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Supplementary Material

A. Implementation Details

A.1. Motivation

Experimental Setup for Multimodal Understanding.
To evaluate the multimodal understanding capabilities of
current VQ tokenizers, we conduct experiments as detailed
in Tab. 1. For LFQ [66], we utilize the open-source im-
plementation [33], which demonstrates comparable perfor-
mance to the original paper. The codebook size of LFQ is
262,144. For VQGAN-LC [76], we employ features before
its projection layer, which is clustered from the pretrained
CLIP image encoder, with a codebook size of 100,000.

Experimental Setup for Visual Comparison of
VQKD, VQGAN and TokenFlow. To generate the visu-
alizations in Fig. 4, we perform an experiment using 50,000
images from the ImageNet-1k validation set. We process
these images through the encoders of VQKD, VQGAN and
TokenFlow, applying average pooling to the extracted fea-
tures to obtain a 1 × 1 representation. Subsequently, we
identify the closest index in their respective codebooks us-
ing l2 distance. We provide more visualizations in Fig. 11,
and visualize the cluster size distribution in Fig. 7.

Experimental Setup for Image Reconstruction from
Quantized Semantic Feature. We conducted an experi-
ment to reconstruct original images from quantized features
extracted by VQKD [35]. In this setup, we maintained the
original encoder and quantizer of VQKD, while introduc-
ing an additional decoder aimed at reconstructing the input
image. The architecture of this decoder is identical to the
pixel decoder employed in our TokenFlow. We trained this
decoder on the ImageNet-1K dataset for 100 epochs. Fig. 9
presents a visual comparison between the original and the
reconstructed images. As observed, while the reconstructed
images maintain the overall semantic content, they exhibit a
noticeable loss of high-frequency details. This phenomenon
suggests that the quantized semantic features cannot fully
preserve fine-grained visual details, which is crucial for vi-
sual generation.

A.2. Tokenizer Training Details

We provide detailed training configurations for
TokenFlow-B, TokenFlow-L, and TokenFlow-XL vari-
ants in Tab. 11. All models share common hyperparameters
including learning rate, batch size, commitment loss factor,
adversarial loss factor and distance balance weight. The
models primarily differ in their input resolution (224, 256,
and 384) and semantic teacher models, utilizing CLIP
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Figure 7. Comparison of cluster size distributions between VQKD
[35], VQGAN [13], and TokenFlow (ours), with a fixed code-
book size of 8,192. Analysis performed on 50,000 images from
the ImageNet-1k validation set. TokenFlow exhibits significantly
smoother distribution compared to others, attributed to our shared
mapping design that learns joint distributions of semantic and
pixel-level features. This joint learning approach helps maintain
high codebook utilization (95%+) even with large-scale codebooks
containing over 131K entries.

ViT-B/14 [37], ViTamin-XL [8], and SigLIP-SO400M
[69].

B. Additional Results
B.1. Additional Ablation Study

Effect of Sampling Strategy to Visual Generation. We
conduct comprehensive ablation studies to analyze the im-
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Figure 8. Qualitative comparison of visual generation capabilities
between 1B and 7B models. Prompts (from left to right): (1) ”A
pizza sitting on top of a wooden cutting board”, (2) ”Television
set being held by a hand”, (3) ”The guy is nicely dressed in a suit
and tie”, and (4) ”A sailing ship rests on waters”. The 7B model
demonstrates enhanced quality compared to its 1B counterpart.

pact of different sampling strategies on generation quality.
As shown in Table 6, we evaluate various configurations
using GenEval [15] and ImageReward [63] metrics. We
choose ImageReward for ablation due to its strong correla-
tion with human preferences, particularly in capturing local
artifacts and overall visual quality. The ImageReward is av-
erage over 10k prompts from the MS-COCO validation set.
For multi-step configurations, we denote the top-p and top-
k values for each step using bracket notation [x1, ..., xn].

