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6. Details of Compositional Prompt Genera-
tion

For attribute and layout prompt generation, we first lever-
age the world knowledge of LMMs to generate common ob-
jects spanning various categories, including animals, plants,
fruits, household items, clothing, vehicles, food, musical in-
struments, and electronic devices. Attributes such as color,
shape, texture, and 2D/3D spatial relations are also incorpo-
rated. Using predefined templates, we systematically com-
bine objects with attributes, numeracy, and spatial relations
to construct compositional prompts. The templates are de-
tailed below:
Attribute.
• A {adj} {noun}
• A {adj1} {noun1} and a {adj2} {noun2}
Layout

• A {noun1} {spatial 2d/spatial 3d} a {noun2}
• {quantity} {object singular/object plural}
• {quantity} {object singular/object plural} and
{quantity} {object singular/object plural}

For non-spatial and complex relations, we adopt in-
context learning to generate diverse prompts based on
LMMs:

Instruction for Non-spatial Prompt Generation

System Prompt
You are an assistant dedicated to generating natural
prompts that contain subjects and objects by using non-
spatial relationship words such as wear, watch, speak,
hold, have, run, look at, talk to, jump, play, walk with,
stand on, and sit on.

User Prompt
Input: Generate a prompt that contains subjects and ob-
jects by using non-spatial relationship words.
Output: Two friends are watching a movie together on a
large TV screen.

Input: Generate a prompt that contains subjects and ob-
jects by using non-spatial relationship words.
Output: Two athletes are running along the beach as the
sun sets behind them.

Input: Generate a prompt that contains subjects and ob-
jects by using non-spatial relationship words.
Output:

Instruction for Complex Prompt Generation

System Prompt
You are an assistant dedicated to generating natural
compositional phrases or prompts, containing multiple
objects (number ≥ 2) with one or several adjectives
from color, shape, and texture descriptions and spa-
tial (left/right/top/bottom/next to/near/on side of) or non-
spatial relationships.

User Prompt
Input: Please generate a compositional phrase or sentence
containing multiple objects with one or several adjectives
and relationships.
Output: The fluffy white cat sat next to the black leather
couch.

Input: Please generate a compositional phrase or sentence
containing multiple objects with one or several adjectives
and relationships.
Output: The sleek black phone rested beside the textured
brown leather wallet.

Input: Please generate a compositional phrase or sentence
containing multiple objects with one or several adjectives
and relationships.
Output: The red spherical balloon floated above the
striped rectangular kite and the green triangular flag.

Input: Please generate a compositional phrase or sentence
containing multiple objects with one or several adjectives
and relationships.
Output: The golden, sunlit leaves floated softly above
the jagged, rust-colored rocks, their delicate, lacy shapes
casting playful shadows on the uneven ground.

Input: Please generate a compositional phrase or sentence
containing multiple objects with one or several adjectives
and relationships.
Output:

7. Details of Self-Questioning Prompt

We follow a divide-and-conquer strategy, where the LMM
first extracts the atomic concepts from the given prompt.
These atomic concepts are then transformed into simple
yes-or-no questions. The specific instructions are shown in
the following:
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Instruction for Self-Questioning on Attribute
(Color, Shape, and Texture) Prompt

System Prompt
You are an assistant dedicated to transforming a sentence
into several questions. You should first divide it into sim-
ple concepts and relations, and then provide the corre-
sponding questions. Avoid using pronouns, such as he,
she, it, and they.

User Prompt
Input: A white harp and a rust soup.
Output: Concepts and relations: a white harp, a rust soup;
Questions: Is there a white harp? Is there a rust soup?

Input: A quarter circle lily and a hexagon mirror.
Output: Concepts and relations: a quarter circle lily, a
hexagon mirror; Questions: Is there a quarter-circle lily?
Is there a hexagon mirror?

Input: Shiny mop and metal key holder.
Output: Concepts and relations: a shiny mop, a metal key
holder; Questions: Is there a shiny mop? Is there a metal
key holder?

