86.7 85.3 87.0 -
ProAPO ✓ 88.7 89.4 89.5 89.8 89.9 91.0

SUN CoOp [47] ✗ 60.3 59.5 63.5 65.5 69.3 -
ProAPO ✓ 63.7 63.8 63.8 63.8 63.9 64.5

UCF CoOp [47] ✗ 61.9 64.1 67.0 71.9 75.7 -
ProAPO ✓ 66.0 66.8 67.1 68.1 68.9 71.4

Table 11. Scaling up to more shots. Avg (11) denotes average
results across 11 datasets. TF denotes training-free approaches.
UB denotes upper bound evaluated on the test set.

α 0 1e1 1e2 5e2 1e3 5e3 1e4 1e5

Avg (13) 62.3 63.4 64.4 64.9 65.0 64.8 63.7 63.1

Table 12. Effect of α value in Eq.6 across 13 datasets.
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Figure 1. Effect of sampled numbers Tsample.

H.4. Effect of Quality of Prompt Library

In Fig. 2 and Fig. 3, we analyze two key factors affecting the
prompt library: LLM-query prompts and generated descrip-
tions. Our ProAPO improves prompt quality even under a
small number of query prompts and descriptions, demon-
strating its effectiveness in a limited prompt library.
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Figure 2. Effect of Number of LLM-query Prompts.
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Figure 3. Effect of Number of Generated Descriptions.

I. More Qualitative Results
In Fig. 4, we show more examples of the changes in de-
scriptions with our ProAPO, including images of animals,
flowers, and textures. Similarly, we see that common de-
scriptions are removed and discriminative ones are retained
for fine-grained categories, which further verifies the effec-
tiveness of our progressive optimization.

J. Detailed Results of More Benefits by Opti-
mal Prompts

J.1. Transfer to Adapter-based Methods
In Fig. 5 and Fig. 6, we show the detailed results of pop-
ular training-free and training adapter-based methods [11,
36, 44, 48] with different prompt initialization, i.e., SOTA
method CuPL [28] and our ProAPO. Adapter-based meth-
ods with ProAPO (solid lines) consistently surpass those
with CuPL (dotted lines). It reveals that high-quality
prompts make adapters perform better. Even in low shots,
training with ProAPO achieves notable performance gains,
which further verifies its effectiveness.

J.2. Transfer to Different Backbones
In Fig. 7, we show detailed results of transferring prompts
from source to target models in thirteen datasets. Our opti-
mized prompts of ResNet50 and ViT-B/32 are reported. We
see that ProAPO achieves stable performance gains com-
pared to CuPL [28], which verifies that ProAPO transfers
easily across different backbones.

K. Detailed Results of Performance Improve-
ment Analysis

K.1. Analysis of the Effect of Single VS Ensemble
Prompts

In Tab. 13, we show detailed results of the effect of single vs
ensemble prompts. Compared to PN [20], we utilize prompt
ensembling instead of a single prompt to optimize the tem-
plate and description. We observe that ensemble templates

have a higher upper bound than the single template. Simi-
larly, our optimized templates achieve higher performance
than PN [20], even better than the best single template, fur-
ther verifying the effectiveness of our method.

K.2. Performance Improvement of Description
Methods by ProAPO

In Tab. 14, we show detailed results of description meth-
ods [23, 28, 31, 39] with our ATO and ProAPO. We see
a notable improvement in description methods by at least
2.7% average in thirteen datasets. It further verifies the ef-
fectiveness of our progressive optimization.

L. Detailed Results of Ablation Study
L.1. Ablation of Edit- and Evolution-based Opera-

tors
In Tab. 15, we show detailed ablation results of edit- and
evolution-based operators. For edit-based operators, we ob-
serve that the model with add, delete, and replace opera-
tions achieves a higher result in row d). After introduc-
ing evolution-based operators, i.e., crossover operator to
combine advantages of high-scoring candidates, and mu-
tation operator to avoid locally optimal solutions, we see
an increase in performance in rows e)-g). It confirms that
evolution-based operators make the model search the opti-
mal prompt faster with limited iterations.

L.2. Ablation of Two Sampling Strategies
In Tab. 16, we show detailed ablation results of two sam-
pling strategies. Without the prompt sampling, we see a
slight decrease in times while results drop in row a). It ver-
ifies the effectiveness of the prompt sampling. Without the
group sampling to select salient categories for optimization,
we observe a notable increase in time costs (from 15 min to
300+ min, 20 times) yet similar results in row b) and the
full model. It reveals that group sampling simultaneously
improves performance and efficiency.