Our multi-step approach with a two-step strategy (top-
k=[1200, 1], top-p=[0.8, 0]) significantly improves gen-
eration quality, yielding gains of +0.039 in GenEval and
+0.084 in ImageReward compared to single-step sampling.
This validates our hypothesis that progressive refinement
helps maintain global consistency. When increasing the
second-step k value to 10 or 100 while maintaining top-p,
we observe slightly degraded performance. This degrada-
tion suggests that excessive sampling freedom in refinement
steps can lead to increased artifacts and local inconsisten-
cies.

Most notably, three-step strategy (top-k=[1200, 100, 1],
top-p=[0.8, 0.8, 0]) achieves the best performance across
both metrics. This represents substantial improvements
of 10.2% and 14.3% over traditional single-step sampling,
respectively. The gradual narrowing of sampling space
(1200→100→1) strikes a balance between generation di-
versity and local consistency. As illustrated in Figure 5,
our multi-step approach produces more coherent and visu-
ally appealing results. These quantitative and qualitative re-
sults demonstrates that progressive refinement in top-p top-
k sampling is crucial for high-quality generation in next-
scale prediction frameworks.

Effect of Model Size to Visual Generation. We con-
duct ablation studies to investigate the impact of model
size on our decoder-only visual generation architecture.

Table 6. Impact of sampling strategy to visual generation.
We compare single-step v.s. multi-step sampling strategy using
GenEval and ImageReward. For multi-step approaches, values in
brackets indicate parameters for successive sampling steps.

Strategy Top-k Top-p GenEval ↑ ImageReward ↑

Single Step 1200 0.8 0.502 0.722

Multi Step

[1200, 1] [0.8, 0] 0.541 0.806
[1200, 10] [0.8, 0.8] 0.531 0.799
[1200, 100] [0.8, 0.8] 0.529 0.745

[1200, 100, 1] [0.8, 0.8, 1] 0.553 0.825

Table 7. Impact of model size to visual generation.

Model size Training epoches GenEval ↑ ImageReward ↑

1B 4 0.485 0.677
7B 2 0.553 0.825

Table 8. Impact of different input strategies on multimodal under-
standing. Best results for each metric are highlighted in bold.

Input strategy MME ↑ MME-P ↑ SEEDB ↑ TQA ↑

Full scale 1610.1 1315.1 59.6 49.5
Full scale residual 1527.5 1216.5 57.0 48.1
Last scale semantic feat. only 1580.3 1315.6 60.1 49.7
Last scale 1634.3 1356.5 59.9 49.1

Specifically, we initialize our framework with two differ-
ent backbone models: TinyLlama-1B [72] and Llama-2-7B
[53]. Experiments demonstrate that model size plays a cru-
cial role in generation performance. As shown in Tab. 7
and Fig. 8, under identical sampling strategies and training
dataset configurations, the 1B model significantly underper-
forms compared to its 7B counterpart, even with doubled
training epochs.

Effect of Input Strategy to Multimodal Understand-
ing. We validate different feature input strategies for multi-
modal understanding with TokenFlow. As shown in Tab. 8,
final-scale features consistently outperform both full-scale
features and full-scale residual features across all bench-
marks. This suggests that the final scale captures the most
relevant semantic information for multimodal understand-
ing, while additional scale features or residual features may
introduce noise that compromises performance. Our exper-
iments also reveal that utilizing semantic features only does
not improve the overall understanding performance.