Input: {prompt}
Output:

Instruction for Self-Questioning on Layout (Spatial,
3D-Spatial, and Numeracy) Prompt

System Prompt
You are an assistant dedicated to transforming a sentence
into several questions. You should first divide it into sim-
ple concepts and relations, and then provide the corre-
sponding questions. Avoid using pronouns, such as he,
she, it, and they.

User Prompt
Input: A pancake on the left of a pasta.
Output: Concepts and relations: a pancake, a pasta, a pan-
cake is on the left of a pasta; Questions: Is there a pan-
cake? Is there a pasta? Is a pancake on the left of a pasta?

Input: A lamp behind a screwdriver.
Output: Concepts and relations: a lamp, a screwdriver, a
lamp is behind a screwdriver; Questions: Is there a lamp?
Is there a screwdriver? Is a lamp behind a screwdriver?

Input: Three light bulbs and eight pumpkins.
Output: Concepts and relations: three light bulbs, eight
pumpkins; Questions: Are there three light bulbs? Are
there eight pumpkins?

Input: {prompt}
Output:

Instruction for Self-Questioning on Non-Spatial and
Complex Prompt

System Prompt
You are an assistant dedicated to transforming a sentence
into several questions. You should first divide it into sim-
ple concepts and relations, and then provide the corre-
sponding questions. Avoid using pronouns, such as he,
she, it, and they.

User Prompt
Input: A chef is holding a knife and preparing a dish on
the stove.
Output: Concepts and relations: a chef, a knife, a dish,
the stove, a chef is holding a knife, a chef is preparing a
dish; Questions: Is there a chef? Is there a knife? Is there
a dish? Is there a stove? Is a chef holding a knife? Is a
chef preparing a dish?

Input: The green teapot is located near the round oak ta-
ble.
Output: Concepts and relations: a green teapot, a round
oak table, the green teapot is near the round oak table, the
round oak table is near the green teapot; Questions: Is
there a green teapot? Is there a round oak table? Is the
green teapot near the round oak table? Is the round oak
table near the green teapot?

Input: The chunky wooden lamp casts a warm glow on
the tattered blue curtains.
Output: Concepts and relations: a chunky wooden lamp,
a warm glow, tattered blue curtains, a chunky wooden
lamp casts a warm glow, the warm glow is on the tat-
tered blue curtains; Questions: Is there a chunky wooden
lamp? Is there a warm glow? Are there tattered blue cur-
tains? Is a chunky wooden lamp casting a warm glow? Is
the warm glow on the tattered blue curtains?

Input: The vibrant orange tomato sat atop the crisp green
leaf and the juicy red watermelon.
Output: Concepts and relations: a vibrant orange tomato,
a crisp green leaf, a juicy red watermelon, a vibrant or-
ange tomato is atop a crisp green leaf, a vibrant orange
tomato is atop a juicy red watermelon; Questions: Is there
a vibrant orange tomato? Is there a crisp green leaf?
Is there a juicy red watermelon? Is the vibrant orange
tomato atop the crisp green leaf? Is the vibrant orange
tomato atop the juicy red watermelon?

Input: {prompt}
Output:

8. Derivation of KC-DPO

8.1. Preliminary
Reinforcement Learning from Feedback with Re-
ward Model. With collected preference pairs D =
{(xi, yiw, y

i
l)}Ni=1 from human feedback [43] or AI feed-
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back [32, 77], a reward model rϕ(x, y) is trained to max-
imize the likelihood [53]:

pϕ(yw ≻ yl) =
exp(rϕ(x, yw))

exp(rϕ(x, yw) + exp(rϕ(x, yl))
, (7)

where yw and yl denote the preferred and dispreferred re-
sponses. The likelihood maximization objective can be im-
plemented by minimizing the following loss for binary clas-
sification [53]:

LR = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)− r(x, yl))], (8)

where σ denotes a sigmoid function. After the training
phase, the reward model could provide a reward value as
feedback for any prompt-response pair (x, y) on the fly.