L.3. Ablation of Different Score Functions
In Tab. 17, we show detailed ablation results of score
functions. Accuracy obtains the worst result as the score
function due to the overfitting problem. Our full model
with accuracy and entropy constraints as the score func-
tion achieves the SOTA result. The score function with only
accuracy or entropy constraint achieves suboptimal results,
suggesting a trade-off process between them.
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• A California Gull is white with gray on

its back and wings.

• The California Gull is a white bird with

a light gray back and wings.

• A California Gull is a medium-sized,

white-headed gull with a light gray

back and wings.

• California Gull is a white bird with a

black head and bill.

• The California Gull is a white and gray 

bird with a black head.

• The California Gull is a medium sized 

gull with a white and black head, a 

gray back, and a black wingtips.

• The Glaucous winged Gull has a white

head and body with gray wings.

• Glaucous-winged Gull is a medium-

sized gull with a white head and body, 

grey wings, and a yellow beak.

• The Glaucous-Winged Gull has a white

head and a yellow beak.

• An image of a Glaucous winged Gull, a

type of bird.

• A Glaucous winged Gull on the beach.

• The Glaucous winged Gull is a large,

white bird with grey wings.

• This species of gull has a slate-gray

back and wings, and white underparts.
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• Fire lily is a beautiful orange flower.

• A fire lily flower has long, pointed

petals that are red or orange in color.

• The fire lily is a type of flower that is 

native to South America.

• A fire lily flower is typically red or

orange and has six petals.

• A fire lily flower is typically a deep red 

color with yellow spots.

• A fire lily is a type of flower that is

bright red with yellow spots.

• A fire lily (scientific name: Crinum 

amabile) is a type of lily that is deep

red with long thin petals.

• A tiger lily is a type of flower with 

orange or red petals and black spots.

• Tiger lily flowers are large, orange-red 

flowers with black spots.

• Tiger lily (Lilium columbianum) flowers 

are orange with black spots and have

long, trumpet-shaped petals.

• The tiger lily is a member of the lily

family, a beautiful flower.

• The tiger lily is a flower that is red with

orange stripes.

• The tiger lily (Lilium columbianum) is a

species of lily that is native to 

northwestern North America.
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• Birman cats are medium to large in size, 

with long, silky fur and big, blue eyes.

• A Birman is a medium- to long-haired

cat with a silky coat and a dense

undercoat.

• Birman cats are medium to large in size, 

with long, silky fur.

• Birmans are characterized by their deep 

blue eyes and white gloves in paws.

• They have a pointed coloration, with

darker fur on the face, ears, tail, and 

legs, contrasting with their lighter body.

• Birman cats are medium-sized with a

compact body and medium-length fur.

• A Ragdoll is characterized by its blue 

eyes, medium-long coat, and its floppy,

rag-doll-like nature.

• Feature in Ragdolls a pointed color 

pattern with soft, blended shades on

their body, but often lack the precise 

white markings seen in Birmans.

• Ragdoll cats are large and muscular, 

with long, fluffy fur.

• Ragdoll cats are large, gentle cats with

semi-long fur.

• A Ragdoll is a medium-sized to large 

cat that has long, silky fur.

• Ragdoll cats are large, longhaired cats.
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d • Crosshatched material is made up of a

series of intersecting lines, usually in a

criss-cross pattern.

• A crosshatched surface has a series of 

intersecting diagonal lines.

• Crosshatched textures usually have a

crisscross pattern.

• A crosshatched texture is a series of 

intersecting lines that create a pattern 

of squares or diamonds.

• A crosshatched object is one that has a 

series of parallel lines intersecting each 

other to form a series of small squares

or diamonds.

• Interlaced surfaces have a wavy or

zigzag appearance.

• Interlaced material looks like a series of

horizontal lines that are slightly offset 

from each other.

• Interlaced textures are scanned images 

into even and odd scan lines.

• A surface that is interlaced has a criss-

crossing pattern.

• An interlaced texture looks like a series 

of lines that cross over each other.

• A surface that is interlaced has a series

of lines that are crossed by a series of

other parallel lines.

Figure 4. Qualitative analysis of class-specific prompt optimization by ProAPO. Shaded red and blue words denote common and
discriminative descriptions in two confused categories.
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(c) Cars.
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(d) DTD.

1 2 4 8 16
Shots Number

18

20

22

24

26

28

30

32

Av
g 

(1
1)

Tip w/ CuPL
Tip-X w/ CuPL
APE w/ CuPL
Tip w/ ProAPO
Tip-X w/ ProAPO
APE w/ ProAPO

(e) FGVC.
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(h) Food.
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(j) SUN.
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(k) UCF.