Effect of Tokenizer Decoder Finetuning. To further
improve our model’s ability to generate fine details, we fol-
low [6] and double both the number of residual layers and
channel dimensions in the decoder. We exclusively fine-
tune these enhanced decoder layers while keeping all other
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Figure 9. Comparison of original images and their reconstructions from quantized semantic features extracted by VQKD [35]. The
reconstructed images preserve the semantic content but exhibit significant loss of high-frequency details.
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Figure 10. Comparison of image reconstruction quality. (a) Orig-
inal images. (b) Reconstructions using the base pixel decoder.
(c) Reconstructions using the enhanced (2× capacity) decoder.
The enhanced decoder demonstrates superior preservation of fine-
grained details, particularly in facial details and textual elements.

components frozen, thereby preserving the learned visual
token mappings. This enables us to improve reconstruction
fidelity without compromising perception ability of Token-
Flow. As shown in Fig. 10, the enhanced decoder yields
notable improvements in reconstruction quality. It demon-
strates superior preservation of high-frequency details, par-
ticularly in facial details and text elements.

B.2. More Analysis of TokenFlow
Analysis of Joint Distribution Learning. To evaluate

the effectiveness of our shared mapping mechanism, we
conduct comparative experiments against VQKD [35] and
VQGAN [13]. All models are configured with identical
codebook sizes of 8,192 tokens for fair comparison. For
baseline models, we utilize the official pretrained check-
points from [35] and [48], respectively. Our TokenFlow

model is trained on ImageNet-1K for 50 epochs. We delib-
erately excludes the multi-scale VQ design [51] to isolate
the effects of the shared mapping in this experiment.

For evaluation, we process 50,000 images from the
ImageNet-1K validation set through each model’s encoder.
We apply average pooling to the extracted features to obtain
a 1 × 1 representation, and then identify the closest index
in their respective codebooks using l2 distance. As shown
in Fig. 7, TokenFlow exhibits significantly smoother dis-
tribution against compared to others. The total non-empty
clusters of TokenFlow are 7161/8192 (87.4%), which is sig-
nificantly larger than that of VQGAN (2.5%) and VQKD
(27.1%). These results demonstrate that our shared map-
ping design enables effective learning of joint distributions
across high-level semantic and low-level pixel representa-
tions. By simultaneously encoding multiple levels of visual
information, we induces a joint representation space com-
pared to single-representation architectures. This directly
contributes to the superior codebook utilization observed in
our experiments. Even when expanding the codebook to
over 131K entries, TokenFlow maintains an exceptional uti-
lization ratio exceeding 95%. The clustered results is shown
in Fig. 11.

Automatic Balancing between Semantic Distance and
Pixel Distance. In our structure, the optimal quantize index
is determined by argmini(dsem,i + wdis · dpix,i). There ex-
ists an automatic balancing mechanism between semantic
distance and pixel distance. For instance, when encoun-
tering a case where dsem,i is relatively small while dpix,i is
large, during backpropagation, both commit loss and per-
ceptual loss will contribute to reducing the distance between
the encoded features and their quantized counterparts. This
mechanism naturally narrows the gap between these two
distance metrics. Therefore, we set wdis to 1.0 across all
experiments.

Comparison between TokenFlow and their corre-
sponding semantic teachers. Table 9 presents a fair



Table 9. Quantitative comparison of multimodal understanding capabilities between our discrete TokenFlow and their corresponding
continuous semantic teachers. All experiments are trained with LLaVA-1.5 data for fair comparison. When calculating average, we use
MME-P and divide it by 20 to have the same scale with other benchmarks.

Method # Params Visual Encoder Res. SEEDB MMV POPE VQAv2 GQA TQA AI2D RWQA MMMU MMB MME MME-P Avg.

Continuous Visual Input

LLaVA-1.5 Vicuna-13B
CLIP ViT-B/14 [37] 224 64.1 30.8 85.1 73.8 61.3 53.4 57.8 50.9 35.1 62.0 1737.0 1460.9 58.9

ViTamin-XL [8] 256 65.7 34.6 85.8 76.8 62.6 57.4 59.4 54.4 35.0 66.4 1839.1 1514.5 61.3
SigLIP-SO400M [69] 384 67.5 38.1 86.5 78.6 63.8 62.2 59.5 57.4 35.4 68.3 1802.1 1488.2 62.9