Based on the feedback from the reward model, a lan-
guage model πθ can be optimized via RL fine-tuning [29,
30, 53], which is formulated as:

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)]−βKL(πθ(y|x)||πref(y|x)),
(9)

where β controls the strength of following the distribu-
tion of the reference model and avoids potential risks of
model degradation. KL(·||·) refers to Kullback–Leibler di-
vergence. The language model can not be directly opti-
mized by gradient descent using this objective because of
the discreteness of language. Existing work [2, 43, 61, 80]
adopts RL, specifically the PPO [58] algorithm, to maxi-
mize the reward function:

r(x, y) = rϕ(x, y)−β(log πθ(y|x)−log πref (y|x)). (10)

Direct Preference Optimization. Though the above
two-stage learning strategy has achieved remarkable
progress [43, 66], it requires training a reward model and the
final performance highly depends on it. To alleviate such
dependency, DPO [53] was proposed by deriving a closed
form of the preference optimization process, which avoids
training a reward model. The DPO method uses an alter-
native parameterization to learn an implicit reward and the
loss is written as:

LDPO = −E(x,zw,zl)∼D[
log σ

(
β log

πθ(zw|x)
πref(zw|x)

− β log
πθ(zl|x)
πref(zl|x)

)]
. (11)

8.2. Kernel-based Continuous DPO
The DPO objective is proposed for optimizing language
models which represent language as discrete tokens, and
model token distributions as categorical distributions. Such
discreteness and categorical distribution modeling make it
simple to calculate the likelihood π(y|x) in DPO. As dis-
cussed in Sec. 3.2, however, it is intractable to calculate the

likelihood π(H|x) for continuous LMMs where H denotes
a continuous feature.

To model the distribution of the intermediate continu-
ous feature, we first decomposite the log-likelihood per time
step and make the Gaussian assumption as,

log π(H | x)

=

L∑
i=1

log π(hi | H<i, x)

=

L∑
i=1

log
exp

(
− 1

2
(hi − µi)

⊤Σ−1
i (hi − µi)

)√
(2π)D|Σi|

=

L∑
i=1

[
−1

2
(hi − µi)

⊤Σ−1
i (hi − µi)

]
−

L∑
i=1

log
√

(2π)D|Σi|,

(12)
where L denotes the sequence length of the continuous fea-
ture4 and D refers to the feature dimension.

We assume that the Gaussian distribution is isotropic and
all dimensions share the same variance value σ̄, i.e., Σi ≈
diag(σ1, ..., σD) and σ1 = ... = σD = σ̄, attaining:

log π(H | x)

=

L∑
i=1

[
−1

2
(hi − µi)

⊤Σ−1
i (hi − µi)

]
−

L∑
i=1

log
√

(2π)D|Σi|

≈ − 1

2σ̄

L∑
i=1

[
(hi − µi)

⊤(hi − µi)
]
− D

2

L∑
i=1

log 2πσ̄

= − 1

2σ̄

L∑
i=1

∥hi − µi∥22 − C.

(13)
The above simplification reformulates the likelihood into an
L2-norm expression due to the Gaussian assumption.

Next, with the simplified likelihood of continuous fea-
tures, we induce the continuous DPO by substituting
Eqn. (13) into Eqn. (11):

4To preserve visual details, continuous LMMs [13, 20, 63] often repre-
sent a continuous feature with a sequence of feature vectors. For example,
L = 64 in DreamLLM [13].
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LDPO

= −E(x,zw,zl)∼D

[
log σ

(
β log

πθ(zw|x)
πref(zw|x)

− β log
πθ(zl|x)
πref(zl|x)

)]
≈ −E(x,zw,zl)∼D

[
log σ

(
− σ̄β

2

L∑
i=1

∥hw
i − µi∥22 − βC

+
β

2σ̄

L∑
i=1

∥hw
i − µref

i ∥22 + βC

− β

2σ̄

L∑
i=1

∥hl
i − µi∥22 − βC

+
β

2σ̄

L∑
i=1

∥hl
i − µref

i ∥22 + βC

)]

= −E(x,zw,zl)∼D

[
log σ

( β

2σ̄

L∑
i=1

(−∥hw
i − µi∥22 + ∥hw

i − µref
i ∥22)

− ∥hl
i − µi∥22 + ∥hl

i − µref
i ∥22

)]

≈ −E(x,zw,zl)∼D

[
log σ

( β

2σ̄
(−∥H −Hw∥2F + ∥Hr −Hw∥2F )

+ ∥H −Hl∥2F − ∥Hr −Hl∥2F
)]

,

where we make µi ≈ hi and µref
i ≈ href

i , i.e., we approx-
imate the mean vector with the online output of the policy
network and the reference network.