Figure 5. Results of training-free adapter-based methods with different initial prompts. Solid and dotted lines denote prompt initial-
ization with ProAPO and CuPL, respectively. We see that our ProAPO consistently improves adapter-based methods.
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Figure 6. Results of training adapter-based methods with different initial prompts. Solid and dotted lines denote prompt initialization
with ProAPO and CuPL, respectively. We see that our ProAPO consistently improves adapter-based methods.



RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 3.3 0.0 2.3 2.7 3.2 0.5 0.8 0.2

3.6 0.7 2.5 3.0 3.1 0.6 0.8 0.6

3.4 0.1 2.6 2.6 3.0 0.4 0.9 0.6
0

1

2

3

4

(a) ImageNet

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 4.0 1.1 1.7 1.1 1.1 -0.3 -0.5 0.7

5.8 2.1 2.8 2.1 1.2 0.3 -0.2 0.9

5.5 1.7 3.2 1.4 1.5 0.5 -0.4 0.7
1

0

1

2

3

(b) Caltech

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 1.6 -2.1 0.3 0.6 0.8 -1.6 -0.1 0.0

4.1 0.2 0.6 1.2 1.1 -0.1 0.2 0.5

3.2 0.7 1.3 1.2 1.3 -0.1 0.1 0.4
2

1

0

1

2

(c) Cars

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 4.3 -4.3 1.6 1.9 -1.1 0.3 1.0 0.7

6.0 0.3 3.0 2.4 1.4 0.5 0.6 1.9

4.5 1.6 3.7 3.0 1.5 0.7 1.2 1.6
2

0

2

4

(d) CUB
RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model
C

uP
L

R
N

50
Vi

T-
B

/3
2

So
ur

ce
 M

od
el 10.6 9.4 7.7 9.5 10.5 11.1 9.4 2.1

13.5 9.5 10.6 12.9 11.4 13.5 12.3 3.2

12.7 10.6 10.6 11.3 11.7 13.2 10.6 2.9
0

5

10

(e) DTD

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 2.9 0.3 0.7 2.2 2.7 2.5 2.9 1.5

5.2 1.1 1.8 3.7 4.4 4.7 3.3 2.8

3.4 2.1 2.8 3.2 4.0 3.6 3.8 2.6
0

1

2

3

4

5

(f) FGVC

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 9.5 -3.0 6.6 4.7 0.9 0.7 -6.3 -1.8

23.1 12.0 13.9 9.3 9.4 11.4 -3.6 3.6

21.5 7.1 19.1 14.1 10.2 15.1 -1.7 2.2
5

0

5

10

(g) ESAT

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 6.6 -5.3 3.5 3.3 0.2 -1.7 -0.4 1.5

14.9 -1.2 8.3 9.4 7.2 8.2 9.6 4.3

11.1 6.3 8.3 9.4 5.7 6.3 8.0 3.0 0.0

2.5

5.0

7.5

10.0

(h) FLO

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 6.4 -0.7 1.0 0.5 0.3 -0.7 -0.2 -0.8

7.8 0.6 2.0 1.1 0.9 0.7 0.0 0.5

7.7 1.3 2.1 1.1 0.7 0.9 0.1 0.5
1

0

1

2

3

(i) Food

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 3.3 -0.3 0.2 2.2 0.5 0.1 -0.1 0.4

5.5 2.7 3.5 3.7 1.2 1.0 0.8 0.5

5.2 2.3 4.2 3.6 1.4 1.0 0.8 0.2
2

0

2

4

(j) Pets

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 2.8 2.7 3.2 2.6 3.1 1.8 1.1 1.9

3.6 2.4 3.3 2.9 3.4 1.4 1.2 2.5

3.2 2.4 3.4 2.8 3.3 1.9 1.3 2.5 1

2

3

(k) Places
RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model
C

uP
L

R
N

50
Vi

T-
B

/3
2

So
ur

ce
 M

od
el 5.0 3.3 4.2 6.5 5.6 1.0 1.8 0.4

5.7 3.6 3.9 7.1 4.9 1.3 1.4 1.1

5.7 3.4 4.5 7.2 4.7 1.2 1.5 1.3 1

2

3

4

5

(l) SUN

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 6.0 -4.8 5.5 2.6 3.3 0.8 3.3 -1.5