Discrete Visual Input

Ours Vicuna-13B
TokenFlow-B 224 60.4 22.4 84.0 70.2 59.3 49.8 54.2 49.4 34.2 55.3 1660.4 1353.6 55.2 (93.7%)
TokenFlow-L 256 62.6 27.7 85.0 73.9 60.3 54.1 56.6 49.2 34.4 60.3 1622.9 1365.4 57.5 (93.8%)

TokenFlow-XL 384 65.3 41.2 86.2 76.6 63.0 57.5 56.8 53.3 34.7 62.7 1794.4 1502.3 61.1 (97.1%)

Table 10. Comparison of generation quality on GenEval and DPG-Bench. Obj.: Object. Attri.: Attribute. † result is with rewriting.

GenEval DPG-Bench
Method Overall Single Obj. Two Obj. Counting Colors Position Color Attri. Overall Global Entity Attribute Relation Other

Diffusion-based

SDv1.5 [41] 0.43 0.97 0.38 0.35 0.76 0.04 0.06 63.18 74.63 74.23 75.39 73.49 67.81
DALL-E 2 [39] 0.52 0.94 0.66 0.49 0.77 0.10 0.19 – – – – – –
SDv2.1 [41] 0.50 0.98 0.51 0.44 0.85 0.07 0.17 – – – – – –
SDXL [36] 0.55 0.98 0.74 0.39 0.85 0.15 0.23 74.65 83.27 82.43 80.91 86.76 80.41
PixArt-alpha [7] 0.48 0.98 0.50 0.44 0.80 0.08 0.07 71.11 74.97 79.32 78.60 82.57 76.96
DALL-E 3 [4] 0.67† 0.96† 0.87† 0.47† 0.83† 0.43† 0.45† 83.50 90.97 89.61 88.39 90.58 89.83

Autoregressive meets diffusion

Show-o [62] 0.53 0.95 0.52 0.49 0.82 0.11 0.28 67.27 79.33 75.44 78.02 84.45 60.80
Transfusion [74] 0.63 – – – – – – – – – – – –

Autoregressive-based

Chameleon [48] 0.39 – – – – – – – – – – – –
LlamaGen [44] 0.32 0.71 0.34 0.21 0.58 0.07 0.04 64.84 81.76 75.43 76.17 84.76 58.40
EMU3 [55] 0.54 0.98 0.71 0.34 0.81 0.17 0.21 80.60 85.21 86.68 86.84 90.22 83.15
VAR [51] 0.53 0.95 0.60 0.41 0.81 0.16 0.24 71.08 77.51 78.17 77.80 85.80 62.00

Ours 0.55 0.97 0.66 0.40 0.84 0.17 0.26 73.38 78.72 79.22 81.29 85.22 71.20
0.63† 0.93† 0.72† 0.45† 0.82† 0.45† 0.42†

comparison between our discrete TokenFlow variants and
their corresponding semantic teachers under the LLaVA-1.5
training paradigm. TokenFlow exhibits a relative perfor-
mance gap compared to its semantic teachers due to vec-
tor quantized distillation. However, this gap diminishes as
resolution increases: from 6.3% at 224×224 to 6.2% at
256×256, and finally to 2.9% at 384×384. This improve-
ment can be attributed to the increased number of discrete
tokens and additional scales supplementing the residual fea-
tures at higher resolutions.

B.3. More Visual Generation Results
Quantitative Results. In Tab. 10, we present the com-

plete scores for both GenEval [15] and DPG-Bench [18].
Following DALL-E 3 [4], we report our GenEval results
using GPT-4V as a rewriter. For DPG-Bench, we tested
the results of LlamaGen and Show-o using their released
checkpoints. We compare against VAR [51] by using their
released tokenizer and training the visual generation model
under identical settings to ensure fair comparison.

Qualitative Results. We present additional visual gen-
eration results in Fig. 12. Our method can generate images

with various styles, subjects, and scenarios.