Finally, we introduce the kernel function theory and ob-
tain a generalized form of the continuous DPO:

LKC-DPO = −E(x,Hw,Hl)∼D

[
log σ

(
γ(−k(H,Hw)

+ k(Hr,Hw) + k(H,Hl)− k(Hr,Hl))

)]
,

(14)

where γ = β
σ̄2 is a hyperparameter that controls the balance

between the reference model and preference optimization.
A higher value of γ encourages the optimized policy model
to adhere to the reference model more closely. k(·, ·) repre-
sents a generalized distance measurement function, and the
objective formulated in Eqn. (14) is named as Kernel-based
Continuous DPO (KC-DPO).

9. Implementation Details
We employ Low-Rank Adaptation (LoRA) [25] for efficient
optimization of SEED-LLaMA and DreamLLM, using the
same LoRA settings for both models, with a LoRA rank
and hyperparameter α of 32. For SEED-LLaMA, the LLM
backbone of DreamLLM is optimized for 1k steps, with a
learning rate of 5× 10−5, 100 warm-up steps, and a cosine

learning rate scheduler. The batch size is set to 32 with a
gradient accumulation step of 4. The β hyperparameter in
DPO (Eqn. (2)) is set to 0.2.

For DreamLLM, training is conducted for 2k steps with a
learning rate of 8× 10−6, 200 warm-up steps, and the same
cosine learning rate scheduler. The batch size and gradient
accumulation step remain at 32 and 4, respectively. The
adherence degree γ in KC-DPO (Eqn. (6)) is set to 3.0.

10. DPO Training Data
In each iteration, SEED-LLaMA and DreamLLM are in-
structed to generate 16k prompts encompassing a wide
spectrum of compositional scenarios, as detailed in Step 1
of Sec. 3.1. For discrete optimization of SEED-LLaMA, we
generate 10 images per prompt, selecting the top-ranked and
last-ranked representations—scored via VQA-based self-
feedback—as the chosen and rejected pairwise training
samples, respectively.

For continuous optimization of DreamLLM, to improve
tuning stability, we generate 30 images per prompt and se-
lect the top 10 and last 10 representations as chosen and
rejected samples. These are combined to produce 100 pairs
per prompt.

11. Additional Experimental Results
11.1. Additional Quantitative Results
Performance Improvement over Iterations. We show
the performance improvement of the proposed SILMM
method over three iterations, on detailed categories of T2I-
CompBench++ [28], DPG-Bench [26], and TIFA [27], as
shown in Tab. 4, Tab. 5, Tab. 6, respectively. These re-
sults demonstrate that the proposed method yields improve-
ments across most categories as the iteration progresses.
However, due to limitations in multiple capabilities—such
as prompt generation, decompositional question generation,
VQA-based self-feedback, and basic visual generation—the
rate of improvement slows and may eventually reach a sat-
uration point.
In-depth Analysis of DropDiv. Fig. 9, Fig. 10, and
Fig. 11 present comparisons of three settings of Drop-
Div for generating diverse continuous representations, with
alignment scores evaluated on the validation set of T2I-
CompBench++. “First Half”, “Second Half”, and “All”
represent adding and performing dropout operations in the
first (bottom) layers, the last (top) layers, and all layers of
DreamLLM. Each prompt in the dataset is used to generate
ten distinct representations and corresponding images us-
ing DreamLLM. The figure is divided into three sections:
(a) Color, Shape, and Texture, (b) Spatial, 3D Spatial, and
Numeracy, and (c) Non-spatial and Complex.
In-depth Analysis of Negative Sampling. In Tab. 7, we
compare different negative sampling ranges on 8 categories
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Figure 9. Comparison of perturbing different layers of LMMs for
diverse continuous representation generation on Color, Shape, and
Texture categories of T2I-CompBench++.
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Figure 10. Comparison of perturbing different layers of LMMs
for diverse continuous representation generation on Spatial, 3D
Spatial, and Numeracy categories of T2I-CompBench++.
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Figure 11. Comparison of perturbing different layers of LMMs for
diverse continuous representation generation on Non-spatial and
Complex categories of T2I-CompBench++.

of T2I-CompBench++. The results show that different neg-
ative sampling ranges may have different influences for dif-
ferent categories. For instance, soft sampling is beneficial
to the attribute categories while may not be the best choice
for numeracy and non-spatial categories.