9.1 -0.1 6.2 4.0 4.0 4.8 4.8 -0.3

6.9 -2.2 8.1 3.8 3.6 2.0 4.6 0.0
2.5

0.0

2.5

5.0

7.5

(m) UCF

RN50

RN10
1

ViT-
B/32

ViT-
B/16

ViT-
L/14

Ope
nC

LIP

EVA02

Sig
LIP

Target Model

C
uP

L
R

N
50

Vi
T-

B
/3

2
So

ur
ce

 M
od

el 5.4 -0.2 3.1 3.2 2.7 1.1 1.0 0.2

9.0 2.8 5.1 5.2 4.5 4.2 2.7 1.6

7.9 3.0 6.1 5.3 4.3 4.0 2.6 1.3
0

2

4

6

(n) Avg (11)

Figure 7. Results of prompt transfer to different backbones. The value denotes performance gains compared to vanilla VLMs. Our
optimized prompts of ResNet50 and ViT-B/32 are reported. We see that we achieve stable performance gains compared to CuPL [28].
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CLIP (a photo of a {}) 57.9 84.5 53.9 38.8 28.6 15.9 60.2 74.0 83.2 58.0 56.9 55.6

Single Prompt

PN [20] 59.6 89.1 56.2 44.8 49.0 18.1 67.2 78.3 88.1 61.0 60.2 61.1
Best Single* 60.2 89.2 57.9 45.0 46.0 18.3 68.1 81.8 88.3 61.5 62.6 61.7

Ensemble Prompt

ATO (ours) 61.3 89.2 57.9 45.4 44.7 18.2 68.1 81.8 88.5 61.8 63.9 61.9
Best Ensemble* 61.5 90.0 58.4 47.0 49.1 18.7 69.9 82.2 89.4 62.1 64.8 63.0

Table 13. Analysis of the effect of single vs ensemble prompts. * denotes results evaluated in the test set. ATO is our automatic template
optimization algorithm. We see that our optimized templates achieve higher results than PN [20], even better than the best single template.
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Vanilla CLIP 62.1 91.2 60.4 51.7 42.9 43.9 20.2 66.0 83.2 86.8 39.9 62.1 60.9 61.8 59.3

DCLIP [23] 63.3 92.7 59.4 52.7 44.1 38.4 19.4 66.1 83.9 88.1 41.2 65.0 65.8 62.4 60.0
+ ATO 63.8 93.0 60.3 52.5 46.5 54.1 21.8 68.9 84.0 88.4 41.5 65.4 66.0 64.7 62.0
+ ProAPO 64.1 93.2 60.6 53.6 48.2 59.4 22.6 71.5 84.2 88.7 42.7 66.0 68.0 66.0 63.3
∆ + 0.8 + 0.5 + 1.2 + 0.9 + 4.1 + 21.0 + 3.2 + 5.4 + 0.3 + 0.6 + 1.5 + 1.0 + 2.2 + 3.6 + 3.3

CuPL-base [28] 64.0 92.3 60.1 54.3 47.2 42.4 21.7 68.7 84.3 88.8 42.0 66.2 66.7 63.8 61.4
+ ATO 64.2 93.3 60.9 54.8 47.8 53.1 22.2 70.4 84.9 89.2 42.3 65.5 67.4 65.3 62.8
+ ProAPO 64.4 94.2 61.8 55.9 48.1 62.1 23.2 74.4 85.4 91.0 42.7 65.6 68.6 67.2 64.4
∆ + 0.4 + 1.9 + 1.7 + 1.6 + 0.9 + 19.7 + 1.5 + 5.7 + 1.1 + 2.2 + 0.7 -0.6 + 1.9 + 3.4 + 3.0

CuPL-full [28] 64.4 92.9 60.7 53.3 50.6 50.5 20.9 69.5 84.2 87.0 43.1 66.3 66.4 64.9 62.3
+ ATO 64.5 93.7 61.0 54.0 52.0 58.7 22.1 70.5 84.6 89.2 43.2 66.4 67.5 66.4 63.6
+ ProAPO 64.7 94.4 61.7 55.4 53.5 63.0 23.0 74.3 85.3 91.0 43.3 66.6 69.0 67.9 65.0
∆ + 0.3 + 1.5 + 1.0 + 2.1 + 2.9 + 12.5 + 2.1 + 4.8 + 1.1 + 4.0 + 0.2 + 0.3 + 2.6 + 3.0 + 2.7