C. Limitation and Future Work
A primary limitation of TokenFlow lies in the perfor-

mance gap in multimodal understanding between our dis-
crete tokenizer and its continuous semantic teacher, which
stems from the vector quantization distillation process.
While this gap narrows to 2.9% at 384×384 resolution, sev-
eral methods remain for further improvement, such as in-
corporating text alignment loss during tokenizer training.

In this work, we primarily focused on designing Token-
Flow and validating its effectiveness separately in multi-
modal understanding and visual generation tasks. A natural
extension of this work is the development of a fully unified
model for both multimodal understanding and generation.
This unification can be achieved through joint training on
interleaved vision-language data. This is currently in our
high priority for exploration.
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Figure 11. Qualitative comparison of images clustered by VQKD [35], VQGAN [13] and our TokenFlow. VQKD clusters exhibit semantic
similarity, while VQGAN clusters exhibit low-level similarity (i.e. color and texture). Our TokenFlow can successfully combine both
semantic and low-level similarity (e.g. birds with different background can be mapped into two different index).



A picture of the head of a brown 
cow wearing a halter.

A bedroom with a white bed 
on a frame next to a window.

Aman with long hair with a pizza 
in front of him on the table.

A duck floating on a lake 
with gray and black feathers.

A toy smiley face in the 
middle of a doughnut.

A man with a bald head wearing a 
pair of glasses.

A couple of vehicles are side by 
side.

A breakfast of croissant and 
coffee sits on a table.

A photo of a man holding a sign 
with text 'FLOW'.

An elephant walking under the sea.

A photo of a purple backpack and 
a white umbrella.

A photo of a potted plant. A photo of two wine glasses. A photo of a yellow tv remote. A photo of a red apple.

A realistic landscape shot of the 
Northern Lights dancing over a 

snowy mountain range in Iceland.

A handsome 24 years old boy 
in the middle with sky color 

background wearing eye 
glasses, it's super detailed 

with anime style.

Happy dreamy owl monster 
sitting on a tree branch, colorful 

glittering particles, forest 
background, detailed feathers.

Crocodile in a sweater. A deep forest clearing with a 
mirrored pond reecting a 

galaxylled night sky.

An astronaut riding a horse on the 
moon, oil painting by Van Gogh.

A vivid green iguana is 
perched motionlessly atop a 

worn wooden log, its intricate 
scales exhibiting various 

shades of green and black.

An intricately detailed 
representation of the Marvel 

character Ghost Rider featuring a 
human skull, with flames licking 
around the contours of the skull 

and rising above it in a fierce 
expression of fiery vengeance.

A vibrant yellow 2017 Porsche 
911 is captured in motion, 

navigating a winding mountain 
road with its sleek body hugging 

the curve.

A lighthouse in a giant wave, 
origami style.

Figure 12. More Visual Generation Results with TokenFlow. We present diverse 256×256 results across various styles, subjects, and
scenarios.



Table 11. Detail settings of TokenFlow-B, TokenFlow-L and TokenFlow-XL.

Tokenizer TokenFlow-B TokenFlow-L TokenFlow-XL

Tokenizer settings:

Input resolution 224 256 384
Codebook size 32,768 32,768 32,768
Semantic teacher CLIP ViT-B/14-224 [37] ViTamin-XL-256 [8] SigLIP-SO400M-patch14-384 [69]
Multi-scale settings [1, 2, 4, 6, 8, 10, 12, 14] [1, 2, 3, 4, 6, 8, 10, 12, 14, 16] [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 22, 27]
Semantic codebook embedding dimension 32 32 32
Pixel codebook embedding dimension 8 8 8

Training settings:

Learning rate 1e-4 1e-4 1e-4
Batch size 256 256 256
Training steps 1,000,000 500,000 500,000
Distance balance weight wdis 1.0 1.0 1.0
Commitment loss factor β 0.25 0.25 0.25
Adversarial loss factor λG 0.5 0.5 0.5
Max gradient norm 1.0 1.0 1.0
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