11.2. Additional Qualitative Results
There has been a surge of research interests in tackling the
challenging cross-modal misalignment [9, 16, 36, 47, 71]
problem in the multimodal learning community. To in-
tuitively understand the improvement of SILMM on text-
image alignment in compositional or complex scenarios, we
list some images generated by SEED-LLaMA and SILMM
on T2I-CompBench++ [28] in Fig. 12, and images gen-
erated by DreamLLM and SILMM in Fig. 13. Besides,
we also show examples on the recent benchmark DPG-
Bench [26] which contains more challenging long and com-
plex prompts in Fig. 14 and Fig. 15.

As shown in these visual examples, SILMM consis-
tently outperforms the base models, i.e., SEED-LLaMA and
DreamLLM in terms of text-image alignment, especially in
more compositional and complex scenarios. In the images
generated by SEED-LLaMA and DreamLLM, we observe
noticeable misalignments and inaccuracies when handling
intricate relationships between objects and scene details. In
contrast, SILMM is able to produce more coherent and con-
textually accurate images, demonstrating its effectiveness
across different compositional scenarios, especially long-
form and highly descriptive ones.

12. Future Work
In future work, we aim to enhance the efficiency of LMMs
for image synthesis through strategies such as efficient tun-
ing [21, 41] and accelerated inference [59]. Additionally,
we plan to investigate the interplay between intrinsic un-
derstanding and generative capabilities in LMMs, aiming to
foster their mutual enhancement.
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Table 4. Performance improvement of the proposed SILMM method over three iterations (Iter.) for compositional text-to-image generation
on the 8 categories of the T2I-CompBench++ [28] benchmark. Alignment scores are calculated using expert understanding models (e.g.,
VQA or object detection models) recommended by T2I-CompBench++ [28].

Method
Attribute Layout

Non-spatial Complex
Color Shape Texture Spatial 3D Spatial Numeracy

SEED-LLaMA [19] 17.87 19.43 20.31 5.72 21.72 33.43 28.86 21.46
+ SILMM (Iter. 1) 37.41 33.12 39.46 9.16 26.07 35.75 29.80 26.17

+ SILMM (Iter. 2) 39.81 37.62 38.00 8.60 25.42 38.59 29.62 27.14
+ SILMM (Iter. 3) 41.91 36.27 40.63 11.90 25.74 37.70 29.82 28.28

DreamLLM [13] 21.04 21.86 25.91 6.13 25.62 39.46 28.76 23.01
+ SILMM (Iter. 1) 32.47 32.25 39.84 8.87 27.60 40.07 28.82 25.31

+ SILMM (Iter. 2) 36.39 35.82 47.28 12.13 27.76 41.44 28.94 26.87
+ SILMM (Iter. 3) 35.61 36.83 47.39 12.70 28.58 41.61 29.00 26.43

Table 5. Performance improvement of the proposed SILMM method over three iterations (Iter.) for complex text-to-image generation on
the 5 categories of the DPG-Bench [26] benchmark. Alignment scores are calculated using expert understanding models (e.g., VQA or
object detection models) recommended by DPG-Bench.

Method Color Shape Texture Spatial 3D Spatial All

SEED-LLaMA [19] 65.59 55.87 62.00 62.77 59.46 47.12
+ SILMM (Iter. 1) 69.73 70.33 69.40 73.27 68.65 57.07

+ SILMM (Iter. 2) 73.41 69.04 71.00 74.47 69.18 56.94
+ SILMM (Iter. 3) 73.55 70.48 68.50 74.79 68.64 57.31

DreamLLM [13] 74.47 65.86 63.80 74.24 46.00 53.93
+ SILMM (Iter. 1) 74.47 73.31 67.00 80.39 52.80 60.95

+ SILMM (Iter. 2) 75.38 76.61 69.20 84.41 62.40 64.47
+ SILMM (Iter. 3) 76.29 75.91 69.20 84.41 60.00 64.22

Table 6. Performance improvement of the proposed SILMM method over three iterations (Iter.) for compositional text-to-image generation
on the 12 categories of the TIFA [27] benchmark. Alignment scores are calculated using expert understanding models (e.g., VQA or object
detection models) recommended by TIFA.