GPT4Vis [39] 63.5 93.1 61.4 52.7 48.5 47.0 21.4 69.8 84.3 88.1 42.7 64.2 65.7 64.3 61.7
+ ATO 63.8 93.4 61.2 53.8 49.0 54.0 22.4 70.8 84.7 88.1 42.6 64.7 66.8 65.3 62.7
+ ProAPO 64.4 93.7 61.8 55.4 49.3 62.6 23.9 73.8 85.4 90.7 42.8 65.5 68.2 67.2 64.4
∆ + 0.9 + 0.6 + 0.4 + 2.7 + 0.8 + 15.6 + 2.5 + 4.0 + 1.1 + 2.6 + 0.1 + 1.3 + 2.5 + 2.9 + 2.7

AdaptCLIP [31] 63.3 92.7 59.7 53.6 47.4 51.3 20.8 67.2 84.2 87.6 41.9 66.1 66.5 64.2 61.7
+ ATO 63.9 93.2 60.4 54.2 47.9 55.5 22.4 69.1 84.7 88.8 42.3 66.3 67.6 65.4 62.8
+ ProAPO 64.4 93.7 61.8 55.5 49.6 61.6 23.3 73.8 85.4 91.0 42.6 66.5 68.6 67.2 64.5
∆ + 1.1 + 1.0 + 2.1 + 1.9 + 2.2 + 10.3 + 2.5 + 6.6 + 1.2 + 3.4 + 0.7 + 0.4 + 2.1 + 3.0 + 2.8

Table 14. Performance improvement of description methods by our ProAPO. Avg (11) and Avg (13) denote average results across 11
datasets (excluding CUB [37] and Places [45]) and all 13 datasets, respectively. ∆ denotes performance gains compared to baseline.
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Vanilla CLIP (ViT-B/32) 62.1 91.2 60.4 51.7 42.9 43.9 20.2 66.0 83.2 86.8 39.9 62.1 60.9 61.8 59.3

edit-based generation
a) ✓ 63.8 93.6 60.0 54.6 51.8 59.0 21.8 74.0 82.2 86.7 43.0 65.7 66.8 66.0 63.3
b) ✓ ✓ 64.6 94.0 60.9 55.0 52.6 59.3 21.8 72.0 83.2 88.0 43.2 66.4 68.0 66.4 63.8
c) ✓ ✓ 64.4 94.0 61.0 55.2 52.3 59.7 22.4 71.9 84.0 87.7 43.2 66.4 67.8 66.5 63.8
d) ✓ ✓ ✓ 64.6 93.6 60.8 54.4 53.1 60.1 22.2 74.7 82.4 87.2 43.4 66.5 68.6 66.7 64.0

evolution-based generation
e) ✓ ✓ ✓ ✓ 64.6 94.3 61.2 55.0 53.2 62.6 22.9 73.9 84.3 88.0 43.1 66.8 68.5 67.3 64.5
f) ✓ ✓ ✓ ✓ 64.7 94.3 61.4 55.1 52.9 61.4 22.6 74.0 83.6 87.7 43.4 66.7 68.3 67.1 64.3
g) ✓ ✓ ✓ ✓ ✓ 64.7 94.4 61.7 55.4 53.5 63.0 23.0 74.3 85.3 91.0 43.3 66.6 69.0 67.9 65.0

Table 15. Ablation of edit- and evolution-based operators.
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Times

a) w/o prompt sampling 64.4 93.8 61.8 55.4 51.8 60.0 23.2 74.0 85.1 90.7 43.0 66.0 69.3 67.3 64.5 12 min
b) w/o group sampling 64.8 94.5 61.7 55.5 53.6 63.5 23.2 75.3 85.4 90.8 43.3 66.7 69.8 68.1 65.2 306 min
c) w/o sampling strategies 64.5 93.4 57.4 54.8 53.6 63.2 23.4 76.8 83.8 86.9 43.3 66.1 69.7 67.2 64.4 302 min

ProAPO (full model) 64.7 94.4 61.7 55.4 53.5 63.0 23.0 74.3 85.3 91.0 43.3 66.6 69.0 67.9 65.0 15 min

Table 16. Ablation of two sampling strategies.
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a) w/ only accuracy 64.0 93.0 60.8 54.2 49.1 55.5 20.4 68.3 84.8 88.4 41.9 64.6 65.1 64.9 62.3
b) w/ only entropy constrain 64.3 93.4 61.6 54.8 49.3 56.7 22.3 69.9 85.2 89.1 42.4 65.1 66.7 65.8 63.1

ProAPO (full model) 64.7 94.4 61.7 55.4 53.5 63.0 23.0 74.3 85.3 91.0 43.3 66.6 69.0 67.9 65.0

Table 17. Ablation of different score functions.
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