Method Animal Object Location Activity Color Spatial Attribute Food Counting Material Other Shape ALL

SEED-LLaMA [19] 69.35 63.14 72.55 65.73 60.59 66.75 71.9 60.37 61.66 68.42 52.74 43.48 66.74
+ SILMM (Iter. 1) 76.52 71.67 75.27 74.5 74.7 72.36 74.52 66.85 65.82 75.16 60.7 52.17 73.82

+ SILMM (Iter. 2) 76.75 72.65 76.41 73.87 78.03 71.35 75.46 67.18 65.92 81.82 64.18 56.52 74.47
+ SILMM (Iter. 3) 76.98 72.1 74.89 73.38 77.91 71.13 73.08 70.36 63.29 78.95 64.18 62.32 73.74

DreamLLM [13] 75.44 67.7 75.6 64.64 63.57 67.24 70.43 70.69 61.05 75.6 55.22 56.52 69.91
+ SILMM (Iter. 1) 78.81 71.67 79.35 72.26 63.74 71.48 72.70 73.55 61.97 75.60 61.19 63.77 73.37

+ SILMM (Iter. 2) 80.06 74.28 79.57 76.18 63.74 75.54 74.40 76.51 66.73 77.99 68.66 60.87 75.59
+ SILMM (Iter. 3) 80.29 73.85 79.35 75.34 63.80 74.53 74.05 77.06 65.72 77.51 67.66 65.22 75.38

Table 7. Influence of negative sampling for KC-DPO on the 8 categories of the T2I-CompBench++ [28] benchmark.. “14 - 24” means the
rejected data points are sampled from rank-14 to rank-24 which is a hard range, while “20 - 30” refers to the last 10 samples which is the
softest range. We generate 30 images per prompt.

Negative Range
Attribute Layout

Non-spatial Complex
Color Shape Texture Spatial 3D Spatial Numeracy

14 - 24 23.58 26.03 31.02 7.65 27.44 41.47 29.08 24.83
16 - 26 25.57 26.13 32.70 8.28 27.28 40.27 29.06 24.85
18 - 28 27.06 27.44 34.72 8.92 26.84 40.56 28.86 25.57
20 - 30 32.47 32.25 39.84 8.87 27.60 40.07 28.82 25.31
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Figure 12. Qualitative results of SEED-LLaMA and the proposed SILMM method on the T2I-CompBench++ [28] benchmark.
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pa
tia

l a giraffe in front of a clock  a backpack in front of a woman  a chair behind a woman

Figure 13. Qualitative results of DreamLLM and the proposed SILMM method on the T2I-CompBench++ [28] benchmark.
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a brown bear and a red train a green leaf and a yellow 
butterfly

a blue backpack and a 
red train

A thought-provoking piece of digital art that has gained popularity on ArtStation depicts a surreal scene where an open binder 
notebook serves as a door, standing incongruously amidst a dense woodland setting. The trees surrounding the notebook are 
rendered in meticulous detail, their bark dark and textured against the misty backdrop. The overall feel of the image evokes an 
eerie sense of a thriller, with the peculiar juxtaposition of the school supply and the natural environment inviting viewers to ponder 
the story behind it.

Sitting at one end of a wooden park bench, the perspective is directed upwards towards a clear blue sky with a few fluffy clouds 
drifting by. In the expanse of the sky, the inspirational phrase 'imagine the outcome' appears, almost as if written by an airplane's 
smoke trail. The bench, with its weathered slats and cast-iron arms, provides a tranquil spot for contemplation within the grassy 
expanse of the park.

In the warm hue of the setting sun, a well-used wooden cutting board leans against the gray, splintered slats of an aging backyard 
fence. Nearby, a bright red stop sign, its paint slightly faded and peeling from years of service, is planted firmly beside a quaint 
garden shed with peeling blue paint and a rusty door handle. The grass, tinged orange by the sunset's glow, is dotted with dandelions 
and whispers of the day's end breeze.

A historic building stands majestically with a clock tower that reaches towards the sky. The face of the clock is clearly visible, set 
upon the tower's brick structure. Behind the beautiful edifice, soft clouds drift across the blue sky, while in the foreground, a lush 
green tree partially obscures the view of the building, its branches stretching out beneath the open sky. Across from the main 
structure, the tower stands out, a landmark that serves both as a visual focal point and a timekeeper for those who pass by.

Seed-LLaMA + Ours
Figure 14. Qualitative results of SEED-LLaMA and the proposed SILMM method on the DPG-Bench [26] benchmark.
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An intricate oil painting that captures two rabbits standing upright in a pose reminiscent of the iconic American Gothic portrait. The 
rabbits are anthropomorphized, donning early 20th-century rural clothing with the male rabbit wearing a black jacket and the 
female in a colonial print apron. The background features a wooden farmhouse with a gothic window, emulating the style and 
composition of the original artwork.

A sleek, silver robot with articulated arms is standing in a modern kitchen, surrounded by stainless steel appliances. It is carefully 
stirring a pot on the stove, which is filled with a colorful mixture of vegetables. The countertops are neatly arranged with various 
cooking utensils and ingredients, including a cutting board with freshly chopped herbs.

An intricately designed robot with a polished metallic surface, donning a vibrant red and white race car suit, stands with a confident 
posture in front of a sleek F1 race car. The robot's black visor reflects the brilliant hues of the setting sun, which casts a warm 
glow over the futuristic cityscape depicted in the background. The illustration, reminiscent of a scene from a dynamic comic book, 
captures the essence of speed and technology.

A skier, clad in a bright yellow snowsuit that stands out against the white snow, swiftly descends a snowy slope. A cloud of freshly 
stirred powder trails behind them, evidence of an exhilarating jump just taken. In their gloved hands, they firmly grip two black ski 
poles that cut through the powdery snow with each focused movement. The vast expanse of the mountain can be seen around them, 
adorned with snow-laden conifers and the distant peaks shrouded in mist.

DreamLLM + Ours
Figure 15. Qualitative results of DreamLLM and the proposed SILMM method on the DPG-Bench [26] benchmark.

22



References
[1] Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-

lal Piot, Remi Munos, Mark Rowland, Michal Valko, and
Daniele Calandriello. A general theoretical paradigm to un-
derstand learning from human preferences. In International
Conference on Artificial Intelligence and Statistics, pages
4447–4455. PMLR, 2024. 4

[2] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell,
Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort,
Deep Ganguli, Tom Henighan, et al. Training a helpful and
harmless assistant with reinforcement learning from human
feedback. arXiv preprint arXiv:2204.05862, 2022. 15

[3] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda
Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna
Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Con-
stitutional ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073, 2022. 2, 3

[4] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng
Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee,
Yufei Guo, et al. Improving image generation with better
captions. Computer Science., 2(3):8, 2023. 7

[5] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and
Sergey Levine. Training diffusion models with reinforce-
ment learning. In ICML Workshop on Structured Probabilis-
tic Inference & Generative Modeling, 2023. 2, 3, 4

[6] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and
Daniel Cohen-Or. Attend-and-excite: Attention-based se-
mantic guidance for text-to-image diffusion models. ACM
Transactions on Graphics, 42(4):1–10, 2023. 1, 3

[7] Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa

Sadigh, Leonidas Guibas, and Fei Xia. Spatialvlm: Endow-
ing vision-language models with spatial reasoning capabili-
ties. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14455–14465,
2024. 2, 4, 6

[8] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze
Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo,
Huchuan Lu, et al. Pixart-α: Fast training of diffusion
transformer for photorealistic text-to-image synthesis. arXiv
preprint arXiv:2310.00426, 2023. 7

[9] Xiaolin Chen, Xuemeng Song, Liqiang Jing, Shuo Li, Lin-
mei Hu, and Liqiang Nie. Multimodal dialog systems with
dual knowledge-enhanced generative pretrained language
model. ACM Transactions on Information Systems, 42(2):
1–25, 2023. 17

[10] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingx-
iang He, Wei Zhu, Yuan Ni, Guotong Xie, Ruobing Xie,
Yankai Lin, et al. Ultrafeedback: Boosting language mod-
els with scaled ai feedback. In International Conference on
Machine Learning, 2024. 3

[11] Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li,
Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng Yuan,
Chang Zhou, and Jingren Zhou. How abilities in large lan-
guage models are affected by supervised fine-tuning data
composition. arXiv preprint arXiv:2310.05492, 2023. 2

[12] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu
Liu, et al. A survey on in-context learning. arXiv preprint
arXiv:2301.00234, 2022. 4

[13] Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng
Ge, Jinrong Yang, Liang Zhao, Jianjian Sun, Hongyu Zhou,
Haoran Wei, et al. Dreamllm: Synergistic multimodal com-
prehension and creation. In International Conference on
Learning Representations, 2024. 2, 3, 4, 5, 7, 8, 15, 18

[14] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024. 5

[15] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu,
Moonkyung Ryu, Craig Boutilier, Pieter Abbeel, Moham-
mad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Re-
inforcement learning for fine-tuning text-to-image diffusion
models. Advances in Neural Information Processing Sys-
tems, 36, 2024. 2, 3, 4

[16] Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Ar-
jun Reddy Akula, Pradyumna Narayana, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Training-
free structured diffusion guidance for compositional text-to-
image synthesis. In International Conference on Machine
Learning, 2023. 1, 3, 17

[17] Weixi Feng, Wanrong Zhu, Tsu-jui Fu, Varun Jampani, Ar-
jun Akula, Xuehai He, Sugato Basu, Xin Eric Wang, and
William Yang Wang. Layoutgpt: Compositional visual plan-
ning and generation with large language models. arXiv
preprint arXiv:2305.15393, 2023. 2, 3

[18] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep

23



learning. In international conference on machine learning,
pages 1050–1059. PMLR, 2016. 2, 5

[19] Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li,
Xintao Wang, and Ying Shan. Making llama see and draw
with seed tokenizer. In International Conference on Learn-
ing Representations, 2024. 1, 2, 3, 4, 5, 7, 18

[20] Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin
Song, Chen Li, Xiaohan Ding, and Ying Shan. Seed-x: Mul-
timodal models with unified multi-granularity comprehen-
sion and generation. arXiv preprint arXiv:2404.14396, 2024.
5, 15

[21] Yangyang Guo, Guangzhi Wang, and Mohan Kankanhalli.
Pela: Learning parameter-efficient models with low-rank ap-
proximation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 15699–
15709, 2024. 17

[22] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt,
and Bernhard Scholkopf. Support vector machines. IEEE In-
telligent Systems and their applications, 13(4):18–28, 1998.
5

[23] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. Clipscore: A reference-free evaluation met-
ric for image captioning. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing,
pages 7514–7528, 2021. 6

[24] Matthew Honnibal, Ines Montani, Sofie Van Landeghem,
and Adriane Boyd. spaCy: Industrial-strength Natural Lan-
guage Processing in Python. 2020. 7

[25] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 16

[26] Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng,
and Gang Yu. Ella: Equip diffusion models with
llm for enhanced semantic alignment. arXiv preprint
arXiv:2403.05135, 2024. 5, 6, 7, 8, 16, 17, 18, 21, 22

[27] Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari
Ostendorf, Ranjay Krishna, and Noah A Smith. Tifa: Accu-
rate and interpretable text-to-image faithfulness evaluation
with question answering. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 20406–
20417, 2023. 5, 6, 7, 16, 18

[28] Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and
Xihui Liu. T2i-compbench: A comprehensive bench-
mark for open-world compositional text-to-image genera-
tion. Advances in Neural Information Processing Systems,
36:78723–78747, 2023. 5, 6, 7, 8, 16, 17, 18, 19, 20

[29] Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau,
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